The toposcopy: how to deduce the shape of an electrode from a black box measurement?

> M. Filoche Physique de la Matière Condensée CNRS, Ecole Polytechnique

Joint work with B. Sapoval and D.S. Grebenkov

Laplacian Eigenvalues and Eigenfunctions: Theory, Computation, Application IPAM Program, Feb 9-13 2009

How are related the geometrical and the transfer properties of an irregular interface?

- Electrochemistry
- Heterogeneous catalysis
- NMR
- Biological membranes

Gas exchange driven by diffusion

The oxygen transfer in the lung

subacinus entrance
 diffusion source

• into the alveolar air: Steady-state diffusion \rightarrow Fick's law

• at the air-blood interface: Membrane of permeability W_{M}

$$J_{n} = W_{M} (C_{0_{2}} - C_{0_{2}}^{blood})$$

The oxygen transfer in the lung

$$P \equiv P_{O_2} - P_{O_2}^{blood}$$

Linear PDE Problem

 $\nabla^{2} \mathbf{P} = \mathbf{0}$ in the bulk $\frac{\partial \mathbf{P}}{\partial \mathbf{n}} = -\frac{1}{\Lambda} \mathbf{P}$ on the alveolar membrane $\mathbf{P} = \mathbf{P}_{0}$ at the acinus entrance

 $\Lambda \equiv D/W$ unscreened perimeter length

Heterogeneous catalysis

$A + X \rightarrow A^* + X$ (catalysis, k_1)

Irregular catalytic surface (X)

Molecular diffusion

source of A molecules

Diffusion screening

Fractal electrode

ABSORPTION AU PREMIER CONTACT

ABSORPTION APRÈS CINQ CHOCS

B. Sapoval

Diffusion screening

Makarov, 1985

Concentration

Current density

The physical meaning of A Conductance to reach a part of the boundary:

 $Y_{reach} \sim D$

Conductance to cross a part of the boundary:

 $Y_{tra} \sim W L_p$ (L_p : perimeter of the part)

$$Y_{reach} \approx Y_{cross} \implies L_p \approx \Lambda$$

Electrochemistry Copper ion deposit onto an irregular surface

M. Rosso et al., 1997

Question:

If one knows the current crossing the system for any Λ , what do we know about the geometry of the domain?

The lattice model

Bulk: random walk on a lattice:

parameters a, τ

<u>Membrane</u>: reflecting boundary

1

parameter ε

<u>Definitions</u>

 P_i^{ϵ}

probability to reach the site *i* on the membrane when starting from the source

q_{ij}

probability to reach the site *j* on the membrane when starting from the site *i* on the membrane

Continuous limit of the lattice model

"Black box" measurement

System impedance :

$$Z_{\text{system}} = \frac{C_0}{I}$$

$$Z_{\text{memb}}(W) = Z_{\text{system}}(W) - Z_{\text{system}}(W = \infty) = C_0 \left[\frac{1}{I(W)} - \frac{1}{I(\infty)} \right]$$

Flux across the system :

$$I(\varepsilon) = C_{S}\left(\frac{a^{d}}{2d\tau}\right) \sum_{i \in M} P_{i}^{\varepsilon}$$

<u>Problem</u> : Compute the probabilities P_i^{ϵ}

Transfer through a permeable membrane: a Markov process

1 hit No intermediate hit 2 hits 1 $\sum P_{k_1}^0 \varepsilon q_{k_1,i} (1-\varepsilon)$ $\sum P_{k_1}^0 \varepsilon q_{k_1,k_2} \varepsilon q_{k_2,i} (1-\varepsilon)$ $P_i^0(1-\varepsilon)$ k_{1}, k_{2} $P_{i}^{\epsilon} = P_{i}^{0} (1 - \epsilon) + \sum P_{k_{1}}^{0} \epsilon q_{k_{1},i} (1 - \epsilon) + \sum P_{k_{1}}^{0} \epsilon q_{k_{1},k_{2}} \epsilon q_{k_{2},i} (1 - \epsilon) + \dots$ k_1 k_{1}, k_{2}

M.F. and B. Sapoval, 1999

The "spreading operator"

 $Q = (q_{ij})$

"transport" probability matrix

<u>Properties</u> :	Probabilities -	real	
	Random walk -	\rightarrow	symmetric
	$\sum_{i} q_{ij} < 1$ _	\rightarrow	contraction

 $\vec{P}^{\epsilon} = (P_{i}^{\epsilon})$ current distribution crossing the membrane

Markov process: $\vec{P}^{\epsilon} = (1-\epsilon)\vec{P}^{0} + \epsilon(1-\epsilon)Q\vec{P}^{0} + \epsilon^{2}(1-\epsilon)Q^{2}\vec{P}^{0} + ...$ $\vec{P}^{\epsilon} = (1-\epsilon)[I-\epsilon Q]^{-1}\vec{P}^{0}$

The electrode impedance

Discrete impedance:

$$Z_{\text{spec.}} = \frac{2d\tau}{a^{d}} \left(\frac{\varepsilon}{1-\varepsilon} \right) \frac{\vec{P}^{\varepsilon} \cdot \vec{P}^{0}}{\left(\vec{P}^{\varepsilon} \cdot \vec{1} \right) \left(\vec{P}^{0} \cdot \vec{1} \right)}$$

continuous limit
$$Z_{\text{memb.}} = \frac{2d\tau}{a} \frac{\epsilon}{1-\epsilon} \left[\frac{\vec{P}^{\epsilon}}{a^{d-1} (\vec{P}^{\epsilon} \cdot \vec{1})} \cdot \frac{\vec{P}^{0}}{a^{d-1} (\vec{P}^{0} \cdot \vec{1})} \right] a^{d-1} \rightarrow \frac{1}{W} \int_{\partial \Omega} h_{\Lambda}(x) h_{0}(x) dx$$

M.F and B. Sapoval, 1999

The "geometrical spectrum"

Dirichlet-to-Neumann operator spectrum

Decomposition of the harmonic measure

Numerical test: 2D electrodes

M.F. and D.S. Grebenkov, 2008

Extracting the "harmonic geometrical spectrum"

Self-similar electrodes

Quadratic Von Koch curves

D.S. Grebenkov, M.F., B. Sapoval, 2007

Mode reduction

Mode reduction

Eigenvectors of the Dirichlet-to-Neumann operator

Harmonic measure density

Structure of the probability matrix

Hierarchical spectra

"Analytical" model of the electrode

		k = 0	k = 1	k = 2	k = 3	k = 4
	9	$(\alpha = 0)$	$(\alpha = 1)$	$(\alpha = 7)$	$(\alpha = 37)$	$(\alpha = 187)$
$\mu_{\alpha}L_{g}$	1	0	3.480			
	2	0	3.050	18.857		
	3	0	3.008	16.184	97.028	
	4	0	2.992	15.687	78.929	416.336
$\mu_k^{(g)} L_g$		0	3	15	75	375
$F_{\alpha}L_{g}$	1	1.000	0.686			
	2	1.000	0.463	1.335		
	3	1.000	0.441	0.822	2.545	
	4	1.000	0.437	0.772	1.465	2.573
$F_k^{(g)}L_g$		1.000	0.667	1.111	1.852	3.086

Table 1: Comparison between the main contributing peaks of the harmonic geometrical spectra for the first four generations of the quadratic Koch curve of fractal dimension $\ln 5/\ln 3$ and the model scaling relations for $\mu_k^{(g)}$ and $F_k^{(g)}$.

Analytical model

$$\mu_{k}^{(g)}L_{g} \approx \begin{cases} 0.6 \times 5^{k}, k > 0\\ 0, k = 0 \end{cases} F_{k}^{(g)}L_{g} \approx \begin{cases} 0.4 \times (5/3)^{k}, k > 0\\ 1, k = 0 \end{cases}$$

Relative error of the model impedance

Reconstructed impedance for large generations

Deterministic vs random

Model electrode : Von Koch surface

Experimental study on prefractal electrodes

Figure 11: Generators for two cubic Koch surfaces of fractal dimension $\ln 13 / \ln 3$: concave (a) and convex (b).

Figure 12: Harmonic geometrical spectra $F_{\alpha}(\mu_{\alpha})$ for the first two generations of two cubic Koch surfaces of fractal dimension $\ln 13 / \ln 3$.

Fast random walk in deterministic self-similar Von Koch domains

FIG. 2: (a) Initial arrow-like cell \mathcal{A} is divided into the rotated square and five small triangles; (b) when random particle arrives into a small triangle, it can "see" the following generation.

FIG. 3: First generation of the cubic Koch surface. Threedimenional cell \mathcal{A} is composed of the pyramid (of square base $L \times L$ and of height L/2) and small cube (with edge L/3). This cell is divided onto 13 smaller cells \mathcal{A}_k and the volume \mathcal{A}_0 of the rest.

D.S. Grebenkov, A.A. Lebedev, M.F., B. Sapoval, 2005

Numerical simulations of the harmonic measure

Deuxième génération : expérience et théorie

Deuxième génération : expérience et théorie

Prefractal electrode of dimension 3

E. Chassaing, M.F., B. Sapoval, 2004

Prefractal electrode of dimension 3

E. Chassaing, M.F., B. Sapoval, 2004

Open questions

> Spectral properties of the Dirichlet-to-Neumann operator (fractal boundaries).

> Knowing (F,μ) of a boundary, what can we say about its geometry?

- Properties of the "spread harmonic measure"
- Link between RBM and Dirichlet-to-Neumann

> Transient operators?