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Simplest setting for resonances:

poles of the meromorphic
continuation of

(−∂2
x + V (x)− λ2)−1

for
V ∈ L∞(R) , V (x) = 0 , for |x | > R.
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As a model of quantum scattering we will consider obstacle
scattering in Rn with Dirichlet boundary conditions:

H = −∆ , on H2(Rn \ O) ∩ H1
0 (Rn \ O), O b Rn , ∂O is C∞.

The resonances are defined as poles of the meromorphic
continuation of

R(λ) = (−∆− λ2)−1 : L2(Rn \ O) −→ L2(Rn \ O) , Imλ > 0 ,

to C for n odd and to Λ (logarithmic plane) when n is even:

R(λ) = (−∆− λ2)−1 : L2
comp(Rn \ O) −→ L2

loc(Rn \ O) .

Similar results for
H = −h2∆g + V (x)

for large classes of potentials V and metrics g .
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Resonance free strips

What dynamical conditions guarantee lower bounds on quantum
decay rates?

Theorem (Lax-Phillips 1969, ... Vainberg 1972, ...
Morawetz-Ralston-Strauss 1977, Melrose-Sjöstrand 1982, ...)

Suppose that for any (x , ξ), x ∈ Rn \ O, |ξ|2 = 1, the broken ray
through (x , ξ) leaves a compact set, that is that the obstacle is
non-trapping.
Then for any M > 0 there exists a constant C such that there no
resonances in

{λ : Imλ > −M log |λ| , |λ| > C} .
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Suppose that for any (x , ξ), x ∈ Rn \ O, |ξ|2 = 1, the broken ray
through (x , ξ) leaves a compact set, that is that the obstacle is
non-trapping.
Then for any M > 0 there exists a constant C such that there no
resonances in

{λ : Imλ > −M log |λ| , |λ| > C} .



Resonance free strips

What dynamical conditions guarantee lower bounds on quantum
decay rates?

Theorem (Lax-Phillips 1969, ... Vainberg 1972, ...
Morawetz-Ralston-Strauss 1977, Melrose-Sjöstrand 1982, ...)
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In particular, there exists a resonance free strip, Imλ > −C0.

For H = −h2∆ + V (x) the non-trapping condition means that the
flow of ẋ = 2ξ, ξ̇ = −∇V (x), on |ξ|2 + V (x) = E > 0 is
non-trapping. Then near E we have

Helffer-Sjöstrand 1985:

V analytic =⇒ Im z > −δ is resonance-free

Martinez 2002:

V ∈ C∞ , dilation analytic =⇒ Im z > −Mh log

(
1

h

)
is resonance free.

The last condition is the exact analogue of the condition in the
theorem.
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Helffer-Sjöstrand 1985:

V analytic =⇒ Im z > −δ is resonance-free

Martinez 2002:

V ∈ C∞ , dilation analytic =⇒ Im z > −Mh log

(
1

h

)
is resonance free.

The last condition is the exact analogue of the condition in the
theorem.



Several convex obstacles:

Ikawa’s condition: obstacles are disjoint from convex hulls of pairs
of other obstacles.

The trapped set, K , is the set of (x , ξ), x ∈ Rn \ O, |ξ|2 = 1, such
that the broken ray through (x , ξ) does not leave a compact set.

The topological pressure of the flow associated to a function f
defined on the trapped set:

P(f ) = lim
T→∞

1

T
log

∑
Tγ<T

exp

(∫ Tγ

0
Φ∗t f |γdt

)
,

where Φt is the flow, γ are closed orbits with period Tγ .
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Theorem (Ikawa 1988)

Let us denote by Λ+ the logarithm of the Jacobian of the flow at
time 1 along the unstable directions.

Then

P(−Λ+/2) < 0

implies that there are no resonances in

Imλ > P(−Λ+/2) + ε , Reλ > Cε ,

for any ε.

In the physics literature the same statement was made by
Gaspard-Rice 1989 (the relation to pressure was only implicit in the
work of Ikawa).

Following the work of Dolgopyat and Naud, Petkov-Stoyanov 2007
prove much more: there exists δ > 0 such that there are no
resonances in

Imλ > P(−Λ+/2)− δ , Reλ > C .
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For operators H = −h2∆g + V (x) the results similar to Ikawa’s
result became known only recently. We consider the pressure of
the flow on the (non-degenerate) energy surface |ξ|2g + V (x) = E
and resonances in D(E ,Ch), E > 0.

Nonnemacher-Zworski 2007:

P(−Λ+(E )/2) < 0⇒ no resonances in Im z > (P(−Λ+(E )/2) + ε)h.

Nonnnemacher-Sjöstrand-Zworski 2009(i.e. in progress): a simpler
proof of the above result in case when the trapped set has
topological dimension one and some useful resolvent estimates in
the resonance free strip.

Resolvent estimates imply local smoothing for Schrödinger
equations (Christianson, Datchev), no-loss Strichartz estimates
(Burq-Guillarmou-Hassell), and exponetial decay of energy. These
are useful for solving non-linear evolution equations.
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Counting scattering poles for obstacles

It is easier (but not essential) to assume O ⊂ Rn, n odd.

N(r) =
∑
|λ|≤r

mR(λ) , mR(λ) = rank

∫
γ

R(ζ)dζ ,

where R(ζ) is the meromorphic continuation of the resolvent.

Melrose 1984:
N(r) ≤ Crn ,

which is optimal for the sphere.

Vodev 1994: similar results for n even.
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Two convex obstacles

Ikawa 1983, Gérard 1988

Resonances lie on a lattice and in particular,

∑
Im z>−α,|z|≤r

mR(z) ∼ C (α)r .

Note that for one convex obstacle this sum would be O(1).
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There are many results: Ikawa, Burq, Petkov-Stoyanov... and in
physics: Gaspard-Rice, Cvitanovic, Eckhardt, Wirzba...

but no counting results better than Melrose’s theorem...
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Theorem (Nonnenmacher-Sjöstrand-Zworski 2009)

Suppose O =
⋃J

j=1Oj be a union of disjoint convex obstacles
satisfying Ikawa’s condition. Then

∑
Im z>−α, r≤|z|≤r+1

mR(z) = O(rµ+0) ,

where 2µ+ 1 is the box dimension of the trapped set.

Ikawa’s condition: obstacles are disjoint from convex hulls of pairs
of other obstacles.

The trapped set, K , is the set of (x , ξ), x ∈ Rn \ O, |ξ|2 = 1, such
that the broken ray through (x , ξ) does not leave a compact set.

This theorem is part of a larger project on open hyperbolic systems
with topologically one dimensional trapped sets (always satisfied
for several convex bodies satisfying Ikawa’s condition).
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Suppose O =
⋃J

j=1Oj be a union of disjoint convex obstacles
satisfying Ikawa’s condition. Then∑

Im z>−α, r≤|z|≤r+1

mR(z) = O(rµ+0) ,

where 2µ+ 1 is the box dimension of the trapped set.

Ikawa’s condition: obstacles are disjoint from convex hulls of pairs
of other obstacles.

The trapped set, K , is the set of (x , ξ), x ∈ Rn \ O, |ξ|2 = 1, such
that the broken ray through (x , ξ) does not leave a compact set.

This theorem is part of a larger project on open hyperbolic systems
with topologically one dimensional trapped sets (always satisfied
for several convex bodies satisfying Ikawa’s condition).



Theorem (Nonnenmacher-Sjöstrand-Zworski 2009)
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Origins in potential and semiclassical scattering:

Zworski 1989:

−∆ + V , V ∈ L∞comp(Rn) , n odd ,

N(r) ≤ Crn .

Many results on lower bounds: Christiansen, Hislop, Sá Barreto...

Sjöstrand 1990

−h2∆ + V , V analytic (including a class of polynomials!)∑
|z−E |≤C0

mR(z) = O(h−n) .

Sjöstrand 1998

If E 7→ L({x : V (x) ≥ E}) has an analytic singularity at E0 then∑
|z−E0|≤C0

mR(z) ≥ h−n/C1 .
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Fractal Weyl laws:

Sjöstrand 1990

Analytic potential with hyperbolic dynamics∑
|z−E |≤δ ,Im z>−Ch

mR(z) = O(h−µ−1−0) ,

where 2µ+ 2 is the box dimension of the trapped set in T ∗Rn near
energy E .

Zworski 1999, Guillopé-Lin-Zworski 2004

More precise bounds in the case of convex-cocompact Schottky
quotients Γ\Hn, µ = δ(Γ), dimension of the limit set.
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Sjöstrand-Zworski 2006

For C∞ potentials with hyperbolic dynamics at energy E ,∑
|z−E |≤Ch

mR(z) = O(h−µE−) ,

where 2µE + 1 is the dimension of the trapped set on the energy
surface E .

The theorem for convex obstacles is the analogue of this result.

It is part of our project on the general treatment of bounds on the
density of resonances and of quantum decay rates for open
hyperbolic systems with topologically one dimensional trapped sets.

The only lower bound showing “optimality” comes from an open
quantum map “toy mode”, Nonnenmacher-Zworski 2005.
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Here is an example from Wiersig et al who considered partially
open classically chaotic systems which numerically model the
following experimental set ups.

10µm

On the left a weakly opened semiconductor (GaAs), on the right a
strongly open polymer.



Here is an example from Wiersig et al who considered partially
open classically chaotic systems which numerically model the
following experimental set ups.

10µm

On the left a weakly opened semiconductor (GaAs), on the right a
strongly open polymer.



Here is an example from Wiersig et al who considered partially
open classically chaotic systems which numerically model the
following experimental set ups.

10µm

On the left a weakly opened semiconductor (GaAs), on the right a
strongly open polymer.



Here are the trapped sets for the strongly open system:

1/n
10

p

1

s/smax s/smax s/smax
0.64

p

0.83

0.410.395 0.46

(a) (b)

p

0.73

0.719
0.4066



Here are the trapped sets for the strongly open system:

1/n
10

p

1

s/smax

s/smax s/smax
0.64

p

0.83

0.410.395 0.46

(a) (b)

p

0.73

0.719
0.4066



Here are the trapped sets for the strongly open system:

1/n
10

p

1

s/smax s/smax s/smax
0.64

p

0.83

0.410.395 0.46

(a) (b)

p

0.73

0.719
0.4066
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A suitably modified (due to partial opennes of the system) is
claimed to hold in this case (Wiersig et al Phys. Rev. 2008).
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Outline of the proof

1. Reduction to the boundary

2. Localization to the trapped set

3. For the gap:

3.1. A dispersive estimate on products of localized monodromy
operators in terms of the unstable Jacobian and the travel
time;

3.2. Sum over the products and the relation to the pressure.

4. For the upper bound:

4.1. A finer localization to the trapped set using microlocal
weights;

4.2. An effective Hamiltonian with the rank bounded in terms of
the dimension.
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For obstacles, the reduction to a monodromy operator was natural
and well known.

Theorem (Nonnenmacher-Sjöstrand-Zworski 2009)

For operators of the form −h2∆g + V (x) with hyperbolic classical
flows and topologically one dimensional trapped sets at energy E ,

z , |z − E | < Ch , is a resonance ⇐⇒ det(Id −M(z)) = 0 ,

with M(z) a quantum map, that is

M(z) = ΠM(z)Π +O(hM) ,

where Π is a finite rank (∼ h−n+1) projection and M(z) is an
h-Fourier integral operator associated to a Poincaré map on a
Markov partition of the flow.
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