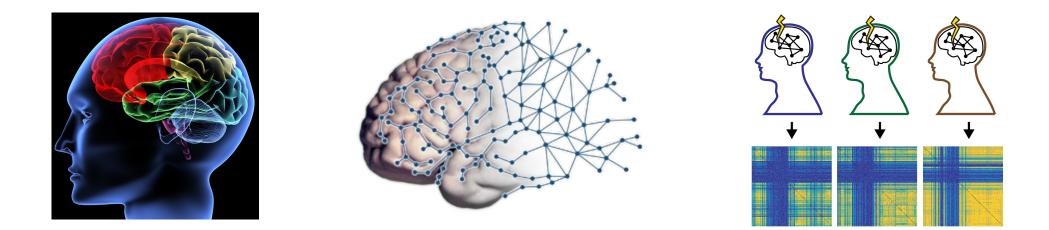
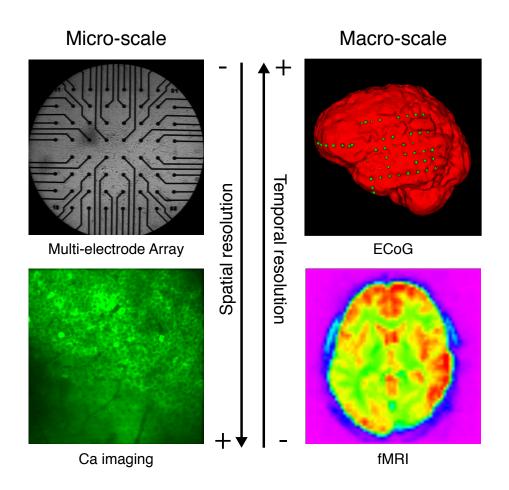
Personalized brain network models augment individual differences



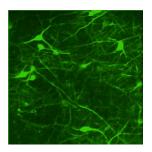
Sarah F. Muldoon IPAM - Mathematical Approaches for Connectome Analysis February 14, 2024

Types of neuroscience data

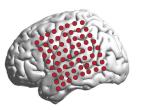
- Lots of different data from which we build networks
- Structural data
- Time series data (functional data)
- Simultaneous recordings across modalities
- Data across multiple scales



My lab: Multi-scale exploration



- Community structure to find similar groups of neurons
- TDA for performing cell detection/segmentation
- Applications in epilepsy seizure prediction/control
- Collaborations: Ethan Goldberg (CHOP NSF Brain Initiative Grant); Caroline Bass (UB); Valerie Crepel (INMED, France)



Meso-scale: sensor data (EEG)

- Individual differences
- Collaborations: Jean Vettel, Javi Garcia (ARL); David Shucard (UB); Tom Covey (UB); Janet Shucard (UB)

Macro-scale: MRI data (structural/functional)

- Personalized Brain Network Models (BNM)
- Individual differences
- Applications in epilepsy epileptogenesis
- Collaborations: David Shucard (UB); Tom Covey (UB); John Leddy (UB); Barry Willer (UB); Dave Poulsen(UB), Ferdinand Schweser (UB); Anca Radesculu (New Platz); Vijaya Prakash Krishnan Muthaiah (UB); Kostas Slavakis (UB) and John Medaglia (Drexel); David Wack (UB)

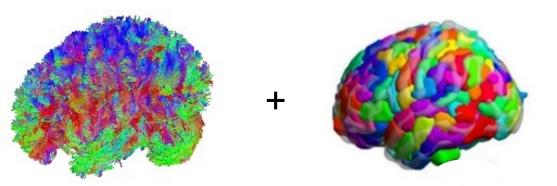
Outline

- 1. Personalized Brain Network Models
- 2. Predicting Task Performance with pBNMs
- 3. Quantifying Variability with pBNMs

Part 1: Personalized Brain Network Models

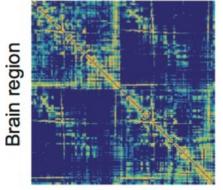
Building brain networks

Structural networks



Nodes: brain regions Edges: white matter tracts (streamlines – DSI data)

Weighted connectivity matrix

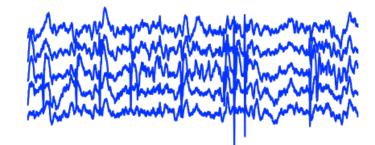


Brain region

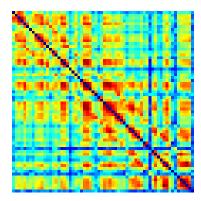
University at Buffalo The State University of New York

Building brain networks

Functional networks



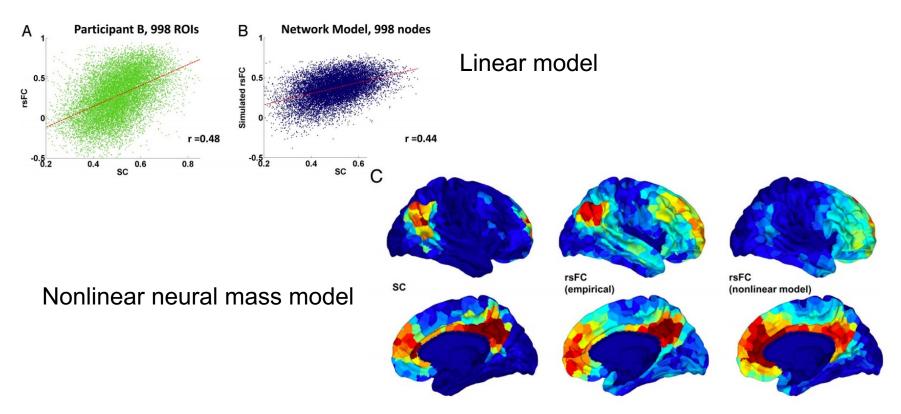
Statistical Relationships (correlations) Functional Connectivity



Nodes: brain regions Edges: statistical relationships between dynamics of brain regions

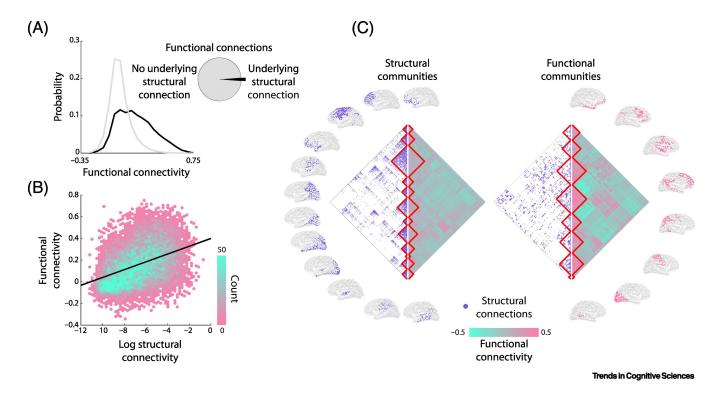
Structure-function relationships

Initial work using computational models to assess the relationship between structure and function – also included empirical data



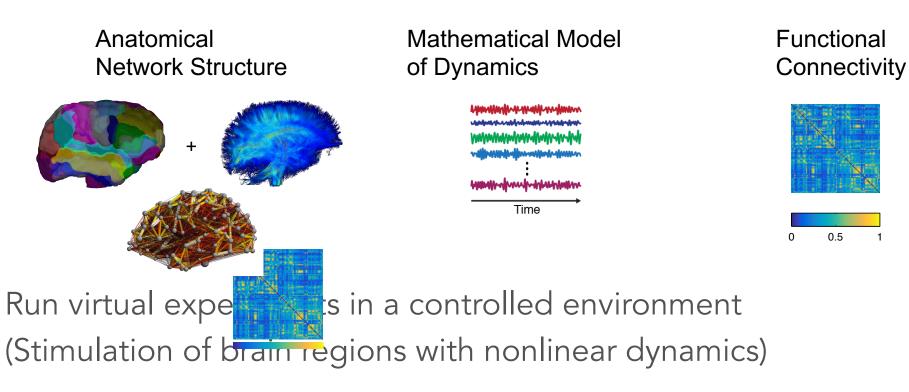
Review Article: Linking Structure and Function in Macroscale Brain Networks

Laura E. Suárez, Ross D. Markello, Richard F. Betzel, Bratislav Misic Trends in Cognitive Sciences - April 2020



Building a virtual brain

- Use structural matrices derived from human imaging data to model brain network connectivity
- Add simulated brain dynamics to each node (brain region)



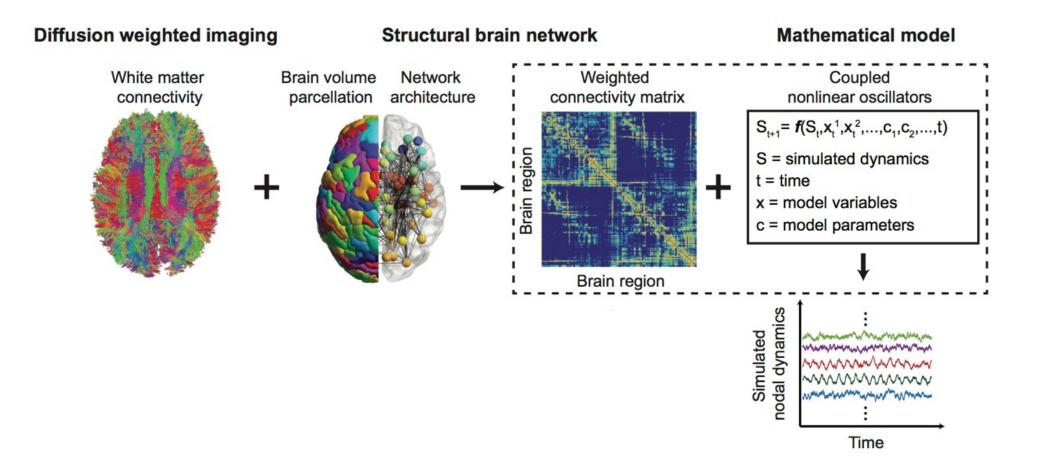
Brain network models

Used to study a wide variety of brain features

Resting state dynamics tDCS Stroke Epilepsy

www.thevirtualbrain.org

Computational brain network models



Bansal et al. (2018) Curr Opin Neurobiol

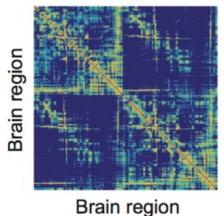
Network dynamics

Wilson-Cowan Oscillators

Biologically derived nonlinear oscillator modeling firing rates of regional populations of neurons

Network Structure

Weighted connectivity matrix



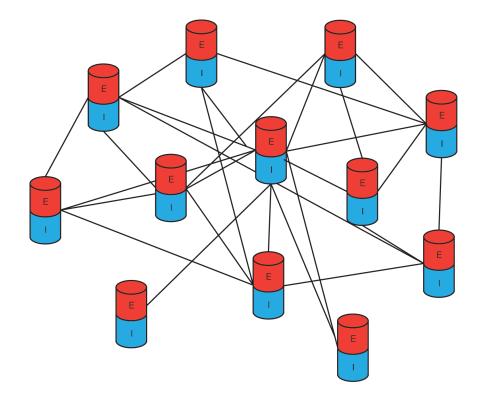
Dynamics

Lynnikaljer marene portek Malanikaljer marene portek Malanikaljer marene portek

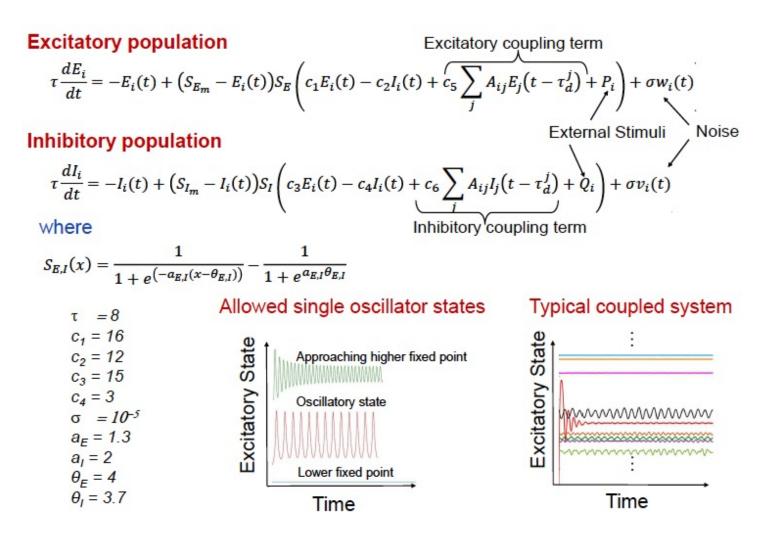
man hour harmon

Time

Excitatory population Inhibitory population

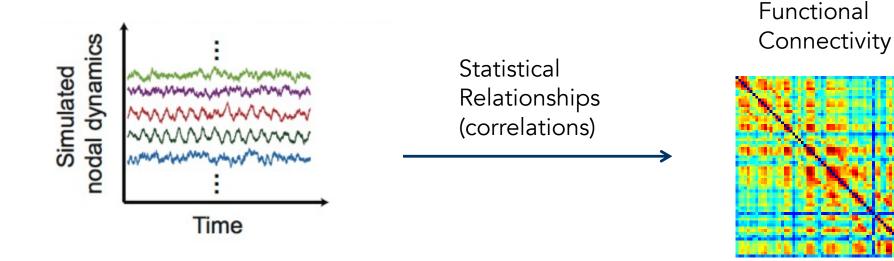


Wilson-Cowan dynamics



Building brain networks

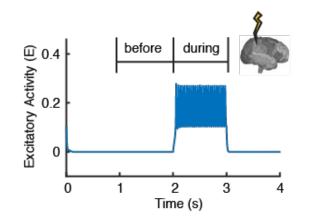
Functional networks



Edges: statistical relationships between dynamics of brain regions

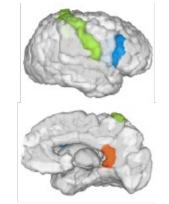
University at Buffalo The State University of New York

Virtual experiments: Effects of stimulation



Functional Connectivity

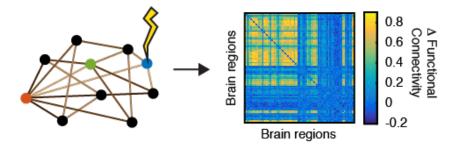
Before Stimulation



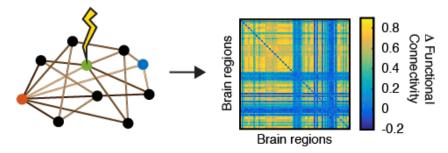
Functional Connectivity

During Stimulation

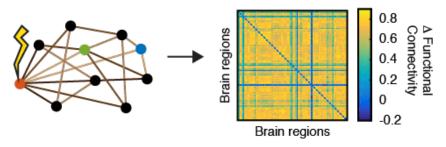
Low average controllability: Pars opercularis



Medium average controllability: Post central



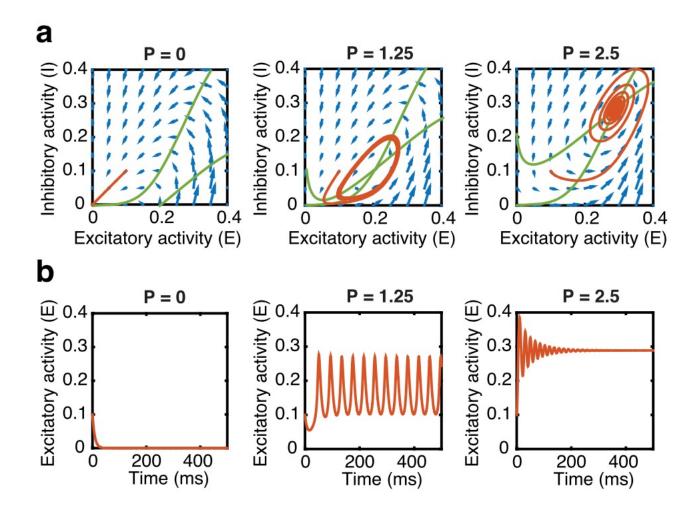
High average controllability: Isthmus cingulate



Nonlinear Dynamics – Single Oscillator

Three states:

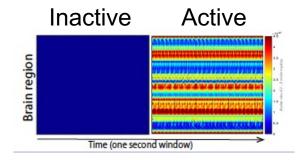
- 1. Low fixed point
- 2. Limit cycle
- 3. High fixed point



Variability in transition point

Triplicate data set

- 8 subjects
- 3 scans per subject



Excitatory population

$$\tau \frac{dE_j}{dt} = -E_j(t) + (S_{e_max} - E_j(t)) S_e \left(c_1 E_j(t) - c_2 I_j(t) + c_5 \sum_k A_{jk} E_k(t - \tau_d^k) + P_j(t) \right) + \sigma w_j(t)$$

$$\int_{1.5}^{1.4} \int_{1.3}^{1.4} \int_{1.3}^{1.4} \int_{1.3}^{1.4} \int_{1.3}^{1.4} \int_{1.4}^{1.3} \int_{0.04}^{1.4} \int_{0.04}^{1.5} \int_{0.008}^{1.6} \int_{0.004}^{0.016} Global \text{ coupling parameter}$$
Global coupling parameter
Sensitive to individual differences in brain network structure!

Within the subject to the set

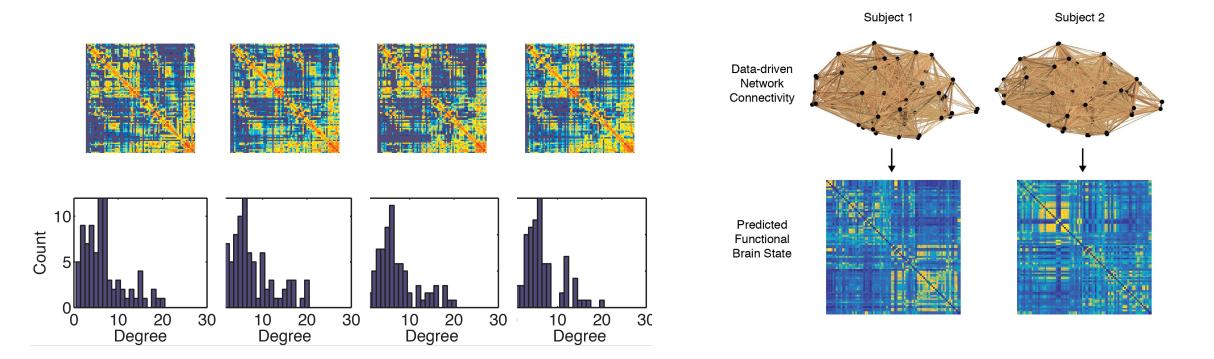
Muldoon et al. (2016) PLOS Comp Bio

1 2 3 4 5 6 7 8

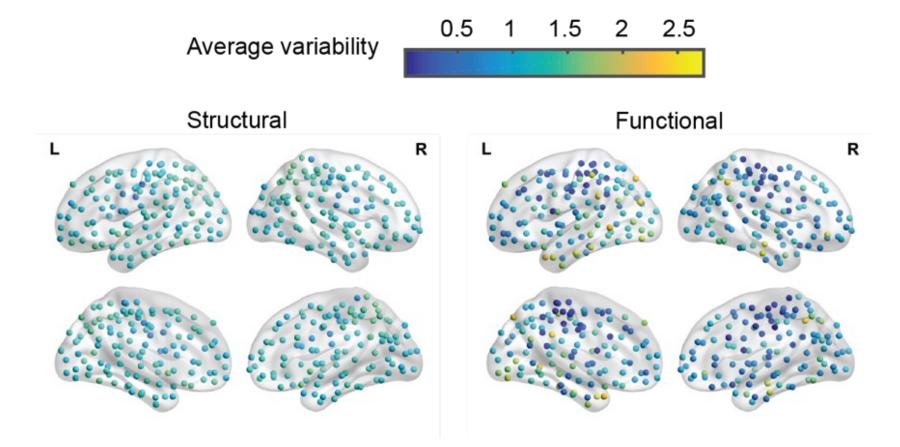
Subject number

Brains 'appear' structurally similar

Individual differences

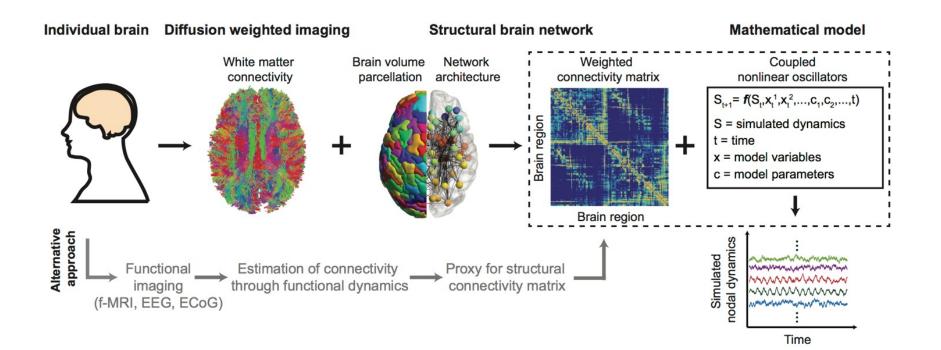


Model accentuates structural differences



Personalized brain network models

Brain network models are especially sensitive to perturbations in the underlying connectivity



Personalized brain network models

In silico experiments Q1: What is the effect of stimulation? Outcome 1: Brain activity following stimulation Personalized brain network models Model architecture Output Connectivity driven node Brain regio framework Regional brain volume Network node Time **Brain region** Network Estimated from brain imaging Network 1107 edge Q2: What is the optimum resection Time Outcome 2: Optimally favorable for resection strategy? dynamics Epileptogenic brain regions mmmmm Mathematical model of node dynamics Time

Predictive outcomes

Perform computational experiments

Study differential effects of stimulation across cohort of individuals

Targeted computational stimulation

Can simulated brain activity be used as a parameter to differentiate individual behavior?

Part 2: Predicting Task Performance

Individual differences: task performance

Can simulated brain activity be used as a parameter to differentiate individual behavior? <u>Experimental Procedure</u>

Data from Medaglia and Bassett at Penn

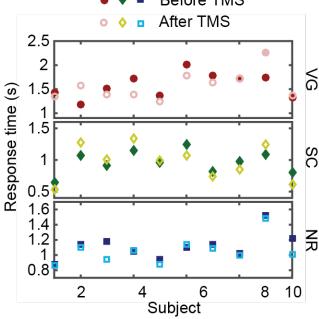
- 10 subjects, 3 cognitive tasks
- TMS stimulation to L-IFG
- task performance before stim
- task performance after stim

10 Subjects 1. Verb generation performing 3 2. Sentence completion different tasks 3. Number reading Franscranial Magnetic stimulation to Left -Inferior Frontal Gyrus (LIFG) L IFG Pars triangularis (PTA), Pars orbitalis (POB), Pars opercularis (POC) 10 Subjects performing 3 different tasks

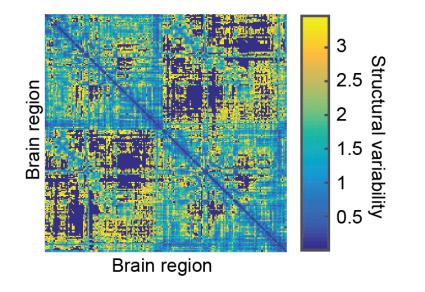
Individual variability

Postdoc Kanika Bansal

Individual differences in task performance

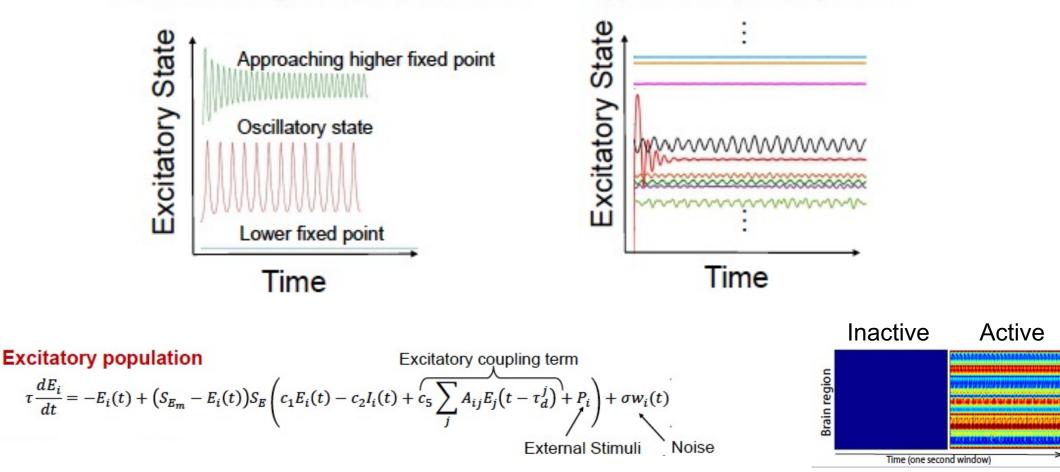


Structural variability



Variability in the model

Allowed single oscillator states

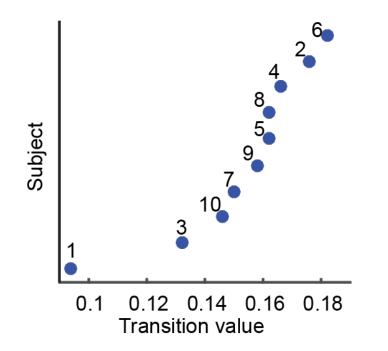


Typical coupled system

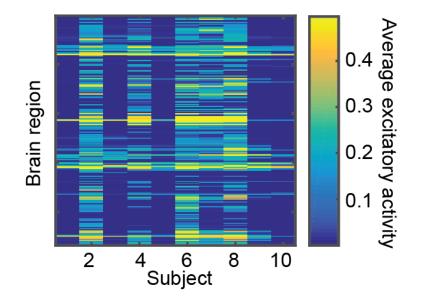
University at Buffalo The State University of New York

Variability in the model

Model transition value



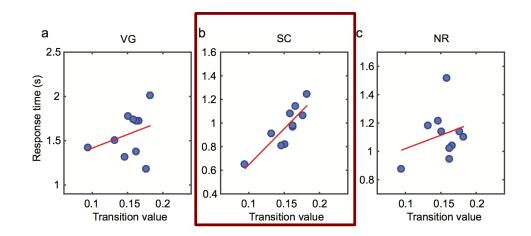
Output model dynamics



Bansal et al. (2018) PLoS Comp Bio

Correlations with transition value

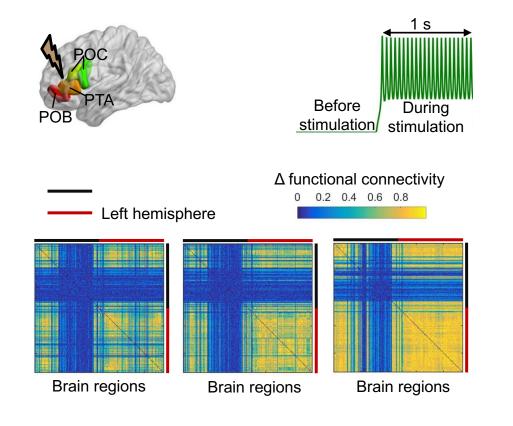
Only see correlation between transition value and task performance for Sentence Completion (SC) task



Model feature	VG		SC		NR	
	r	p	r	p	r	p
Transition value	0.30	0.39	0.86 *•	0.001	0.27	0.45
	[-0.27, 0.80]		[0.68, 0.95]		[-0.52, 0.69]	

Virtual stimulation experiments

To mimic experimental data, apply stimulation to LIFG in computational brain (Lausanne parcellation, 234 regions)



Functional Effect: average change in functional connectivity

Hypothesis: The spread of synchronization through the brain (functional effect), will correlate with the performance

Bansal et al. (2018) PLoS Comp Bio

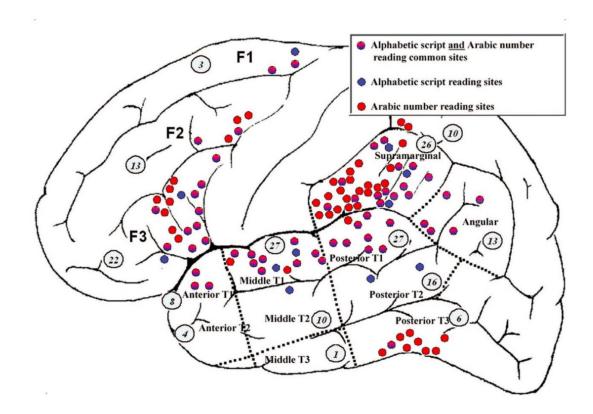
Correlations with functional effect

No correlations!

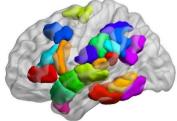
Model feature	VG		\mathbf{SC}		NR	
	r	p	r	p	r	p
Transition value	0.30	0.39	0.86 *•	0.001	0.27	0.45
	[-0.27, 0.80]		[0.68, 0.95]		[-0.52, 0.69]	
Functional effect (global brain)	-0.04	0.91	0.39	0.26	0.23	0.52
	[-0.52,	0.44]	[-0.27,	0.80]	[-0.31,	0.72]

Task circuits

Examine activation of subnetworks associated with language or number reading



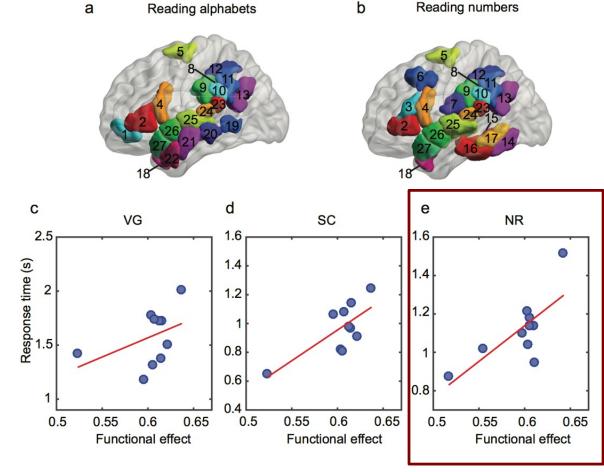
Task circuit for processing alphabets



Correlation within task circuits

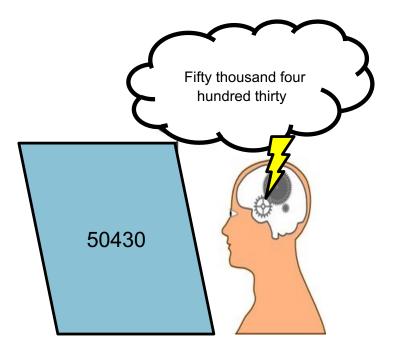
Only see a correlation between the functional effect within the task circuit and task performance in the Number Reading (NR) task!

Model feature	VG		\mathbf{SC}		NR	
	r	p	r	p	r	p
Transition value	0.30	0.39	0.86*•	0.001	0.27	0.45
	[-0.27, 0.80]		[0.68, 0.95]		[-0.52, 0.69]	
Functional effect (global brain)	-0.04	0.91	0.39	0.26	0.23	0.52
	[-0.52, 0.44]		[-0.27, 0.80]		[-0.31, 0.72]	
Functional effect (task circuit)	0.42	0.22	0.73^{*}	0.017	0.74*•	0.016
	[0.12,	0.82]	[0.01,	0.90]	[0.20,	0.94]



Local vs global computation

Task circuits are for letter and number reading Does the task require other cognitive effort? Do other brain regions play a role?



Local vs global complexity

Sentence completion – requires involvement of more cognitive systems

- Global brain task
- Transition value = global brain excitation

Number reading – simpler task involving local sub-circuit

- Localized brain task
- Functional effect within task circuit localized computation

To summarize

Personalized brain network models accentuate differences in structural variability

Use to perform virtual experiments otherwise not possible to assess how patterns of brain activity differ across individuals or across stimulation sites

Useful for developing personalized medicine treatments

Promising results but need better understanding of task circuitry and larger sample size! Now working with larger data set and auditory/visual cues during task.

Part 3: Quantifying Variability

Quantifying individual differences

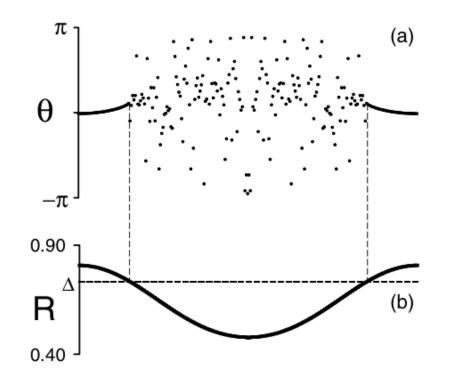
Functional effect (average pairwise synchronization across brain/sub-circuit) is a very unsophisticated measure of synchronized brain activity patterns

Need to develop tools to quantify and understand patterns of brain activity and how the differ across individuals

Cognitive chimera states

What is a chimera state?

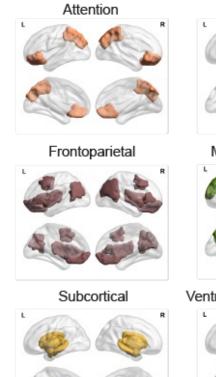
In a system of coupled identical oscillators, a chimera state is a state of partial synchronization where a subset of oscillators become synchronized, while the remainder of the oscillators remain asynchronous

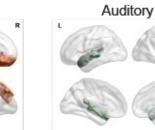


Abrams and Strogatz (2004) PRL

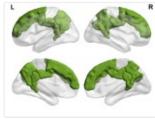
Chimera states in the brain

Combine with a cognitive context



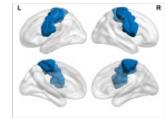


Medial default mode

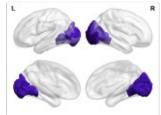


Ventral temporal association

Motor and somatosensory



Visual

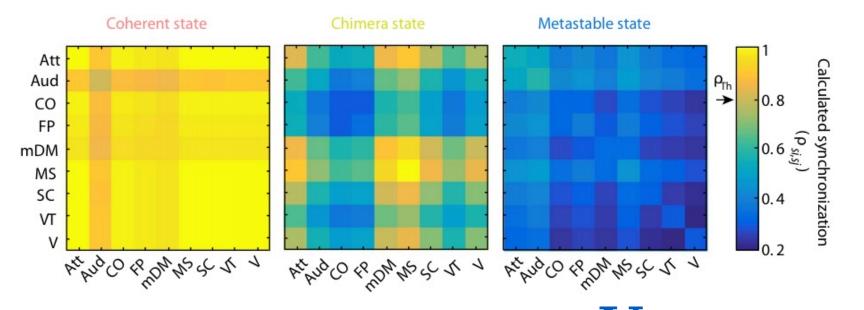


University at Buffalo The State University of New York

Cognitive chimera states

Measure the pairwise synchronization of brain regions between nodes within cognitive systems

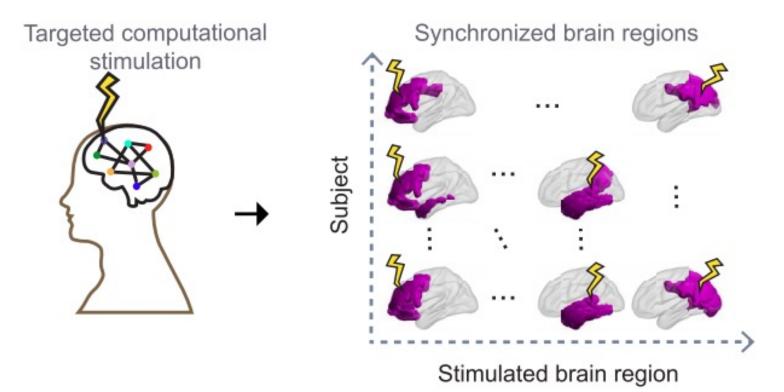
$$\rho_{s_i,s_j} = \langle \rho_{s_i,s_j}(t) \rangle_T \qquad \rho_{s_i,s_j}(t) e^{i\Theta(t)} = \frac{1}{N_{s_i} + N_{s_j}} \sum_{k \in (s_i \cup s_j)} e^{i\phi_k(t)}$$



Bansal et al. (2019) Sci Adv

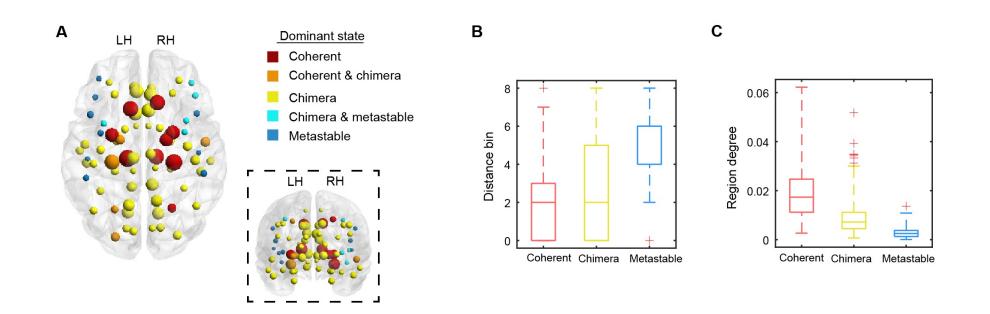
Computational stimulation experiments

Build 30 personalized brain network models

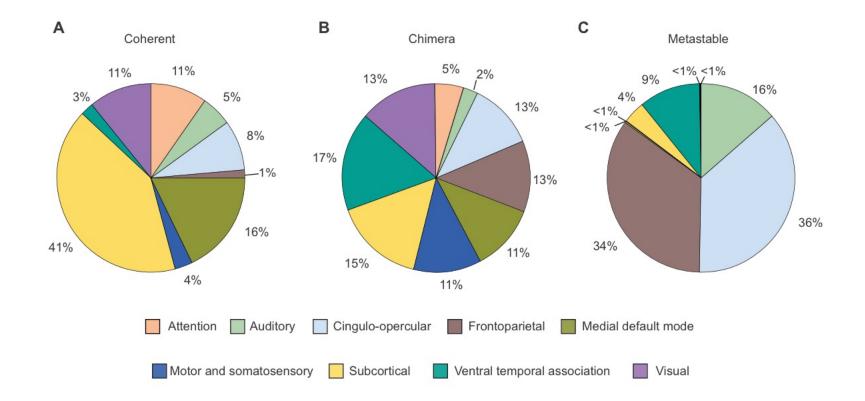


Spatial mapping of activity patterns

Stimulation of different brain regions produces different patterns of activity



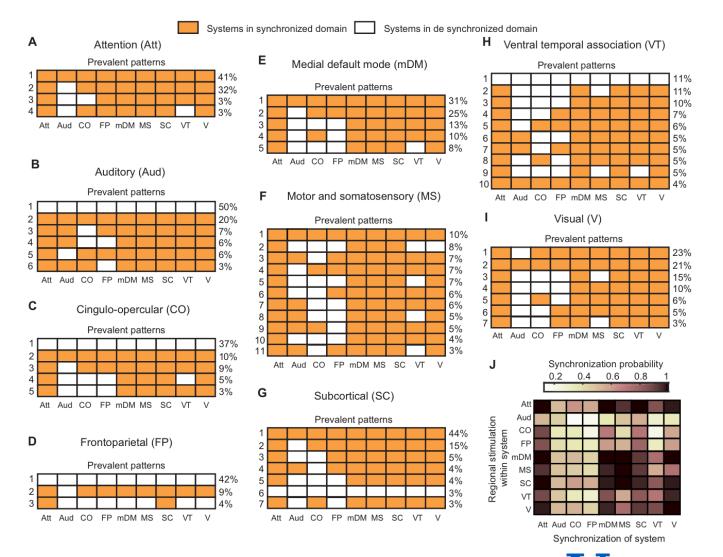
All systems produce chimera states



University at Buffalo The State University of New York

Bansal et al. (2019) Sci Adv

Chimeras display unique patterning



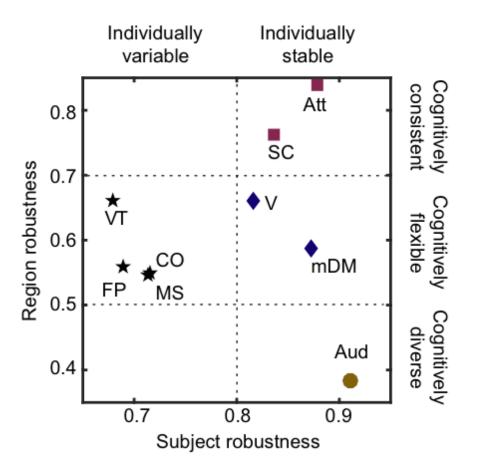
Bansal et al. (2019) Sci Adv

University at Buffalo The State University of New York

Robustness of chimera patterns

$$R = \frac{1}{p(p-1)} \sum_{i,j=1}^{p} \left(\frac{1}{M} \sum_{s=1}^{M} \delta_{i,j}^{s} \right)$$

p is the total number of patterns in the set – calculate across subjects for simulation of a single node or across nodes within a system for a subject



To summarize

Personalized brain network models accentuate differences in structural variability

Cognitive chimera framework is a novel way for quantifying patterns of brain activity to give insight into variability in cognitive function

Useful for developing personalized medicine treatments

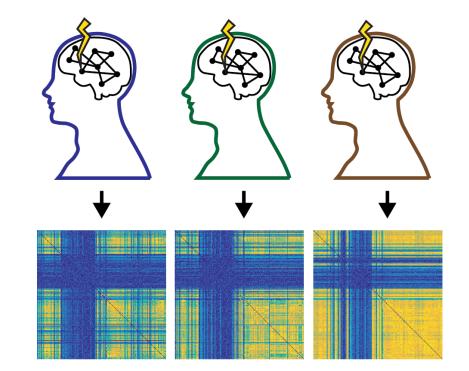
Thanks to...

Muldoon Lab

- Kanika Bansal
- Michael Vaiana
- Johan Nakuci
- Ulgen Kilic
- Tong Wu
- Anthony Nguyen
- James Hartz
- Elizabeth Castro

Collaborators:

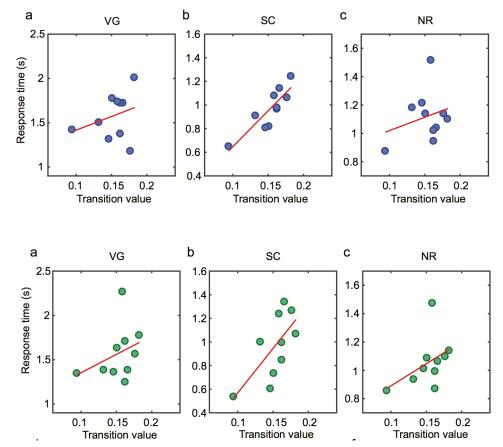
- Jean Vettel, ARL
- John Medaglia, Penn
- Dani Bassett, Penn
- Timothy Verstynen, CMU
- Javi Garcia, ARL
- Steven Tompson, ARL



Funding:

How does stimulation change things?

Weakened correlations – Transition Value Before Stimulation

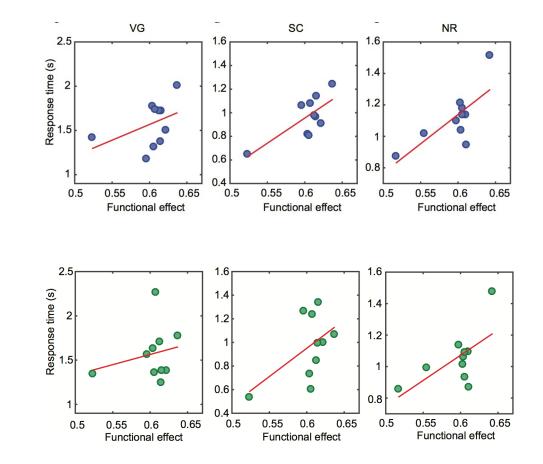


After Stimulation

Bansal et al. (2018) PLoS Comp Bio

How does stimulation change things?

Weakened correlations – Functional effect within task circuit Before Stimulation



After Stimulation

Bansal et al. (2018) PLoS Comp Bio

Weakened correlations

Before stimulation

Model feature	VG		\mathbf{SC}		NR	
	r	p	r	p	r	p
Transition value	0.30	0.39	0.86*•	0.001	0.27	0.45
	[-0.27, 0.80]		[0.68, 0.95]		[-0.52, 0.69]	
Functional effect (global brain)	-0.04	0.91	0.39	0.26	0.23	0.52
	[-0.52,	0.44]	[-0.27, 0.80]		[-0.31, 0.72]	
Functional effect (task circuit)	0.42	0.22	0.73^{*}	0.017	0.74 *•	0.016
	[0.12,	0.82]	[0.01,	0.90]	[0.20,	0.94]

After Stimulation

Model feature	VG		SC		NR	
	r	p	r	p	r	p
Transition value	0.35	0.33	0.68•	0.03	0.45	0.20
	[0.01, 0.70]		[0.32, 0.87]		[0.01, 0.93]	
Functional effect (global brain)	0.19	0.59	0.39	0.27	0.08	0.82
	[-0.18	, 0.63]	[-0.22]	, 0.81]	[-0.43,	[0.57]
Functional effect (task circuit)	0.23	0.52	0.52	0.12	0.63•	0.05
	[-0.38	, 0.57]	[-0.22]	, 0.79]	[-0.07,	, 0.88]

Bansal et al. (2018) PLoS Comp Bio

How does stimulation change things?

2

