

Characterizing and Inferring Neuronal Connectivity and Dynamics with Deep Geometry and Topology

Smita Krishnaswamy Department of Computer Science, School of Medicine Program for Applied Math Program for Computational Biology & Bioinformatics Wu Tsai Institute, Center for Neurocomputation and Machine Intelligence Yale Institute for Foundations of Data Science

Building a neural parts list

5um

5um

- 181 neurons
- Identities
- Morphologies
- Connections

Structure at a variety of scales

<u>Chall</u>nges

How do we go from high dimensional neural activations to neural insights?

Several challenges to overcome related to the noisy and distributed representations found in the brain.

Similar challenges in cellular data (scRNA) analysis

Analysis Tasks

Regulatory/Generative Network Inference

Dynamics from static snapshots

Denoising

Distilling state space, visualization

Data Geometry + Topology+ Deep Learning

Diffusion Topology

(Huguet et al SIMODS 2023,

Brugnone N, Gonoposkiy A., IEEE Big Data 2019 Moyle et al. Nature 2021, Kuchroo et al. Nat Comm 2023)

Guillaume Huguet Alex Tong Nate Brugnone Manik Kuchroo Guy Wolf Matt Hirn

Main idea: allow natural groupings of datapoints to appear at all levels of granularity

High degree of complexity

Multi-level Organization

Characterization of D-dimensional Holes

$$\beta_0 = 1, \beta_1 = 0, \beta_2 = 1$$

 $\beta_0 = 1$, $\beta_1 = 2$, $\beta_2 = 1$

Problem: Noisy Connections

- Inference form noisy images/measurements
- Potentially inaccurate segmentations
- Solution
 - ==>Use redundancy and lower dimensionality in the graph spectrum to address this

Scientific data: often sampled from a manifold

(with noise)

Why is a good assumption for scientific data?

Uncorrelated features

Mutually informative features

Bridging from Graphs to Manifolds

Data Diffusion Operator

Markov Matrix

 $\mathsf{P}(x_i, x_j) = \frac{A(x_i, x_j)}{\sum_j A(x_i, x_j)}$

Diffusion Operator

$.2 1$ $.21$ 00 $.\frac{2}{4}$ $\frac{12}{4}$ 12 00 $.333 1$ $.3331$ 00 0 0 0 0 $.3\frac{3}{4}$ 0^{0} 00 00 $.251$ $.25$ $.2\frac{5}{4}$ 00 $.\frac{2}{4}5$ $.251$ 00 $.251$ $.25\frac{5}{4}$ $.2\frac{5}{4}$ 00 0^{0} $.251$ 00 $.251$ $.25\frac{5}{4}$ $.2\frac{5}{4}$ 00 0^{0} $.251$ 00 $.251$ $.25\frac{5}{4}$ $.2\frac{5}{4}$ 00 0^{0} $.251$ 00 $.251$ $.2\frac{5}{4}$ $.2\frac{5}{4}$ 00 0^{0} $.251$ 00 $.251$ $.2\frac{5}{4}$ $.2\frac{5}{4}$ 00 0^{0} $.251$ $.251$ 00 0^{0} $.2\frac{5}{4}$ $.2\frac{5}{4}$ $.2\frac{5}{4}$ $.2\frac{5}{4}$ 00 00 $.333\frac{1}{4}$ 0 0 $.3\frac{3}{4}$ $.2\frac{5}{4}$	 							_
.333 1 $.3331$ $.00$ 0 0 $.3333$ 0 00 00 $.251$ $.25$ $.25$ 00 $.253$ $.251$ 00 $.251$ $.25$ $.25$ 00 $.253$ $.251$ 00 $.251$ $.25$ $.25$ 00 0 $.251$ 00 $.251$ $.25$ $.25$ 00 0 $.251$ 00 $.251$ $.252$ $.25$ 00 0 $.251$ 00 $.251$ $.252$ $.25$ 00 0 0 $.251$ 00 $.251$ $.252$ $.25$ 00 0 0 $.251$ $.251$ 00 0 0 $.255$ $.255$ $.255$ $.255$ $.255$ $.255$ $.255$ $.255$ $.255$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.253$ $.$.21	.2 ₁	ଦ	· ?	₽ P	12	0	b
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.333 1	.333 ₁	ଡ	Ð	Ø	.333	0	þ
.25 1 00 .25 1 .25 1 .25 1 00 0 .25 1 00 .25 1 .25 1 .25 1 .25 1 .00 0 .25 1	00	0 ₀	.25	.25	.25	00	· 2 !	5
.25 1 00 .25 1 $.25$ $.25$ 00 0° .25 1 .25 1 .25 1 00 0°	.25 1	0 ₀	.25	.25	.25	00	0	>
.25 $_{1}$ </th <th>.25 1</th> <th>0₀</th> <th>.25</th> <th>.25</th> <th>.25</th> <th>00</th> <th>0</th> <th>þ</th>	.25 1	0 ₀	.25	.25	.25	00	0	þ
	.25 1	.25 ₁	ଡ	Ø	Ø	.45	·£!	5
	00	0 ₀	.333 <u>1</u>	Ø	Ø	.333	·B3	3

 $P = D^{-1}A$

Diffusion Maps—Manifold Embedding

[Coifman, Lafon 2006]

Thrm [Coifman et al.] The diffusion map $\Phi_t(x_i) = [\lambda_1^t \phi_1(x_i), \dots, \lambda_N^t \phi_N(x_i)]^T$ embeds data into a Euclidean space Where the Euclidean distance is equal to the diffusion distance D_m .

 $D_m^2(x, y) = ||P^t(x, .) - P^t(y, .)||_2 = ||\Phi_t(x) - \Phi_t(y)||^2$

Spectral clustering

K-means graph spectra

K-means on a raw data

Diffusion Filtration

Creating a graph of the points

Features/coordinates are vertex features

Graph Fourier Transform

(Shuman et al. 2013)

Diffusion performs low pass filter

Smoothing in the spatial domain

Points eventually converge

- Application of a **positive diffusion operator** to a datapoint makes it a convex combination of the points in the dataset, and thus it goes into the interior of the current data convex hull
- → The convex hull shrink
- Shrinks at a rate proportional to ∂ which is the smallest value in the kernel

Spectral Convergence

Lemma For the operator \mathbf{P}_t and its second largest eigenvalue $\lambda_{t,2}$, we have the following bound on the norm of $H_t(\mathbf{P}_t f)$

 $||H_t(\mathbf{P}_t f)||_{d_t} \le \lambda_{t,2} ||H_t(f)||_{d_t}$

for all functions $f \in \mathbb{R}^N$.

- When the diffusion operator is applied to a function (i.e., here the features of data, the first non-trivial eigenvalue (also called Fiedler value) is a bound on the resultant magnitude
- We can just **select** the bandwidth of the diffusion kernel such that the Fiedler value is bounded away from 1!

Condensation Homology

VR Homology (sequence)

(a)

(b)

PHATE/C-PHATE/T-PHATE

(Moon K et al. Nature Biotechnology 2019, Kuchroo et al. Nature Biotechnology 2022, Busch Et al. Nature Computational Science 2023 Moyle et al. Nature 2021)

Jessie Huang Kevin Moon David van Dijk Zheng Wang Scott Gigante Dan Burkhardt William Chen Natalia Ivanova Guy Wolf Akiko Iwasaki Nick Turke-Browne

Erica Busch

Manik Kuchroo

Main idea: a metric-preserving dimensionality reduction algorithm that naturally emphasizes trajectory structure

Structure/Geometry Preservation

The PHATE Algorithm

Manifold preservation

Comparison of techniques

Embeddings of multi-voxel response patterns for a single subject during movie viewing

C-PHATE

C-PHATE

Cellular analysis on retinal cells

Identification of activated astrocyte state enriched for each AMD phase

Activated astrocyte state enriched across early neurodegenerative diseases

C elegans Neuropil

- Nerve ring or neuropil contains 181 neurons
- Lineage and morphology are known
- Structural principles of organization are unknown
- Studying this with >100,000 instances of neurite-neurite contacts from EM images
- Why contacts rather than synapses?
 - To focus on both structural and functional reasons for organization

Using EM to Understand Neuron Relationships

Applying Diffusion Condensation to Worm Brain Adjacency

Contact Area Fraction (CAF) : = $\phi_{ij} = \frac{2 * SA(i \cap j)}{SA(i) + SA(j)}$

Extent of contact between pairs of neurons create adjacency matrix

Contact-based "coordinates" for neurons

- Use MDS to go from contact adjacencies to coordinates
- In the "spectral view" these are features of the vertices

ber 15	Ber 14	iter 13	Rer 12	iter 11	iber 10
	-		AVYL	AVHL	XML
-	ANH.	AVYL			
ALM.	AVHR	KAR.	ADR.	ANNR	AVAR
ALME.	DRA	OVX.			
AQR	1		AVC	DAN	DAV
W/GL			Tana I	-	
ANTES		and the second	BOUL	3000	100.
		ALMAN .			
AVDR.	ALML	BDUL	ALME	ALMIE	ALM
AVITE.	ALNO	\$308	-	-	-
11.00	100	COM.	PUMK.	Print	PERC
ANTE	Mark.		2512	1010	-
ALM.	Aves		8004	0004	OLC.
Max.	ARA.				
333.	AVER		No.		
SLAW.	AVIL	Ave	XM	LIN .	ANV
LWA	Max	PVIN,	0.00		
Parts .	AN M		PAN.	CUN	mal
	89991			11.07	
P.ID	aut.		41.07	ALL	AND
1.00	P.M.L		1000	4170	41.74
and.	Pas	4114	AN AN	AN IN	Mile
N/N/R	PUDI	4/14	20	210	20
101	P.MPL	110	NU.	100	49
	RD	2/62	8121	8.0	80
	213.2	447		are.	- Arek
	10	100	ALM	Also.	2.14
	. Ars	643	-	-	~~~
		MAR	8.8	2.2	2/21
		ha		THE .	
		200	1/4	1/10	302
		21/21	ne.	inter a	COMP.
		P/08	2/14	P/H	P.M
		RD	canal.	and a second	
		RIFL		AVEL	8/81
			4.058		
			ALL	AVBR	AVER
			XV.R		
			NO.	ANT.	AVIL
			PVCR		
			AVEL	ALS.	AKIR
				PVC.	PVC.
				NO	

Provides a continuously hierarchical tree where connections are based on extent of adjacency

The "length" of the branches Indicates persistence

Moyle et a. Nature 2021

Highest modularity level (4-clusters)

Stratum 1 Total: 45	Stratum 2 Total: 39	Stratum 3 Total: 43	Stratum 4 Total: 24	Unassigned Total: 30
CEP (4)	ADE (2)	ADA (2)	ADF (2)	AIB (2)
IL1 (6)	ALN (2)	ADL (2)	AFD (2)	AIZ (2)
IL2 (6)	AVK (2)	AIM (2)	AIA (2)	AVA (2)
OLL (2)	AVL (1)	ALA (1)	AIN (2)	AVE (2)
OLQ (4)	DVC (1)	ALM (2)	AIY (2)	AWA (2)
RIA (2)	PLN (2)	AQR (1)	ASE (2)	FLP (2)
RIH (1)	PVT (1)	ASH (2)	ASG (2)	PVR (1)
RIP (2)	RIC (2)	ASJ (2)	ASI (2)	RIB (2)
RMDD (2)	RIV (2)	ASK (2)	AUA (2)	RIG (2)
RMDV (2)	RMD (2)	AVB (2)	AWB (2)	RIM (2)
RME (4)	RMF (2)	AVD (2)	AWC (2)	RIR (1)
URA (4)	RMH (2)	AVF (2)	BAG (2)	RIS (1)
URB (2)	SAA (4)	AVH (2)		RMG (2)
URY (4)	SIA (4)	AVJ (2)		SDQ (2)
	SIBD (2)	AVM (1)		SIBV (2)
	SMB (4)	BDU (2)		URX (2)
	SMD (4)	DVA (1)		VB01 (1)
		HSN (2)		1
		PVC (2)		
		PVN (2)		
		PVP (2)		
		PVO (2)		
		RID (1)		
		RIE (2)		

Anatomical Significance

- These four layers or strata stack along the anterior-posterior axis of the animal, encircling the pharynx isthmus
- Image looks "tightly bundled"
- Computational method indicates separation into 4

Structural Encasing

Sensory separation

- Papillary axons project to S1 (red)
- No axons to S2 (fuschia)
- Amphidial axons to S3/4 (green/blue)
- Indicate functional segregation of sensory information in the nerve ring

- Within S1 mechanosensory circuits control head withdrawal behaviors
- These include sensory cells which go into motor neurons

Developmental ordering

Four dimensional in-vivo imaging

Cell bodies of S1 migrate to the anterior part of the embryo head Then S2-S4 migrate to the posterior part of the head

The allometry question

- Does the brain just "scale up" over development?
- I.e., do neurons just become bigger?

Witvliet, Zhen 2021.

TDA to study allometry

- Diffusion condensation has a first order homology based on the clusters that emerge
- Using contact area fraction we have invariance to allometric scaling
- So similarity in persistence indicates allometry if SA is larger!

Contact Area Fraction (CAF) := $\phi_{ij} = \frac{2 * \alpha * SA(i \cap j)}{\alpha * SA(i) + \alpha * SA(j)} = \phi_{ij} = \frac{2 * SA(i \cap j)}{SA(i) + SA(j)}$, where α is the scaling factor

ε at Birth

Similarity between persistence

Wasserstein distance: Measure of the similarity of persistence diagrams.

2-Wassstein

The nerve ring scales allometrically at a systems level

	L1 0h	L1 5h	L2	L3	L4	Adult	
L1 0h	- 0.0	0.131	0.591	0.565	0.88	1.138 -	-
L1 5h	- 0.131	0.0	0.609	0.582	0.892	1.136 -	
L2	0.591	0.609	0.0	0.177	0.596	0.848 -	
L3	- 0.565	0.582	0.177	0.0	0.603	0.862 -	
L4	- 0.88	0.892	0.596	0.603	0.0	0.506 -	-
Adult	- 1.138	1.136	0.848	0.862	0.506	0.0 -	-
	L1 0h	L1 5h	L2	L3	L4	Adult	

- The relationship landscape of the nerve ring is an allometrically scaling system.
- At at similar ages, relationships are more similar.
- The level of allometry increases as the worm matures.
- There are biologically interesting 'jumps' between specific developmental stages.

Stereotypical brain regions show non-uniform levels of relationship persistence

- 4 Layers is the most. Modular stage
- Present since early development
- Map to the same A-P regions
- Variability in the level of relationship persistence across regions

Non-uniform levels of allometric change across brain regions

- S1 has the most persistent relationships.
- S2 shows the greatest allometric relationship changes.
- S3 and S4 share similar levels of allometric change, but unique to

- 1. Growth of wide platforms
- 2. Most persistent relationships in the nerve ring
- 3. Expand platforms locally to support the addition of synapses in reflex circuitry

Retains essential reflex circuitry while strengthening NMJ connections

Summary

- EM-derived adjacencies can be used to study the worm nervous system organization
- Diffusion condensation is a new kind of "manifold filteration" for graphs that are thought to lie on manifolds
- This method helps to delineate delineating circuitry at various levels of granularity
- TDA can be used to study allometry (scaling up)
 - Varying levels of allometry

Structural vs Functional Connectivity

Regulatory Temporal Interaction Network Inference (RiTINI)

(Bhaskar, Magruder, et al. 2023, Learning On Graphs (LOG))

Dhananjay Bhaskar Sumner Magruder Edward De Brouwer Frederik Wenkel Guy Wolf

Main idea: Learn a dynamic interaction graph that matches the regulatory network

Using dynamic activity prediction as a task

Data generation

Predicting next requires a change in attention

Time

Attention readouts then create dynamic graph

Time

Space-time attention mechanism

- 1. Attention network gives time-varying graph
- 2. Supports hysteresis, time attention can look at a specific point in time or over an interval
- 3. Outputs instantaneous derivative
RITINI Loss function

$$\frac{d}{dt}g_i(t) = f_\theta(g_i(t), t)$$

The graph attention network outputs a derivate which is then integrated with an ODE solver:

$$\hat{X}(v_i, t) = \text{ODESolve}(f_\theta, g'_i(t_0), t_0, t_1) \quad \forall t \in (t_0, t_1]$$

The final loss function also enforces closeness to a prior graph $\mathcal{E}_{\mathcal{P}}$ and sparsity to tackle lack of identifiability in this problem:

$$\mathcal{L}(t) = \sum_{i} \|\hat{X}(v_{i}, t) - X(v_{i}, t)\| + \lambda_{1} \sum_{i,j} \|\alpha_{ij}(t) - \mathcal{E}_{\mathcal{P}}\|_{F} + \lambda_{2} |\alpha(t)|_{1}$$

$$\text{MSE between ground truth} \qquad \text{closeness to prior} \qquad \text{sparsity}$$

$$\text{and predicted dynamics}$$

In silico perturbations—also used in training

- If a timed perturbation is applied then its effects propagate through the network
- This elucidates the structure of the network

Validation with SERGIO

SERGIO: Single-cell ExpRession of Genes In silicO

Dibaeinia and Sinha, Cell Systems, 2020

Synthetic Differentiation Dataset

Synthetic Differentiation Dataset

Quantitative Evaluation

	Dataset								
Method $(\mathcal{V} , \mathcal{E}) =$	Dynamical System (5, 5)	Neur (40, 78)	onal Network ((50, 126)	NEST) (75, 308)	Gene Reg (100, 137)	gulatory Network (150, 329)	(SERGIO) (200, 507)		
GC [41] OCE [42] PC [43, 44] mTE [45] mMI [46] NRI [47] DCRNN [48] GTS [49] NIR [50]	$2.6 \pm 1.0 \\ 4.4 \pm 1.6 \\ 4.4 \pm 1.4 \\ 4.6 \pm 1.7 \\ 1.8 \pm 0.7 \\ 0.5 \pm 0.1 \\ 2.2 \pm 0.4 \\ 0.8 \pm 0.3 \\ 1.3 \pm 0.1 \\ 0.1 $	$28.8 \pm 3.3 \\72.8 \pm 3.5 \\75.8 \pm 2.1 \\64.2 \pm 3.5 \\20.6 \pm 5.0 \\\mathbf{18.3 \pm 4.2} \\44.7 \pm 3.8 \\23.5 \pm 1.3 \\22.5 \pm 2.8 \\$	$\begin{array}{c} 39.2 \pm 2.3 \\ 109.6 \pm 4.2 \\ 117.8 \pm 3.9 \\ 100.0 \pm 7.6 \\ \textbf{34.6} \pm \textbf{5.2} \\ 43.7 \pm 8.6 \\ 81.3 \pm 9.6 \\ 76.2 \pm 11.9 \\ 39.4 \pm 1.9 \end{array}$	$\begin{array}{c} 75.4 \pm 9.2 \\ 255.6 \pm 7.3 \\ 284.6 \pm 3.2 \\ 232.2 \pm 7.1 \\ 82.0 \pm 3.9 \\ 94.1 \pm 3.9 \\ 117.0 \pm 13.8 \\ 181.7 \pm 24.2 \\ 106.2 \pm 4.7 \end{array}$	$51.2 \pm 3.3 \\ 138.6 \pm 3.5 \\ 140.4 \pm 3.9 \\ 126.4 \pm 2.4 \\ 51.2 \pm 3.3 \\ 72.1 \pm 6.2 \\ 158.14 \pm 8.6 \\ 215.4 \pm 13.8 \\ 62.7 \pm 3.2 \\ 158.14 \pm 3.2 \\ 158.14 \pm 3.8 \\ $	$\begin{array}{c} 109.0 \pm 6.4 \\ 293.4 \pm 2.9 \\ 317.2 \pm 3.7 \\ 261.0 \pm 2.2 \\ 99.8 \pm 4.0 \\ 106.6 \pm 5.4 \\ 303.79 \pm 12.4 \\ 347.2 \pm 19.3 \\ 86.3 \pm 2.8 \end{array}$	$\begin{array}{c} 158.8 \pm 12.6 \\ 449.8 \pm 1.1 \\ 495.6 \pm 6.5 \\ 397.4 \pm 8.8 \\ 162.8 \pm 6.2 \\ 219.8 \pm 13.4 \\ 508.25 \pm 23.6 \\ 481.8 \pm 7.0 \\ 159.2 \pm 11.6 \end{array}$		
RiTINI RiTINI (w/o hysteresis) RiTINI (w/o neural ODE)	2.2 ± 1.6 0.6 ± 0.4 1.7 ± 0.3	25.4 ± 2.8 22.4 ± 1.7 48.1 ± 3.0	35.2 ± 2.3 38.0 ± 6.9 72.4 ± 8.8	69.6 ± 7.7 91.3 ± 5.2 129.3 ± 9.4	$\begin{array}{c} \textbf{44.6} \pm \textbf{6.2} \\ 63.6 \pm 8.2 \\ 114.2 \pm 3.1 \end{array}$	$\begin{array}{c} \textbf{83.6} \pm \textbf{4.2} \\ 118.3 \pm 9.3 \\ 168.0 \pm 12.6 \end{array}$	$\begin{array}{c} {\bf 128.0 \pm 4.3} \\ {205.7 \pm 8.3} \\ {329.7 \pm 22.5} \end{array}$		

Table 1: Mean and standard deviation of the graph edit distance between the inferred graph and the ground truth, across 5 different simulations with perturbations (lower is better).

Cellular Embryonic Stem Cell Differentiation

Branch Segmentation

Trajectory Inference from MIOflow Neural ODE 0.008 0.006 0.004 0.002 0.000 -0.002 -0.004-0.006 0.010 0.05 0.005 0.04 0.03 0.000 0.02 -0.005 0.01 0.00 -0.010-0.01 -0.02 Huguet et al. NeurIPS 2022

Inferred Gene Regulatory Network

In Silico Perturbations-top ranked perturbations

NEST Simulations

Network of coupled Wilson-Cowan oscillators

Perturbation simulated

Ground Truth

Train using optogenetic stimulations to shift parameters in the equation

Recovery of ground truth "static"

Ground Truth

	Dataset								
Method $(\mathcal{V} , \mathcal{E}) =$	Dynamical System (5, 5)	Neur (40, 78)	onal Network ((50, 126)	(NEST) (75, 308)	Gene Reg (100, 137)	gulatory Network (150, 329)	(SERGIO) (200, 507)		
GC [41] OCE [42] PC [43, 44] mTE [45] mMI [46] NRI [47] DCRNN [48] GTS [49] NIR [50]	$2.6 \pm 1.0 \\ 4.4 \pm 1.6 \\ 4.4 \pm 1.4 \\ 4.6 \pm 1.7 \\ 1.8 \pm 0.7 \\ 0.5 \pm 0.1 \\ 2.2 \pm 0.4 \\ 0.8 \pm 0.3 \\ 1.3 \pm 0.1 \\ 1.0 \pm 0.1 \\ 0.1 $	$28.8 \pm 3.3 \\72.8 \pm 3.5 \\75.8 \pm 2.1 \\64.2 \pm 3.5 \\20.6 \pm 5.0 \\18.3 \pm 4.2 \\44.7 \pm 3.8 \\23.5 \pm 1.3 \\22.5 \pm 2.8 $	$\begin{array}{c} 39.2 \pm 2.3 \\ 109.6 \pm 4.2 \\ 117.8 \pm 3.9 \\ 100.0 \pm 7.6 \\ 34.6 \pm 5.2 \\ 43.7 \pm 8.6 \\ 81.3 \pm 9.6 \\ 76.2 \pm 11.9 \\ 39.4 \pm 1.9 \end{array}$	$\begin{array}{c} 75.4 \pm 9.2 \\ 255.6 \pm 7.3 \\ 284.6 \pm 3.2 \\ 232.2 \pm 7.1 \\ 82.0 \pm 3.9 \\ 94.1 \pm 3.9 \\ 117.0 \pm 13.8 \\ 181.7 \pm 24.2 \\ 106.2 \pm 4.7 \end{array}$	$51.2 \pm 3.3 \\ 138.6 \pm 3.5 \\ 140.4 \pm 3.9 \\ 126.4 \pm 2.4 \\ 51.2 \pm 3.3 \\ 72.1 \pm 6.2 \\ 158.14 \pm 8.6 \\ 215.4 \pm 13.8 \\ 62.7 \pm 3.2 \\ \end{array}$	$\begin{array}{c} 109.0 \pm 6.4 \\ 293.4 \pm 2.9 \\ 317.2 \pm 3.7 \\ 261.0 \pm 2.2 \\ 99.8 \pm 4.0 \\ 106.6 \pm 5.4 \\ 303.79 \pm 12.4 \\ 347.2 \pm 19.3 \\ 86.3 \pm 2.8 \end{array}$	$\begin{array}{c} 158.8 \pm 12.6 \\ 449.8 \pm 1.1 \\ 495.6 \pm 6.5 \\ 397.4 \pm 8.8 \\ 162.8 \pm 6.2 \\ 219.8 \pm 13.4 \\ 508.25 \pm 23.6 \\ 481.8 \pm 7.0 \\ 159.2 \pm 11.6 \end{array}$		
RiTINI RiTINI (w/o hysteresis) RiTINI (w/o neural ODE)	2.2 ± 1.6 0.6 ± 0.4 1.7 ± 0.3	25.4 ± 2.8 22.4 ± 1.7 48.1 ± 3.0	35.2 ± 2.3 38.0 ± 6.9 72.4 ± 8.8	$69.6 \pm 7.7 \\91.3 \pm 5.2 \\129.3 \pm 9.4$	$\begin{array}{c} \textbf{44.6} \pm \textbf{6.2} \\ 63.6 \pm 8.2 \\ 114.2 \pm 3.1 \end{array}$	83.6 ± 4.2 118.3 ± 9.3 168.0 ± 12.6	$\begin{array}{c} {\bf 128.0 \pm 4.3} \\ {\scriptstyle 205.7 \pm 8.3} \\ {\scriptstyle 329.7 \pm 22.5} \end{array}$		

Table 1: Mean and standard deviation of the graph edit distance between the inferred graph and the ground truth, across 5 different simulations with perturbations (lower is better).

Graph Scattering Homology Trajectory

(D. Bhaskar, J. Moore, F. Gao, et al., Journal of Cell Biology, 2023)

Dhananjay Bhaskar Jess Moore Feng Gao Valentina Greco

Graph signal-based descriptors for signaling dynamics and regime analysis

Geometric Scattering

Gao et al., PMLR, 2019

Geometric Scattering

Given a graph G(V, E) define the left stochastic diffusion matrix:

$$\boldsymbol{P} \coloneqq \frac{1}{2} \left(\boldsymbol{I}_n + \boldsymbol{W} \boldsymbol{D}^{-1} \right) \qquad \qquad \boldsymbol{W}[v_i, v_j] \coloneqq \begin{cases} w(v_i, v_j) & \text{if } \{v_i, v_j\} \in E, \\ 0 & \text{otherwise,} \end{cases}$$

• Define wavelet matrix at scale 2^j:

$$\Psi_j = \mathbf{P}^{2^{j-1}} - \mathbf{P}^{2^j} = \mathbf{P}^{2^{j-1}}(\mathbf{I} - \mathbf{P}^{2^{j-1}})$$

Geometric Scattering

• Construct a filter bank:

 \mathcal{W}_J

$$egin{aligned} & \Psi_0 \coloneqq oldsymbol{I}_n - oldsymbol{P}, \ & \Psi_j \coloneqq oldsymbol{P}^{2^{j-1}} - oldsymbol{P}^{2^j} = oldsymbol{P}^{2^{j-1}}ig(oldsymbol{I}_n - oldsymbol{P}^{2^{j-1}}ig), \quad j \geq 1 \ & \Phi_J \coloneqq oldsymbol{P}^{2^J} \end{aligned}$$

• Compute wavelet coefficients:

 $\Psi^{(J)}\mathbf{x}(v_{\ell}) = [\Psi_j\mathbf{x}(v_{\ell}) : 1 \le j \le J]$

(captures frequencies of input signal \mathbf{x} within neighborhood radius 2^{j})

GSTH Methodology

"Geometric Scattering Trajectory Homology"

Moore et al., JCB (to appear)

Epithelial vs Neuronal Cells

G2 stem cells are essential for homeostatic Ca^{2+} signaling

Ca²⁺ signaling in the mouse epidermis

Recovery of model parameters with GSTH

			Mathematical	1 Model^1	Experimental $Data^2$			
Model	Ablation	${f Kuramoto} R$	Intercel $K_{ m SERCA}$	llular Ca ²⁺ W $V_{ m SERCA}$	$ aves au_{ m max}$	Epidermal Signaling	ERK Signaling	PVC Signaling
GSTH	None	0.0063	0.0372	0.0646	24.81	0.89	0.65	0.44
$\begin{array}{c} & \text{GST} \\ \text{GST-RNN} \\ \text{GST-}\kappa \end{array}$	РН РН РН	0.0016 0.0058 0.0347	0.0189 0.0417 N/A	0.0232 0.0722 0.1953	9.74 26.94 N/A	0.95 0.86 N/A	0.73 0.58 N/A	0.62 0.37 N/A
GS-PCA-H GS-tSNE-H	PHATE PHATE	$0.0125 \\ 0.0118$	$0.0506 \\ 0.0438$	$0.1103 \\ 0.1078$	$51.63 \\ 38.29$	0.77 0.81_{95}	$0.57 \\ 0.73$	$\begin{array}{c} 0.44 \\ 0.51 \end{array}$
Graph PH	GST	0.0124	0.0397	0.0859	11.32	0.91	0.76	

Table 3 Performance of GSTH model ablations on model parameter recovery (MSE) and classification of experimental conditions.

¹Mean squared error (MSE) for regression, lower is better.

²Classification accuracy, higher is better.

MAGAN: Manifold-Aligning GAN

Amodio, Krishnaswamy ICML 2018

Tong, Wolf, Krishnaswamy, MLSP 2020 (Best Student Paper Winner)

Archetypal Analysis Network

van Dijk, Burkhardt et al., IEEE Big Data 2019

Samples collected from many individuals $i \rightarrow i$ $i \rightarrow$

Amodio et al., Nature Methods 2019

SAUCIE

Krishnaswamy Lab Resources

https://www.krishnaswamylab.org

Recent advances in single-cell technologies enable deep insights into cellular development, gene regulation, and phenotypic deventy by measuring gene expression and expensets for thorsands disriget cells in a single experiment. While these technologies hold great potential for improving our understanding of cellular states and progression, they also pose new challenges in terms of scale, complexity, noise and measurement antifact which require advanced and hematical and algorithmic tools to extract underlying biological signals. At the Krishmaswamy Lab, we work on one of the mast promising techniques to tackle these problems: manifold learning, and the related amaliand susmition and onlysis.

Manifold learning provides a powerful structure for algorithmic approaches to naturally process data, visualize it, understand progressions, find phenotypic diversity, and infer patterns. We have applied alternative approaches to

github.com/KrishnaswamyLab

