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Building a Brain: Parts List
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Building a neural parts list

• 181 neurons
• Identities
• Morphologies
• Connections



Structure at a variety of scales
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How do we go from high dimensional
neural activations to neural insights?

Several challenges to overcome related to 
the noisy and distributed representations 
found in the brain. 

Challenges 






[Image: Constanzo et al. Science 2016]

Similar challenges in cellular data (scRNA) analysis



Analysis Tasks
Denoising 

Distilling state space, visualization Dynamics from static snapshots 

Regulatory/Generative Network Inference 



Data Geometry + Topology+ Deep Learning



Main idea: allow natural groupings of datapoints to appear at all levels 
of granularity

Guillaume Huguet
Alex Tong
Nate Brugnone
Manik Kuchroo
Guy Wolf
Matt Hirn

Diffusion Topology
(Huguet et al SIMODS 2023, 
Brugnone N, Gonoposkiy A., IEEE Big Data 2019
Moyle et al. Nature 2021, Kuchroo et al. Nat Comm 2023)



High degree of complexity  Multi-level Organization 



Characterization of D-dimensional Holes



Computational Homology



Computational Homology



Computational Homology



Computational Homology



Computational Homology



Computational Homology



Problem: Noisy Connections

• Inference form noisy images/measurements
• Potentially inaccurate segmentations 
• Solution

• ==>Use redundancy and lower dimensionality in the graph 
spectrum to address this 



Scientific data: often sampled from a manifold

(with noise)



Why is a good assumption for scientific data? 

Uncorrelated features Mutually informative features 



Bridging from Graphs to Manifolds



Data Diffusion Operator

Markov Matrix
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Diffusion Operator 
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Diffusion Maps—Manifold Embedding

[Coifman, Lafon 2006]

Thrm [Coifman et al.] The diffusion map 𝛷𝛷𝑡𝑡 𝑥𝑥𝑖𝑖 = [𝜆𝜆1𝑡𝑡𝜙𝜙1 𝑥𝑥𝑖𝑖 , . . . 𝜆𝜆𝑁𝑁𝑡𝑡 𝜙𝜙𝑁𝑁 𝑥𝑥𝑖𝑖 ]𝑇𝑇embeds data into a Euclidean space
Where the Euclidean distance is equal to the diffusion distance 𝐷𝐷𝑚𝑚.

𝐷𝐷𝑚𝑚2 𝑥𝑥,𝑦𝑦 = ||𝑃𝑃𝑡𝑡 𝑥𝑥, . − 𝑃𝑃𝑡𝑡 𝑦𝑦, . ||2 = || Φ𝑡𝑡 𝑥𝑥 - Φ𝑡𝑡 𝑦𝑦 ||2



Spectral clustering 

K-means on a raw data K-means graph spectra 



Diffused Data
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Huguet 2023, Brugnone et al. 2019


Nathan Brugnone





Creating a graph of the points

Features/coordinates are vertex features 



Graph Fourier Transform

L=I-D-1A=I-P

(Shuman et al. 2013)



No Smoothing T=2

T=5 T=100

Diffusion performs low pass filter

Kills high frequency
noise



Smoothing in the spatial domain

van Dijk et al. Cell 2018





Points eventually converge 

• Application of a positive diffusion operator to a datapoint makes it a 
convex combination of the points in the dataset, and thus it goes into 
the interior of the current data convex hull

• The convex hull shrink 
• Shrinks at a rate proportional to 𝜕𝜕 which is the smallest value in the 

kernel



Spectral Convergence 

• When the diffusion operator is applied to a function (i.e., here the 
features of data, the first non-trivial eigenvalue (also called Fiedler 
value) is a bound on the resultant magnitude

• We can just select the bandwidth of the diffusion kernel such that the 
Fiedler value is bounded away from 1!



Condensation Homology



VR Homology (sequence)



Main idea: a metric-preserving dimensionality reduction algorithm 
that naturally emphasizes trajectory structure

Erica Busch
Manik Kuchroo
Jessie Huang
Kevin Moon 
David van Dijk
Zheng Wang 
Scott Gigante
Dan Burkhardt
William Chen
Natalia Ivanova
Guy Wolf
Akiko Iwasaki
Nick Turke-Browne

PHATE/C-PHATE/T-PHATE
(Moon K et al. Nature Biotechnology 2019, 
Kuchroo et al. Nature Biotechnology 2022,
Busch Et al. Nature Computational Science 2023
Moyle et al. Nature 2021 )



Structure/Geometry Preservation



The PHATE
Algorithm



tSNEPCA Diffusion Maps

27 day
time course

scRNA-seq

Stem Cell Development
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Manifold preservation



PHATE UMAP PCA T-PHATE

Embeddings of multi-voxel response patterns for a single subject during movie viewing

Comparison of techniques 
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Cellular analysis on retinal cells  

Kuchroo et al. Nat Communications 2023
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Activated astrocyte state enriched across 
early neurodegenerative diseases

AD MS
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C elegans Neuropil

• Nerve ring or neuropil contains 181 neurons
• Lineage and morphology are known 
• Structural principles of organization are unknown 
• Studying this with >100,000 instances of neurite-neurite contacts from 

EM images 
• Why contacts rather than synapses?

• To focus on both structural and functional reasons for organization



Using EM to Understand Neuron Relationships

White, 1986, Cohen & Emmons labs

Adjacencies 



Applying Diffusion Condensation to Worm 
Brain Adjacency

Adjacencies 
Extent of contact between pairs of neurons create adjacency matrix



Contact-based “coordinates” for neurons

• Use MDS to go from contact adjacencies to coordinates
• In the “spectral view” these are features of the vertices 



Provides a continuously hierarchical tree 
where connections are based on 
extent of adjacency

The “length” of the branches Indicates
persistence

Moyle et a. Nature 2021



Moyle et al. and Colón-Ramos, 2021

Highest modularity level (4-clusters)





• 4 major layers (strata)
• Spatially distinct
• Distinguished by function

Mapping the functional topography of a neuropil
Anatomical Significance

• These four layers or strata stack along the 
anterior-posterior axis of the animal, 
encircling the pharynx isthmus

• Image looks “tightly bundled” 

• Computational method indicates separation 
into 4



Structural Encasing  



Sensory separation 

• Papillary axons project to S1 (red)
• No axons to S2 (fuschia)
• Amphidial axons to S3/4 (green/blue)
• Indicate functional segregation of sensory information in the nerve ring



• Within S1 mechanosensory circuits 
control head withdrawal behaviors

• These include sensory cells which go 
into motor neurons



Developmental ordering

Four dimensional in-vivo
imaging

Cell bodies of S1 migrate to the anterior part of the embryo head
Then S2-S4 migrate to the posterior part of the head



The allometry question 

• Does the brain just ”scale up” over development?
• I.e., do neurons just become bigger?

Witvliet, Zhen 2021. 



TDA to study allometry 

• Diffusion condensation has a first order homology based on the clusters 
that emerge

• Using contact area fraction we have invariance to allometric scaling 
• So similarity in persistence indicates allometry if SA is larger!



Persistence diagram

A fingerprint of the  
epsilon (ε) values at 

the birth and death of 
merge events. 
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Similarity between persistence

Wasserstein distance:
Measure of the 

similarity of 
persistence diagrams.

2-Wassstein 

Early Larva Juvenile Adult



• The relationship landscape of the 
nerve ring is an allometrically scaling 
system. 

• At at similar ages, relationships are 
more similar.

• The level of allometry increases as the 
worm matures.

• There are biologically interesting 
‘jumps’  between specific 
developmental stages.

The nerve ring scales allometrically at a systems level 

Dhananjay Bhaskar, Smita Krishnaswamy



Stereotypical brain regions show non-uniform 
levels of relationship persistence

Developmental Time

L1 L2 L3 L4 Adult

• 4 Layers is the most. Modular stage
• Present since early development
• Map to the same A-P regions
• Variability in the level of relationship persistence across regions



• S1 has the most persistent 
relationships.

• S2 shows the greatest 
allometric relationship 
changes. 

• S3 and S4 share similar 
levels of allometric change, 
but unique to other regions.

Non-uniform levels of allometric change across 
brain regions

S1
S2
S3
S4



S1 growth patterns define stable allometries essential 
for unique reflex functions.  

1. Growth of wide platforms 
2. Most persistent relationships in the 

nerve ring 
3. Expand platforms locally to support 

the addition of synapses in reflex 
circuitry 

Retains essential reflex circuitry while 
strengthening NMJ connections



Summary

• EM-derived adjacencies can be used to study the worm nervous system 
organization 

• Diffusion condensation is a new kind of “manifold filteration” for graphs 
that are thought to lie on manifolds

• This method helps to delineate delineating circuitry at various levels of 
granularity

• TDA can be used to study allometry (scaling up)
• Varying levels of allometry



Structural vs Functional Connectivity



Regulatory Temporal Interaction Network Inference 
(RiTINI)
(Bhaskar, Magruder, et al. 2023, Learning On Graphs (LOG))

Main idea: Learn a dynamic interaction graph that matches the regulatory network

Dhananjay Bhaskar
Sumner Magruder
Edward De Brouwer
Frederik Wenkel
Guy Wolf 



69

Using dynamic activity prediction as a task



70

Predicting next requires a change in attention
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Attention readouts then create dynamic graph
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1. Attention network gives time-varying graph 

2. Supports hysteresis, time attention can look at a specific point in time or over an interval

3. Outputs instantaneous derivative

Space-time attention mechanism
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RITINI Loss function

The graph attention network outputs a derivate which is then integrated with an ODE solver:

The final loss function also enforces closeness to a prior graph        and sparsity to tackle
lack of identifiability in this problem:



74

• If a timed perturbation is applied then its effects propagate through the network 

• This elucidates the structure of the network 

In silico perturbations—also used in training



75

Dibaeinia and Sinha, 
Cell Systems, 2020

Validation with SERGIO
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Cell Type Pseudotime MIOFlow

Synthetic Differentiation Dataset
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Synthetic Differentiation Dataset
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Quantitative Evaluation



79

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14

Cellular Embryonic Stem Cell Differentiation
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ESC Neural Progenitors Neural Crest

Branch Segmentation
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Trajectory Inference from MIOflow Neural ODE

Huguet et al. NeurIPS 2022
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Recover neuronal connectivity

NEST Simulations 
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Train using optogenetic stimulations to shift parameters in the equation 

Perturbation simulated 
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Recovery of ground truth “static”



Graph Scattering Homology Trajectory
(D. Bhaskar, J. Moore, F. Gao, et al., Journal of Cell Biology, 2023)

Graph signal-based descriptors for signaling dynamics and regime analysis

Dhananjay Bhaskar
Jess Moore
Feng Gao 
Valentina Greco 
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Gao et al., PMLR, 2019

Geometric Scattering 
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● Given a graph G(V, E) define the left stochastic 
diffusion matrix: 

● Define wavelet matrix at scale 2j: 

Geometric Scattering 
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● Construct a filter bank: 

● Compute wavelet coefficients: 

(captures frequencies of input signal x within 
neighborhood radius 2j)

Geometric Scattering 
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Moore et al., JCB (to appear)

GSTH Methodology 
“Geometric Scattering Trajectory Homology”



Epithelial vs Neuronal Cells



G2 stem cells are essential for homeostatic Ca2+ signaling
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DMSO thapsigargin 2-APB

Ca2+ signaling in the mouse epidermis
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Recovery of model parameters with GSTH
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MAGAN: Manifold-Aligning GAN

Amodio, Krishnaswamy ICML 2018

Archetypal Analysis Network 

van Dijk, Burkhardt et al., IEEE Big Data 2019

Amodio et al., Nature Methods 2019

SAUCIE

Tong, Wolf, Krishnaswamy, MLSP 2020
(Best Student Paper Winner)

Lipschitz Anomaly 
Detector (LAD)



Krishnaswamy Lab Resources

https://www.krishnaswamylab.org github.com/KrishnaswamyLab

GitHubWebsite
@krishnaswamylab

Twitter
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