Mode localization on chaotic manifolds: an entropy approach

Stéphane Nonnenmacher + Nalini Anantharaman (+Herbert Koch)

Laplacian Eigenvalues and Eigenfunctions IPAM, Feb. 9-13, 2009

Outline

- Objective: describe high-frequency eigenmodes of ∆ on a smooth, compact Riemannian manifold. High-frequency → classical (geodesic) flow
- Rough tool to describe the ψ_n: semiclassical measures μ_{sc} associated with subsequences (ψ_{n_i})_{j≥1}. μ_{sc} ⊂ flow-invariant measures.
- Main question: which invariant measures can semiclassically occur? Quantum (Unique?) Ergodicity.
- Choice of specific manifolds: strongly chaotic (Anosov) geodesic flows. Both complex (non-integrable) and treatable (well-understood).
 Many examples (negative sectional curvature).
- Our approach: compute the Kolmogorov-Sinai entropy of μ_{sc} , which partially characterizes its localization properties. $\rightsquigarrow \mu_{sc}$ is at least half-delocalized.
- (?) sketch of proof

High-frequency \equiv **semiclassical**

(X,g) compact smooth Riemannian manifold (with/out boundary). We want to analyze the eigenmodes $(\psi_n)_{n\geq 0}$ of the Laplace-Beltrami operator $\Delta = \Delta_g$:

$$\Delta \psi_n + k_n^2 \psi_n = 0$$

This Helmholtz equation can be rewritten as a stationary Schrödinger equation

$$\frac{-\hbar_n^2 \Delta}{2} \psi_n = \frac{1}{2} \psi_n \,,$$

with "Planck's constant" $\hbar = \hbar_n = k_n^{-1}$. In this setting, the eigenmode $\psi_n = \psi_{\hbar}$ is associated with the *classical energy* $E = \frac{1}{2}$.

high-frequency $(k_n \to \infty) \equiv \text{semiclassical } (\hbar \ll 1).$

 $\hbar_n =$ wavelength of the state ψ_n .

Advantage: use the tools of *semiclassical analysis*. Connection with the **classical dynamics**: Hamiltonian flow on T^*X generated by the Hamiltonian

$$p(x,\xi) = \frac{|\xi|_g^2}{2}$$

 $(\equiv \text{geodesic flow on } X.)$

Regular vs. chaotic flows

For some exceptional mfolds X (Liouville-integrable flow), we have approximate or explicit expressions for $\psi_n(x)$ (separation of variables + WKB).

At the opposite: manifolds supporting a chaotic geodesic flow. We don't have any approximate expression for the ψ_n at our disposal.

(inbetween: manifolds with *mixed* phase space. The properties of the classical flow are even more complicated).

Several ways to describe eigenfunctions $\psi_n(x)$

One can study $\psi_n(x)$ on different levels/scales:

- microscopic: statistical fluctuations at the scale \hbar_n , nodal lines/domains, random wave models.
- macroscopic properties of ψ_n . For some fixed test function F on X, investigate the behaviour of $\int_X |\psi_n(x)|^2 F(x) dx$ when $n \to \infty$.
 - ightarrow one can extract a subsequence $(n_j
 ightarrow \infty)$ s.t. for any F,

$$\int F |\psi_{n_j}|^2 dx \stackrel{j \to \infty}{\to} \tilde{\mu}(F)$$

The probability measure $\tilde{\mu}$ on X is called a **quantum limit**. It describes the asymptotic localization on X of the states (ψ_{n_i}) , measured at the scale unity.

Lift to the phase space: semiclassical measures (1)

A quantum limit $\tilde{\mu}$ can be connected with the geodesic flow by **lifting** it to a *phase* space measure.

This lift can be performed by using quantum observables (\hbar -pseudodifferential operators), which not only measure $|\psi_{\hbar}(x)|$, but also its *phase fluctuations* of at the scale \hbar (phase fluctuations \equiv *momentum* of the quantum particle).

Ex: $\psi_0(x) = \exp\left(\frac{-(x-x_0)^2 + i\xi_0 \cdot x}{\hbar}\right)$ localized at position x_0 AND at momentum ξ_0 . Observable $f(x,\xi)$ on phase space $T^*X \xrightarrow{quantization}$ operator $Op_{\hbar}(f)$ on $L^2(X)$. Main property:

$$\operatorname{Op}_{\hbar}(f)\psi_0 = f(x_0,\xi_0)\,\psi_0 + \mathcal{O}(\hbar)$$

To measure the localization properties of the (ψ_n) , consider the matrix elements

$$\langle \psi_n, \operatorname{Op}_{\hbar_n}(f) \psi_n \rangle \stackrel{\mathrm{def}}{=} \int f(x,\xi) \rho_n(x,\xi) \, dx d\xi$$

Depending on the choice of quantization Op_{\hbar} , the function ρ_n is called the Wigner function, the Husimi function...

Lift to the phase space: semiclassical measures (2)

<u>Def</u>: from (ψ_n) one can extract a subsequence (ψ_{n_j}) such that, for any $f \in C_b^{\infty}(T^*X)$,

$$\langle \psi_n, \operatorname{Op}_{\hbar_n}(f) \psi_n \rangle \stackrel{j \to \infty}{\to} \mu_{sc}(f)$$

 μ_{sc} is a probability measure on phase space. It is called the **semiclassical measure** associated with the subsequence (ψ_{n_j}) .

 μ_{sc} describes the asymptotic macroscopic distribution of the ψ_{n_j} , both in position and momentum.

Take $f(x,\xi) = F(x) \Longrightarrow \mu_{sc}$ is a lift of $\tilde{\mu}$.

Rmk: We have a priori no idea of the speed of convergence \rightarrow difficult to identify μ_{sc} from numerics.

Quantum-classical correspondence

A semiclassical measure μ_{sc} satisfy simple properties:

• From the mode equation $\frac{-\hbar_n^2 \Delta}{2} \psi_n = \operatorname{Op}_{\hbar_n}(p) \psi_n = \frac{1}{2} \psi_n$, one shows that μ_{sc} is supported on the energy shell $\{p(x,\xi) = \frac{1}{2}\} = S^* X$.

• Call $U_{\hbar}^t = e^{it\hbar\Delta/2}$ the Schrödinger propagator, and Φ^t the (geodesic) flow generated by p.

Egorov's theorem (quantum-classical correspondence): for any $f \in C_b^{\infty}(T^*X)$,

$$U_{\hbar}^{-t} \operatorname{Op}_{\hbar}(f) U_{\hbar}^{t} = \operatorname{Op}_{\hbar}(f \circ \Phi^{t}) + \mathcal{O}_{t}(\hbar)$$

 $\rightsquigarrow \mu_{sc}$ is **invariant through the geodesic flow**. This establishes a connection between quantum invariants (ψ_n) and classical ones (μ_{sc}) .

Examples of invariant measures: Liouville μ_L , δ_P on periodic trajectories.

Can one obtain ANY invariant measure by extracting appropriate subsequences of (ψ_n) ?

To address this question, we restrict ourselves to a certain type of manifolds.

Quantum ergodicity

From now on, assume that the geodesic flow on S^*X is ergodic w.r.to Liouville.

• X some Euclidean billiard (stadium, Sinai, cardioid,..).

• X boundaryless, of negative sectional curvature. Special case: $X = \Gamma/\mathbb{H}$, Γ subgroup of $SL_2(\mathbb{R})$. Even more special: Γ an *arithmetic* subgroup.

Quantum ergodicity theorem

[SHNIRELMAN'74, ZELDITCH'87, COLIN DE VERDIÈRE'85] for negative curvature, [GÉRARD-LEICHTNAM'93, ZELDITCH-ZWORSKI'96] for Euclidean billiards.

There exists a subsequence (ψ_{n_j}) of density 1 associated the Liouville measure μ_L .

 \iff almost all eigenstates ψ_n become equidistributed (in a weak sense) when $n \to \infty$:

Quantum (unique?) ergodicity

Assume the geodesic flow on X is ergodic. Is μ_L the only semiclassical measure for the whole sequence (ψ_n) ?

Quantum Unique Ergodicity conjecture: YES (for X of negative curvature) [RUDNICK-SARNAK'93].

The contrary would be the possibility of *exceptional subsequences* (ψ_{n_j}) associated with $\mu_{sc} \neq \mu_L$. In particular, could there be **strong scars** $\mu_{sc} = \delta_{PO}$, or **bouncing-ball modes** $\mu_{sc} = \mu_{bb}$, or more complicated μ_{sc} ?

Few results on the QUE conjecture

Quantum Ergodicity can be proved for symplectic chaotic maps on compact phase spaces, like Arnold's cat map on the 2-torus phase space: $\binom{x}{\xi} \mapsto A\binom{x}{\xi}$, $A \in SL_2(\mathbb{Z})$.

This map can be \hbar -quantized into a family of (finite-dimensional) unitary propagators $(U_{\hbar}(A))_{\hbar=(2\pi N)^{-1}}$. The eigenstates of these propagators are models of chaotic eigenmodes.

<u>Rmk</u>: the eigenvalues of $U_{\hbar}(A)$ are often highly degenerate.

- QUE holds for *arithmetic* (desymmetrized) eigenstates of $U_{\hbar}(A)$ [Kurlberg-Rudnick'00]
- QUE holds for *arithmetic* eigenstates on *arithmetic* surfaces Γ/\mathbb{H} [LINDENSTRAUSS'06]. But..

Counterexamples to QUE for symplectic maps

 \exists sequences (ψ_{\hbar_k}) of eigenstates of $U_{\hbar}(A)$ associated with semiclassical measures $\mu_{sc} \neq \mu_L$ [FAURE-N-DEBIÈVRE'03].

Idem for the baker's map quantized à la Walsh [ANANTHARAMAN-N'06]

Examples of exceptional semiclassical measures:

- $\mu_{sc} = \frac{1}{2}(\nu + \mu_L)$, with ν arbitrary. In particular $\mu_{sc} = \frac{1}{2}(\delta_P + \mu_L)$
- μ_{sc} a "fractal" invariant measure, which may be supported on a strict (fractal) subset of the torus.
- higher-dimensional cat maps $A \in SL_4(\mathbb{Z})$ on $\mathbb{T}^4 \rightsquigarrow \mu_{sc}$ = Lebesgue measure on a co-isotropic subspace of \mathbb{T}^4 (if any) [Kelmer'06],...

Almost all stadia are not QUE

[HASSEL'08] shows that all stadium billiards (defined by the ratio $\frac{length}{height}$) admit at least one semiclassical measure different from Liouville.

It is strongly believed that these measures correspond to bouncing-ball modes, which would then indeed survive in the high-frequency limit (cf. [BÄCKER-SCHUBERT-STIFTER'98]).

This is the first counter-example to QUE for an ergodic billiard (or manifold).

The entropy as a measure of localization

Idea: to characterize the localization of Φ^t -invariant measures on S^*X , use the **Kolmogorov-Sinai entropy** $H_{KS}(\mu)$, which quantifies the *information complexity* of μ w.r.to the flow.

- $H_{KS}(\mu) \in [0, H_{\max}].$
- Related to localization: $H_{KS}(\delta_P) = 0$, $H_{KS}(\mu_L) = \int \sum_{\lambda_i > 0} \lambda_i d\mu_L$ (positive Lyapunov exponents)
- Affine function of μ .

What can be the entropy of a semiclassical measure?

Eigenmodes of Anosov manifolds are at least half-delocalized

We now restrict ourselves to X of negative curvature. The geodesic flow is then of Anosov type (uniformly hyperbolic). $J^u(\rho) = \det(d\Phi_{\restriction E^u(\rho)})$.

Theorem [ANANTHARAMAN'05]: for X of negative curvature, any semiclassical measure μ_{sc} satisfies

$$H_{KS}(\mu_{sc}) \ge \epsilon > 0.$$

In particular, "strong scars" $\mu = \delta_P$ are forbidden.

Theorem [ANANTHARAMAN-KOCH-N'07]:

$$H_{KS}(\mu_{sc}) \ge \int \log J^u(\rho) \, d\mu_{sc}(\rho) - \frac{1}{2} \Lambda_{\max}(d-1).$$

 Λ_{\max} is the maximal expanding rate, so $\Lambda_{\max}(d-1) \ge \log J^u(\rho)$.Pb: if J^u varies too much, the RHS may become negative.

Eigenmodes of Anosov manifolds are at least half-delocalized

Theorem [RIVIÈRE'08]: for X a surface of **nonnegative curvature**,

$$H_{KS}(\mu_{sc}) \ge \frac{1}{2} \int \log J^u(\rho) \, d\mu_{sc}(\rho).$$

Rmk: Some of the exceptional measures mentioned above for chaotic maps *saturate* this lower bound.

[GUTKIN'08] constructs such eigenstates for chaotic piecewise-linear maps.

We expect the same bound to hold for *d*-dimensional mfold of negative (nonpositive?) curvature.

One has $H_{KS}(\mu) \leq \int \log J^u d\mu$ for any invariant measure, with equality iff $\mu = \mu_L$. \rightsquigarrow In some sense, μ_{sc} is at least half-delocalized.

Definition of the KS entropy (1)

Take a finite partition \mathcal{P} of the phase space $(S^*X \text{ or } \mathbb{T}^2)$. Each trajectory will be represented by a symbolic sequence $\cdots \epsilon_{-1}\epsilon_0\epsilon_1\cdots\cdots$ according to its *history*.

At each time n, the rectangle $[\epsilon_0 \cdots \epsilon_n] \subset S^*X$ consists of all points sharing the same "symbolic history" between times 0 and n (ex: [121]).

Definition of the KS entropy (2)

Let μ be an invariant proba. measure. The time-n entropy

$$H_n(\mu, \mathcal{P}) = -\sum_{\epsilon_0, \dots, \epsilon_n} \mu([\epsilon_0 \cdots \epsilon_n]) \log \mu([\epsilon_0 \cdots \epsilon_n])$$

measures the distribution of the probability weights $\mu([\epsilon_0 \cdots \epsilon_n])$. The limit (uses subadditivity)

$$H_{KS}(\mu, \mathcal{P}) = \lim_{n \to \infty} \frac{H_n(\mu, \mathcal{P})}{n}$$

measures the average rate of exponential decay of these weights.

If the diameter of \mathcal{P} is small enough, $H_{KS}(\mu, \mathcal{P}) = H_{KS}(\mu)$ is called the Kolmogorov-Sinai entropy.

The entropy is positive iff *typical* weights $\mu([\epsilon_0 \cdots \epsilon_n])$ decay exponentially when $n \to \infty$.

Quantum partition of unity

Need to adapt the notions to the quantum framework. Assume $(\psi_{\hbar})_{\hbar \to 0} \rightsquigarrow \mu_{sc}$.

Use quasi-projectors $P_j = Op_{\hbar}(\chi_j)$ on the components of the partition to construct a quantum partition of unity

$$Id = \sum_{j=1}^{J} P_j^2$$

Improved Egorov thm: $U_{\hbar}^{-t} \operatorname{Op}_{\hbar}(f) U_{\hbar}^{t} = \operatorname{Op}_{\hbar}(f \circ \Phi^{t}) + \mathcal{O}(\hbar e^{\Lambda_{\max} t})$ \Rightarrow for n smaller than the Ehrenfest time $T_{E} = \frac{|\log \hbar|}{\Lambda_{\max}}$, the operator

$$P_{\epsilon_0\cdots\epsilon_n} \stackrel{\text{def}}{=} (U_{\hbar}^{-n}P_{\epsilon_n}U_{\hbar}^n)\cdots(U_{\hbar}^{-1}P_{\epsilon_1}U_{\hbar})P_{\epsilon_0}$$

is a quasi-projector on the rectangle $[\epsilon_0 \cdots \epsilon_n]$. For $n \ge 0$ fixed, we have

$$\|P_{\epsilon_0\cdots\epsilon_n}\psi_{\hbar}\|^2 \stackrel{\hbar\to 0}{\to} \mu_{sc}([\epsilon_0\cdots\epsilon_n]).$$

A hyperbolic dispersion estimate

Aim: obtain a lower bound on the quantum entropy

$$H_n(\psi_{\hbar}, \mathcal{P}) = -\sum \|P_{\epsilon_0 \cdots \epsilon_n} \psi_{\hbar}\|^2 \log \|P_{\epsilon_0 \cdots \epsilon_n} \psi_{\hbar}\|^2$$

valid for $n \gg 0$ (fixed).

Can we show that the weights $||P_{\epsilon_0\cdots\epsilon_n}\psi_{\hbar}||^2$ decay expon. with n?

Proposition [ANANTHARAMAN'05] Consider a cutoff $\chi(\rho)$ localized in an energy interval $\{|p(\rho) - 1/2| \le \varepsilon\}$, and M > 0 arbitrary. Then, for \hbar small enough and $n \le M |\log \hbar|$, one has

$$\|P_{\epsilon_0\cdots\epsilon_n}\operatorname{Op}_{\hbar}(\chi)\| \leq C \varepsilon h^{-d/2} J_u^n (\epsilon_0\cdots\epsilon_n)^{-1/2}$$

In constant curvature -1, and taking the optimal cutoff $\varepsilon \gtrsim \hbar$, this reads

$$\|P_{\epsilon_0\cdots\epsilon_n}\operatorname{Op}_{\hbar}(\chi)\| \le C \varepsilon h^{-(d-1)/2} e^{-n(d-1)/2}$$

Pb: this hyperbolic dispersion estimate is trivial for times $t \leq T_E$.

To finish: use an entropic uncertainty principle

[ANANTHARAMAN'06] used this estimate for $n \gg T_E$ and a (clever) subadditivity argument to show that $H_{KS}(\mu) > 0$.

[ANAN.-N,ANAN.-KOCH-N.'07] (assume constant curvature -1): split $P_{\epsilon_0\cdots\epsilon_{2n}}$ as

$$U^n_{\hbar} P_{\epsilon_0 \cdots \epsilon_{2n}} = P_{\epsilon_{n+1} \cdots \epsilon_{2n}} U^n_{\hbar} P_{\epsilon_0 \cdots \epsilon_n}$$

Interpret each such operator as a "block matrix element" $\pi_j U_{\hbar}^n \pi_k$ of the unitary propagator U_{\hbar}^n , expressed in the block-basis $(P_{\epsilon_0 \cdots \epsilon_n}) = (\pi_k)$.

For $n = T_E = |\log \hbar|$, the hyperbolic estimate for $P_{\epsilon_0 \cdots \epsilon_{2n}}$ with $\varepsilon \gtrsim \hbar$ shows that all these block matrix elements satisfy $\|\pi_j U_{\hbar}^{T_E} \pi_k \operatorname{Op}_{\hbar}(\chi)\| \leq C \hbar^{\frac{d-1}{2}}$.

An entropic uncertainty principle [MAASSEN-UFFINK'88] shows that the quantum entropy built from $\psi_{\hbar} \propto U_{\hbar}^{T_E} \psi_{\hbar}$ satisfies

$$H_{T_E}(\psi_{\hbar}) \ge |\log \hbar^{\frac{d-1}{2}}| = \frac{T_E(d-1)}{2}$$

Finally, one uses subadditivity and improved Egorov to get a similar bound at fixed time $n = n_0$, and then the bound $H_{KS}(\mu_{sc}) \ge \frac{d-1}{2}$.

Proof of the hyperbolic dispersion estimate (1)

A state $P_{\epsilon_0}\psi$ is first decomposed into an appropriate family of *elementary* states (ψ_{η}) :

$$P_{\epsilon_0}\psi = \hbar^{-d/2} \int d\eta \,\psi_\eta \,f(\eta) \,.$$

Here (ψ_{η}) is a family of Lagrangian states associated with Lagrangian manifolds (Λ_{η}) close to the unstable foliation:

$$\psi_{\eta}(x) = a(x) e^{iS_{\eta}(x)/\hbar}$$
 is localized on $\Lambda_{\eta} = \{(x, \xi = \nabla S_{\eta}(x))\}$

Proof of the dispersion estimate (2)

We will compute each evolution $P_{\epsilon_n} \cdots U_{\hbar} P_{\epsilon_1} U_{\hbar} \psi_{\eta}$ separately.

Through the sequence of stretching (U) and cutting (P_{ϵ_i}) , the transformed state remains Lagrangian, supported on the transported Lagrangian mfold (which gets exponentially close to the unstable mfold).

The amplitude of $P_{\epsilon_n} \cdots U_{\hbar} P_{\epsilon_1} U_{\hbar} \psi_{\eta}$ is transformed as a half-density. Its decay is governed by the unstable Jacobian along the path $\epsilon_0 \cdots \epsilon_n$:

$$\|P_{\epsilon_n}\cdots U_{\hbar}P_{\epsilon_1}U_{\hbar}\psi_{\eta}\|\sim J_u^n(\epsilon_0\cdots\epsilon_n)^{-1/2}$$

Summing up the decomposition to recover $P_{\epsilon_0}\psi$, one gets the hyperbolic estimate.