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Outline

• Objective: describe high-frequency eigenmodes of ∆ on a smooth, compact Rieman-
nian manifold. High-frequency Ã classical (geodesic) flow

• Rough tool to describe the ψn: semiclassical measures µsc associated with subse-
quences (ψnj

)j≥1. µsc ⊂ flow-invariant measures.

• Main question: which invariant measures can semiclassically occur? Quantum
(Unique?) Ergodicity.

• Choice of specific manifolds: strongly chaotic (Anosov) geodesic flows. Both complex
(non-integrable) and treatable (well-understood).
Many examples (negative sectional curvature).

• Our approach: compute the Kolmogorov-Sinai entropy of µsc, which partially
characterizes its localization properties. Ã µsc is at least half-delocalized.

• (?) sketch of proof
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High-frequency ≡ semiclassical

(X, g) compact smooth Riemannian manifold (with/out boundary). We want to analyze
the eigenmodes (ψn)n≥0 of the Laplace-Beltrami operator ∆ = ∆g:

∆ψn + k2
nψn = 0

This Helmholtz equation can be rewritten as a stationary Schrödinger equation

−~2
n∆
2

ψn =
1
2
ψn ,

with “Planck’s constant” ~ = ~n = k−1
n . In this setting, the eigenmode ψn = ψ~ is

associated with the classical energy E = 1
2.

high-frequency (kn →∞) ≡ semiclassical (~¿ 1).

~n = wavelength of the state ψn.

Advantage: use the tools of semiclassical analysis. Connection with the classical
dynamics: Hamiltonian flow on T ∗X generated by the Hamiltonian

p(x, ξ) =
|ξ|2g
2

(≡ geodesic flow on X.)
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Regular vs. chaotic flows

For some exceptional mfolds X (Liouville-integrable flow), we have approximate or
explicit expressions for ψn(x) (separation of variables + WKB).

At the opposite: manifolds supporting a chaotic geodesic flow. We don’t have any
approximate expression for the ψn at our disposal.

(inbetween: manifolds with mixed phase space. The properties of the classical flow are
even more complicated).

3



Several ways to describe eigenfunctions ψn(x)

One can study ψn(x) on different levels/scales:

• microscopic: statistical fluctuations at the scale ~n, nodal lines/domains, random
wave models.

• macroscopic properties of ψn.
For some fixed test function F on X, investigate the behaviour of

∫
X
|ψn(x)|2F (x) dx

when n→∞.

→ one can extract a subsequence (nj →∞) s.t. for any F ,

∫
F |ψnj

|2 dx j→∞→ µ̃(F )

The probability measure µ̃ on X is called a quantum limit. It describes the
asymptotic localization on X of the states (ψnj

), measured at the scale unity.
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Lift to the phase space: semiclassical measures (1)

A quantum limit µ̃ can be connected with the geodesic flow by lifting it to a phase
space measure.
This lift can be performed by using quantum observables (~-pseudodifferential operators),
which not only measure |ψ~(x)|, but also its phase fluctuations of at the scale ~
(phase fluctuations ≡ momentum of the quantum particle).

Ex: ψ0(x) = exp
(−(x−x0)

2+iξ0·x
~

)
localized at position x0 AND at momentum ξ0.

Observable f(x, ξ) on phase space T ∗X
quantization−→ operator Op~(f) on L2(X).

Main property:
Op~(f)ψ0 = f(x0, ξ0)ψ0 +O(~)

To measure the localization properties of the (ψn), consider the matrix elements

〈ψn,Op~n(f)ψn〉 def=
∫
f(x, ξ) ρn(x, ξ) dxdξ

Depending on the choice of quantization Op~, the function ρn is called the Wigner
function, the Husimi function...
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Lift to the phase space: semiclassical measures (2)

Def: from (ψn) one can extract a subsequence (ψnj
) such that, for any f ∈ C∞b (T ∗X),

〈ψn,Op~n(f)ψn〉 j→∞→ µsc(f)

µsc is a probability measure on phase space. It is called the semiclassical measure
associated with the subsequence (ψnj

).
µsc describes the asymptotic macroscopic distribution of the ψnj

, both in position and
momentum.

Take f(x, ξ) = F (x) =⇒ µsc is a lift of µ̃.

Rmk: We have a priori no idea of the speed of convergence → difficult to identify µsc

from numerics.
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Quantum-classical correspondence

A semiclassical measure µsc satisfy simple properties:

• From the mode equation
−~2n∆

2 ψn = Op~n(p)ψn = 1
2ψn, one shows that µsc is

supported on the energy shell {p(x, ξ) = 1
2} = S∗X.

• Call U t
~ = eit~∆/2 the Schrödinger propagator, and Φt the (geodesic) flow generated

by p.

Egorov’s theorem (quantum-classical correspondence): for any f ∈ C∞b (T ∗X),

U−t
~ Op~(f)U t

~ = Op~(f ◦ Φt) +Ot(~)

Ã µsc is invariant through the geodesic flow. This establishes a connection between
quantum invariants (ψn) and classical ones (µsc).

Examples of invariant measures: Liouville µL, δP on periodic trajectories.

Can one obtain ANY invariant measure by extracting appropriate subsequences of
(ψn)?

To address this question, we restrict ourselves to a certain type of manifolds.
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Quantum ergodicity

From now on, assume that the geodesic flow on S∗X is ergodic w.r.to Liouville.

• X some Euclidean billiard (stadium, Sinai, cardioid,..).

• X boundaryless, of negative sectional curvature. Special case: X = Γ/H, Γ subgroup
of SL2(R). Even more special: Γ an arithmetic subgroup.

Quantum ergodicity theorem
[Shnirelman’74, Zelditch’87, Colin de Verdière’85] for negative curvature,
[Gérard-Leichtnam’93, Zelditch-Zworski’96] for Euclidean billiards.

There exists a subsequence (ψnj
) of density 1 associated the Liouville measure µL.

⇐⇒ almost all eigenstates ψn become equidistributed (in a weak sense) when n→∞:
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Quantum (unique?) ergodicity

Assume the geodesic flow on X is ergodic. Is µL the only semiclassical measure
for the whole sequence (ψn)?

Quantum Unique Ergodicity conjecture: YES (for X of negative curvature) [Rudnick-

Sarnak’93].

The contrary would be the possibility of exceptional subsequences (ψnj
) associated with

µsc 6= µL. In particular, could there be strong scars µsc = δPO, or bouncing-ball
modes µsc = µbb, or more complicated µsc?
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Few results on the QUE conjecture

Quantum Ergodicity can be proved for symplectic chaotic maps on compact phase
spaces, like Arnold’s cat map on the 2-torus phase space:

(
x
ξ

) 7→ A
(
x
ξ

)
, A ∈ SL2(Z).

This map can be ~-quantized into a family of (finite-dimensional) unitary propagators
(U~(A))~=(2πN)−1. The eigenstates of these propagators are models of chaotic eigen-
modes.
Rmk: the eigenvalues of U~(A) are often highly degenerate.

• QUE holds for arithmetic (desymmetrized) eigenstates of U~(A) [Kurlberg-

Rudnick’00]

• QUE holds for arithmetic eigenstates on arithmetic surfaces Γ/H [Lindenstrauss’06].

But..
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Counterexamples to QUE for symplectic maps

∃ sequences (ψ~k) of eigenstates of U~(A) associated with semiclassical measures
µsc 6= µL [Faure-N-DeBièvre’03].

Idem for the baker’s map quantized à la Walsh [Anantharaman-N’06]

B

Examples of exceptional semiclassical measures:
• µsc = 1

2(ν + µL), with ν arbitrary. In particular µsc = 1
2(δP + µL)

• µsc a “fractal” invariant measure, which may be supported on a strict (fractal) subset
of the torus.
• higher-dimensional cat maps A ∈ SL4(Z) on T4 Ã µsc = Lebesgue measure on a
co-isotropic subspace of T4 (if any) [Kelmer’06],. . .
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Almost all stadia are not QUE

[Hassel’08] shows that all stadium billiards (defined by the ratio length
height) admit at least

one semiclassical measure different from Liouville.

It is strongly believed that these measures correspond to bouncing-ball modes,
which would then indeed survive in the high-frequency limit (cf. [Bäcker-Schubert-

Stifter’98]).

This is the first counter-example to QUE for an ergodic billiard (or manifold).
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The entropy as a measure of localization

Idea: to characterize the localization of Φt-invariant measures on S∗X, use the
Kolmogorov-Sinai entropy HKS(µ), which quantifies the information complexity of
µ w.r.to the flow.

• HKS(µ) ∈ [0,Hmax].

• Related to localization: HKS(δP ) = 0, HKS(µL) =
∫ ∑

λi>0 λi dµL (positive Lya-
punov exponents)

• Affine function of µ.

What can be the entropy of a semiclassical measure?
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Eigenmodes of Anosov manifolds are at least half-delocalized

We now restrict ourselves to X of negative curvature. The geodesic flow is then of
Anosov type (uniformly hyperbolic). Ju(ρ) = det(dΦ¹Eu(ρ)).

ρ

Φ(ρ)

s

E

J u

u

E

Theorem [Anantharaman’05]: for X of negative curvature, any semiclassical measure
µsc satisfies

HKS(µsc) ≥ ε > 0.

In particular, “strong scars” µ = δP are forbidden.

Theorem [Anantharaman-Koch-N’07]:

HKS(µsc) ≥
∫

log Ju(ρ) dµsc(ρ)− 1
2
Λmax(d− 1).

Λmax is the maximal expanding rate, so Λmax(d − 1) ≥ log Ju(ρ).Pb: if Ju varies too
much, the RHS may become negative.
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Eigenmodes of Anosov manifolds are at least half-delocalized

Theorem [Rivière’08]: for X a surface of nonnegative curvature,

HKS(µsc) ≥ 1
2

∫
log Ju(ρ) dµsc(ρ).

Rmk: Some of the exceptional measures mentioned above for chaotic maps saturate
this lower bound.

[Gutkin’08] constructs such eigenstates for chaotic piecewise-linear maps.

We expect the same bound to hold for d-dimensional mfold of negative (nonpositive?)
curvature.

One has HKS(µ) ≤ ∫
log Ju dµ for any invariant measure, with equality iff µ = µL.

Ã In some sense, µsc is at least half-delocalized.
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Definition of the KS entropy (1)

Take a finite partition P of the phase space (S∗X or T2). Each trajectory will be
represented by a symbolic sequence · · · ε−1ε0ε1 · · · · · · according to its history.

t=0

t=1
t=2

t=3

t=4

1

2 3 4

5

6

At each time n, the rectangle [ε0 · · · εn] ⊂ S∗X consists of all points sharing the same
“symbolic history” between times 0 and n (ex: [121]).

[   ]ε i

εΦ
−1

i[   ]

Φ
−2

iε[   ]

21
t=0

t=1t=2
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Definition of the KS entropy (2)

Let µ be an invariant proba. measure. The time-n entropy

Hn(µ,P) = −
∑

ε0,...,εn

µ([ε0 · · · εn]) logµ([ε0 · · · εn])

measures the distribution of the probability weights µ([ε0 · · · εn]).
The limit (uses subadditivity)

HKS(µ,P) = lim
n→∞

Hn(µ,P)
n

measures the average rate of exponential decay of these weights.

If the diameter of P is small enough, HKS(µ,P) = HKS(µ) is called the Kolmogorov-
Sinai entropy.

The entropy is positive iff typical weights µ([ε0 · · · εn]) decay exponentially when n→∞.
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Quantum partition of unity

Need to adapt the notions to the quantum framework. Assume (ψ~)~→0 Ã µsc.

Use quasi-projectors Pj = Op~(χj) on the components of the partition to construct a
quantum partition of unity

Id =
J∑

j=1

P 2
j

Improved Egorov thm: U−t
~ Op~(f)U t

~ = Op~(f ◦ Φt) +O(~ eΛmaxt)

⇒ for n smaller than the Ehrenfest time TE = | log ~|
Λmax

, the operator

Pε0···εn

def= (U−n
~ PεnU

n
~ ) · · · (U−1

~ Pε1U~)Pε0

is a quasi-projector on the rectangle [ε0 · · · εn].
For n ≥ 0 fixed, we have

‖Pε0···εnψ~‖2 ~→0→ µsc([ε0 · · · εn]).
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A hyperbolic dispersion estimate

Aim: obtain a lower bound on the quantum entropy

Hn(ψ~,P) = −
∑

‖Pε0···εnψ~‖2 log ‖Pε0···εnψ~‖2

valid for nÀ 0 (fixed).

Can we show that the weights ‖Pε0···εnψ~‖2 decay expon. with n?

Proposition [Anantharaman’05] Consider a cutoff χ(ρ) localized in an energy interval
{|p(ρ)− 1/2| ≤ ε}, and M > 0 arbitrary. Then, for ~ small enough and n ≤M | log ~|,
one has

‖Pε0···εn Op~(χ)‖ ≤ C εh−d/2 Jn
u (ε0 · · · εn)−1/2

In constant curvature −1, and taking the optimal cutoff ε & ~, this reads

‖Pε0···εn Op~(χ)‖ ≤ C εh−(d−1)/2 e−n(d−1)/2 .

Pb: this hyperbolic dispersion estimate is trivial for times t ≤ TE.

19



To finish: use an entropic uncertainty principle

[Anantharaman’06] used this estimate for nÀ TE and a (clever) subadditivity argument
to show that HKS(µ) > 0.

[Anan.-N,Anan.-Koch-N.’07] (assume constant curvature −1): split Pε0···ε2n as

Un
~ Pε0···ε2n = Pεn+1···ε2n U

n
~ Pε0···εn

Interpret each such operator as a “block matrix element” πjU
n
~ πk of the unitary

propagator Un
~ , expressed in the block-basis (Pε0···εn) = (πk).

For n = TE = | log ~|, the hyperbolic estimate for Pε0···ε2n with ε & ~ shows that all

these block matrix elements satisfy ‖πjU
TE
~ πk Op~(χ)‖ ≤ C ~d−1

2 .

An entropic uncertainty principle [Maassen-Uffink’88] shows that the quantum en-

tropy built from ψ~ ∝ U
TE
~ ψ~ satisfies

HTE
(ψ~) ≥ | log ~

d−1
2 | = TE (d− 1)

2
.

Finally, one uses subadditivity and improved Egorov to get a similar bound at fixed time
n = n0, and then the bound HKS(µsc) ≥ d−1

2 . ¤
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Proof of the hyperbolic dispersion estimate (1)

A state Pε0ψ is first decomposed into an appropriate family of elementary states (ψη):

Pε0ψ = ~−d/2

∫
dη ψη f(η) .

Here (ψη) is a family of Lagrangian states associated with Lagrangian manifolds (Λη)
close to the unstable foliation:

ψη(x) = a(x) eiSη(x)/~ is localized on Λη = {(x, ξ = ∇Sη(x))}

Λη

ρ
ρ
uΓ

ρΓ s
0εχ
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Proof of the dispersion estimate (2)

We will compute each evolution Pεn · · ·U~Pε1U~ψη separately.

Λη

Λη

Φ

Φ(     )

Through the sequence of stretching (U) and cutting (Pεi
), the transformed state remains

Lagrangian, supported on the transported Lagrangian mfold (which gets exponentially
close to the unstable mfold).

The amplitude of Pεn · · ·U~Pε1U~ψη is transformed as a half-density. Its decay is
governed by the unstable Jacobian along the path ε0 · · · εn:

‖Pεn · · ·U~Pε1U~ψη‖ ∼ Jn
u (ε0 · · · εn)−1/2

Summing up the decomposition to recover Pε0ψ, one gets the hyperbolic estimate.
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