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PROJECT GOAL:

to determine how inspiratory bursts are generated (rhythm generation:
RG) and shaped (pattern formation: PF) in the respiratory brainstem

pre-Botzinger Complex (preBotC)
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EXPERIMENTALLY OBSERVED PHENOMENA

1) 3-phase respiratory rhythms

(A) Signals from electrodes ©)  Respiratory cycle-triggered average firing rates
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EXPERIMENTALLY OBSERVED PHENOMENA

2) inspiratory dynamics: from scattered pre-| activity to synchronized | burst

early spikes transition to burst : pairwise cross-correlations tighten:
C1 prel c2 I-burst c3 IBI
n=90, N=5 pairs n=90, N=5 pairs _ n=90, N=5 pairs
Aol bbb o | ] g
- "J\ gos— ¢ %' 1 e ‘%.o. 7 °2 ;:.: .
M L 2 1 reiX ETE :.-: oo £t e
..... IIHHH & 02 | | .| - | | Io . s | | | | .
S+ b e f'ﬂl"%llh%ll HI # AL | d -250 0 250 -250 0 250  -250 0 250
ramp-| S 1 A R AR I'IHHW Uﬂl (A Correlation lag (ms)
o) | lll’ | ([ - “||| Il IHI”1| (i i
g Oy o D b2
post-| el IR T R WL 8 prel 30 I-burst
.....l. ..... IHJ..IIJJIIIIJI.JHIUUUIIJ AT — Ill.[..l ...... & 18 ms -11 ms
i i T L -
HW b et 5 g o
S 58 é 0 .0
"1 postl  E2 2 260 -130 0 130 260 260 -13 260 -350 -175 350
e Correlation lag (ms)

Carroll & Ramirez, J. Neurophys., 2013 Ashhad & Feldman, Neuron, 2020



EXPERIMENTALLY OBSERVED PHENOMENA  Kametal, J. Neurosci (x2), 2013

3) transition can be prolonged or can even fail: burstlets

bursts & burstlets; only initially, burstlets and bursts delay from initiation to burst
bursts drive muscles look the same can be long and variable
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A model that reproduces and explains the mechanisms behind
these key observations would be a triumph.




EXPERIMENTALLY OBSERVED PHENOMENA

4) preBotC is a caveman network (in organotypic culture)

* slice preparations (organotypic culture)

* ¥90% of neurons in local clusters (right b; below a)
e cluster size distribution characterized (below b)
 dense intra-cluster connections (below c - open)

e sparse inter-cluster links (below c - filled)
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EXPERIMENTALLY OBSERVED PHENOMENA - SUMMARY

Each respiratory cycle is driven by an inspiratory event generated by
a (caveman?) network of neurons in the preBotC that initiates as a
burstlet and may, after some delay, transition into a functional burst.
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PROJECT GOAL:

to determine how inspiratory bursts are generated (rhythm generation:
RG) and shaped (pattern formation: PF) in the respiratory brainstem

OUTLINE FROM HERE ON

1) Gaiteri & Rubin — caveman fails

2) Phillips & Rubin — biophysical model of the burstlet = burst transition
3) Ashhad & Feldman — focus on connectivity (with IF neurons)

4) MSBP — a new framework to fully focus on connectivity

NOT IN THIS TALK

1) cool models for how individual neurons can produce ramping activity
2) applying maximum entropy models to fMRI data for SZ vs. HC subjects



(1) Computational model preBotC networks with HH dynamics
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Simulation and analysis of ongoing emergent dynamics

filter each neuron’s output and score each network’s burst synchrony
NBI = mean correlation + network variance + # bursting + (1/onset latency)

Example estimates of onset latency
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Results: network burst synchrony vs. network topology

(1) all network burst synchrony measures vary significantly w/topology

(2) correlation/variance and overall NBl: NN and Hartelt perform worst
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Why does the Hartelt network fail?

* hypothesis 1: wrong dynamics — Butera model is out of date

cf. Rubin et al., PNAS, 2009; Toporikova & Butera, JCNS, 2011; Jasinski et al., EJN,
2013; Park & Rubin, JCNS, 2013; Song et al., eNeuro, 2015; Phillips et al., eLife,
2019 & 2022

* hypothesis 2: wrong architecture — results based on culture do not
reflect true connection pattern



(2) Results with updated dynamics and 2 sub-population network

Phillips & Rubin, eLife, 2022
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From 2 neurons to 2 subpops: matches datal! Phillips & Rubin, elife, 2022
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2-subpop network also matches holographic uncaging experiments

failure to evoke burst

successfully evoked burst

summary:
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Recipe for burstlets+bursts

* RG subpopulation bursting I l l l l l L

1) Rhythm 2) Pattern

P,=30% P,=2%

* synaptic coupling within and
between RG and PF subpopulations Pe=13%

IP3 Receptor
P Endoplasmic

Soma Reticulum

e calcium-induced calcium release

|, Input



(3) Focus on network alone: architecture for synchronized bursting?

e simple LIF neurons at nodes (vs. HH)

e consider 4 different connection
patterns

* focus on holographic experiments:
stimulate 1-10 neurons initially
and observe subsequent induced

network activity

Ashhad et al., J. Neurosci., 2023
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Results: only ER networks with log-normal weight distribution
match experiments on induced burst (or burstlet) generation
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Prediction: preBotC network has ER architecture with log-normal
synaptic weight distribution

However: Phillips & Rubin network captures uncaging experiments
without log-normal synaptic weights, using two populations with
different random connection probabilities

Idea: Try to develop a framework where we can use mathematical
analysis to go beyond simulation results



recall: EXPERIMENTALLY OBSERVED PHENOMENA

2) inspiratory dynamics: from scattered pre-| activity to synchronized | burst

Jeffrey C. Smith, NIH (retired)




T I

» For each v;€V, assign a state s;6{0,1} where we call 0 ”inactive” and 1 “active”

bootstrap percolation

» Consider a graph G = (VE)

» Impose discrete time dynamics with a k-threshold update rule and monotonicity:

Sf,j(t -+ 1) — TNaX {Xj(t), H <i: 6«,jj8j(t) — (k -+ 6)) } , O<ex1

Jj=1
where

1, dconnection between v; and v;
C;: =
K 0, else

Chalupa et al. (1979), van Enter (1987), Schonmann (1992), Holroyd (2003), .
find p.(G,k,n)
Kozma et al. (2004, 2005), Balogh et al. (2006, 2012), Janson et al. (2016) c



respiratory network version: multi-state bootstrap percolation (MSBP)

/ Tryba et al., J.
I 10 mV ~Mu -\;M Neurosci., 2003
Is

> three states & two thresholds: (k;, k)

O: inactive

1: weakly active (sporadic activity) — node sends output of strength 1

2: fully active (bursting) — node sends output of strength w > 1

» G = (V.E): directed graph (digraph)



start with monotone MSBP

mathematically: { ) €{0,1,w >1}
+1) =max{H() e;s;(t) — k1);wH(Y eijs;(t) — ka);si(t)}

j=i j—i

where 5 — 7 denotes a directed edge from j to 7 in the graph
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graphically:
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Is MSBP helpful?

Result 1: MSBP is (in some parameter regimes, on some graphs) different
from BP — Take-away: bursting matters! & MSBP may be (at least
mathematically) interesting

2 examples with different (k,, k,, w)
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Result 2: Global architecture can affect many properties of MSBP

dynamlc examples MSBP on random regular digraph and on torus

N=400, p,,..= 0.122 (Y. Sokolov, unpublished)




Result 2: Global architecture can affect many properties of MSBP

random reqular digraph: torus:
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how can we use this? back to holographic experiments:

1) Simultaneous excitation of 4-9 neurons can initiate bursts 3) Simulations
. o)
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a possible approach (in progress...)

For given graph and MSBP (ki, k2, w) parameters, mean field
model gives estimate for pc(n) for any n (decreases as n

i n — n=|V
increases) Pe(n),.,.  ——=>n=|V|

5 % ablation
< o

0.024

Size of respiratory network, n*, has been estimated oz -
(n* ~ 500)

» Experiments from previous slide constrain p.(n). ~—. |

0.018

0.014
400 600 800 1000 1200 1400 1600

> Other experiments (Kam et al., 2013) also show that i
k2 ~ (3/2)/(1 Lattice + Gaussian edges

Thus, predict that network is among those
{graphs, ki, and w} such that constraints hold.




SUMMARY

(1) to elucidate the contributions of various ion currents and other biophysical

factors to inspiratory bursting
CICR is a likely mechanism to convert burstlets into bursts

(other results support roles for Iy.p, lcay & Other factors)

(2) to determine the preB6tC connectome (connection pattern and weight
distribution)

it’s unlikely to be a caveman network

more likely: 2 coupled sub-networks, weight distribution may matter

MSBP may help — at least will allow for rapid exploration, deriving constraints
(3) to integrate (1) & (2) into a complete theory

dynamics at nodes matter for capturing dynamics of network
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