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Photonic crystals

periodic dielectric structures

period ≈ wavelength of light ≈ 1µm

control optical propagation in ways

impossible in homogeneous media

(Joannopoulos group)
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Photonic crystals

periodic dielectric structures

period ≈ wavelength of light ≈ 1µm

control optical propagation in ways

impossible in homogeneous media

(Joannopoulos group)

2D lattice of cylinders (INFM, U. Pavia)

e.g. ‘bandgap’ medium: ∃ freqs. s.t.

all waves evanescent (non-propagating)

• ‘insulators’ with embedded waveguides

• unlike dielectric guides, sharp bends ok
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Photonic crystal examples

Si, λ = 1.6µm (Vlasov ’05)

• Slab w/ 2D-periodic air holes

couples to external dielectric guide

manipulate guide dispersion to give

v slow group velocity (c/300)
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Photonic crystal examples

Si, λ = 1.6µm (Vlasov ’05)

• Slab w/ 2D-periodic air holes

couples to external dielectric guide

manipulate guide dispersion to give

v slow group velocity (c/300)

• Full 3D bandgap (all polarizations)

‘Yablonovite’ (cm scale) (Yablonovich ’91)

‘woodpile’ λ = 12µm (Lin et al. ’98)

‘inverse opals’ (spherical air ‘bubbles’)

stacked slabs (built λ = 1.3µm, Qi et al. ’04)

• complex geometry (not just cylinders!)

(Johnson et al. ’00)
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Applications

Build low-loss optical signal paths on 1µm scale:

integrated optical devices, signal-processing,

Big goal: optical (⇒ high speed!) computing

e.g. high-Q resonators, couplers, junctions

channel-drop filter in 2D crystal
(Johnson et al. ’00)
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Applications

Build low-loss optical signal paths on 1µm scale:

integrated optical devices, signal-processing,

Big goal: optical (⇒ high speed!) computing

e.g. high-Q resonators, couplers, junctions

channel-drop filter in 2D crystal
(Johnson et al. ’00)

• Meta-materials e.g. negative refractive index (−1 = ‘perfect’ lens)

• Solar cells and LEDs: control the density of states

⇒ spontaneous emission/absorption rates, directions (S. Fan ’97)
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Applications

Build low-loss optical signal paths on 1µm scale:

integrated optical devices, signal-processing,

Big goal: optical (⇒ high speed!) computing

e.g. high-Q resonators, couplers, junctions

channel-drop filter in 2D crystal
(Johnson et al. ’00)

• Meta-materials e.g. negative refractive index (−1 = ‘perfect’ lens)

• Solar cells and LEDs: control the density of states

⇒ spontaneous emission/absorption rates, directions (S. Fan ’97)

Common features

• piecewise-homogeneous dielectric media, wavenumber low

• each medium linear, may be dispersive e.g. metals (plasmons)

• manufacturing costly⇒ numerical design/modeling/optimization
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Outline

1. Band structure of a photonic crystal: eigenmodes on a torus

2. Existing numerical approaches

3. Potential theory, boundary integral equations

4. New (& better!) way to periodize the problem

5. Preliminary results
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Scalar waves in R
2: ‘free space’

dimensionless wave equation ûtt = ∆u (∆ = laplacian)

const frequency ω: time-harmonic solns û(x, t) = u(x)e−iωt

becomes Helmholtz eqn: (∆ + ω2)u = 0
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Scalar waves in R
2: ‘free space’

dimensionless wave equation ûtt = ∆u (∆ = laplacian)

const frequency ω: time-harmonic solns û(x, t) = u(x)e−iωt

becomes Helmholtz eqn: (∆ + ω2)u = 0

u is generalized eigenfunc. (EF) of −∆

One choice: u(x) = eik·x

plane waves, k ∈ R
2

Shown: Re[u] for k = (−0.39, 2.08)

• ‘band structure’ = dispersion relation

ω = |k| is cone in (ω, kx, ky)
k

ky

x

ω
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Waves in a crystal lattice

U = unit cell Ω = smooth inclusion, refr. index n
Bravais lattice Λ := {me1 + ne2 : n,m ∈ Z}
dielectric inclusions ΩΛ; = {x : x + d ∈ Ω for some d ∈ Λ}

Ω
index n

index 1

U

e
1

e
2
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Waves in a crystal lattice

U = unit cell Ω = smooth inclusion, refr. index n
Bravais lattice Λ := {me1 + ne2 : n,m ∈ Z}
dielectric inclusions ΩΛ; = {x : x + d ∈ Ω for some d ∈ Λ}

Ω
index n

index 1

U

e
1

e
2

PDE:

(∆ + n2ω2)u = 0 in ΩΛ

(∆ + ω2)u = 0 in R
2 \ ΩΛ

continuity (matching) BCs:

u+ − u− = 0 on ∂ΩΛ

u+
n − u−

n = 0 on ∂ΩΛ

(z-invariant Maxwell, TM polarization)
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‘Bloch Theorem’

In infinite periodic medium, can choose gen. EFs as Bloch waves

u(x) = eik·xũ(x) where ũ is periodic

‘When I started to think about it, I felt that the main prob-

lem was to explain how the electrons could sneak by all the

ions in a metal. . . By straight Fourier analysis I found to my

delight that the wave differed from the plane wave of free

electrons only by a periodic modulation’
(F. Bloch, 1928)

(indep. prediscovered by Hill 1877, Floquet 1883, Lyapunov 1892)

Why?

• differential operator commutes w/ translations Te1 , Te2

⇒ can choose simultaneous EFs of PDE, Te1 , and Te2

• EFs of translations are complex exponentials
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Bloch wave

Example soln u(x) to PDE and dielectric BCs on ∂Ω, of form eik·xũ(x)

Re[u] shown

Bloch wavevector k

(same as earlier

plane wave)

e1 = (1, 0)

e2 = (1
2
, 1)

ω = 5

• Task: find the set of (ω, kx, ky) s.t. non-trivial Bloch EF u exists
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Bloch eigenvalue problem on torus

Bloch wave condition equiv. to quasi-periodic BCs on ∂U :

Require vanishing unit cell discrepancy:

f := u|L − α−1u|L+e1 = 0

f ′ := un|L − α−1un|L+e1 = 0

g := u|B − β−1u|B+e2 = 0

g′ := un|B − β−1un|B+e2 = 0

β

α
n

n

nn

pairing left−right, top−bottom:

Bloch phases α:= eik·e1 , β:= eik·e2 , |α| = |β| = 1
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Bloch eigenvalue problem on torus

Bloch wave condition equiv. to quasi-periodic BCs on ∂U :

Require vanishing unit cell discrepancy:

f := u|L − α−1u|L+e1 = 0

f ′ := un|L − α−1un|L+e1 = 0

g := u|B − β−1u|B+e2 = 0

g′ := un|B − β−1un|B+e2 = 0

β

α
n

n

nn

pairing left−right, top−bottom:

Bloch phases α:= eik·e1 , β:= eik·e2 , |α| = |β| = 1
• α, β ∈ S1, thus k equiv. to k + 2πq ∀q ∈ Λ∗ dual (reciprocal) lattice

. . . need consider only k ∈ Brillouin zone (BZ):

Combine quasi-periodicity w/ PDE, BCs on ∂Ω:

eigenvalue problem on (phased) torus −5 0 5
−5

0

5

k
x

k
y Γ

X

Mk
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Band structure

For each parameter k ∈ BZ

(Bloch wavevector) ∃ eigen-

values

ω1(k) ≤ ω2(k) ≤ · · · ր ∞

form ‘sheets’ above the BZ

(BZ is also a torus)

note: conical near ω = 0

note: bandgap

• is most important property of photonic crystal for applications

• e.g. bandgaps, Snell’s law, group vel.∇kω, group dispersion . . .
– p. 11



Main numerical approaches

Time domain

• time-stepping on finite-difference grid (FDTD) (e.g. Yee ’66)

low order (inaccurate), close freqs⇒ large t reqd (inefficent)
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Main numerical approaches

Time domain

• time-stepping on finite-difference grid (FDTD) (e.g. Yee ’66)

low order (inaccurate), close freqs⇒ large t reqd (inefficent)

Freq domain

• multiple-scattering, cylinder geometry only (McPhedran et al. )

• Plane-wave method: all in Fourier space (Joannopoulos, Johnson, Sözüer)

discont. dielectric ⇒ Gibbs phenom, slow (1/N ) convergence

• Finite element (FEM) discretization in U (Chew, Dobson, Dossou)

better for discontinuity, N large, meshing and high-order complicated

Note: above two give Ax = ω2Bx, but become non-linear EVP in dispersive media
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Main numerical approaches

Time domain

• time-stepping on finite-difference grid (FDTD) (e.g. Yee ’66)

low order (inaccurate), close freqs⇒ large t reqd (inefficent)

Freq domain

• multiple-scattering, cylinder geometry only (McPhedran et al. )

• Plane-wave method: all in Fourier space (Joannopoulos, Johnson, Sözüer)

discont. dielectric ⇒ Gibbs phenom, slow (1/N ) convergence

• Finite element (FEM) discretization in U (Chew, Dobson, Dossou)

better for discontinuity, N large, meshing and high-order complicated

Note: above two give Ax = ω2Bx, but become non-linear EVP in dispersive media

• Integral equations: formulate problem on the discontinuity ∂Ω
reduced dimensionality (small N ), good tools for scattering, Fast Multipole

(FMM)

high order (quadratures): high accuracy with small effort
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Integral equations

‘charge’ (sources of waves) distributed along curve Γ w/ density func.

single-, double-layer potentials, x ∈ R
2:

u(x) =
∫

Γ
Φω(x, y)σ(y)dsy := (Sσ)(x)

v(x) =
∫

Γ
∂Φω

∂ny
(x, y)τ(y)dsy := (Dσ)(x)

Φω(x, y) := Φω(x−y) := i
4
H

(1)
0 (k|x−y|)

Helmholtz fundamental soln

aka free space Greens func SLP DLP

Φ

y y

yn
n

ρ

y

ρΦ (x,y)ω(x,y) ω

Γ Γ
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Integral equations

‘charge’ (sources of waves) distributed along curve Γ w/ density func.

single-, double-layer potentials, x ∈ R
2:

u(x) =
∫

Γ
Φω(x, y)σ(y)dsy := (Sσ)(x)

v(x) =
∫

Γ
∂Φω

∂ny
(x, y)τ(y)dsy := (Dσ)(x)

Φω(x, y) := Φω(x−y) := i
4
H

(1)
0 (k|x−y|)

Helmholtz fundamental soln

aka free space Greens func SLP DLP

Φ

y y

yn
n

ρ

y

ρΦ (x,y)ω(x,y) ω

Γ Γ

Jump relations: limit as x → Γ may depend on which side (±):

u± = Sσ
u±

n = DT σ ∓ 1
2
σ

v± = Dτ ± 1
2
τ

v±
n = Tτ

S, D are integral ops with above kernels

but defined on C(Γ) → C(Γ)

T has kernel ∂2
Φω

∂nx∂ny
(x, y)
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Integral equations for scattering (overview)

e.g. Dirichlet obstacle: represent u = uinc + Dτ DLP on ∂Ω
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Integral equations for scattering (overview)

e.g. Dirichlet obstacle: represent u = uinc + Dτ DLP on ∂Ω

 

 

BC 0 = u+ = uinc|∂Ω + (D + 1
2
)τ by JR3

integral eqn on ∂Ω: (I + 2D)τ = −2uinc

2nd-kind, D compact op so (I + 2D) sing. vals. 9 0

Why important?

condition # small, iterative solvers (GMRES) fast

– p. 14



Integral equations for scattering (overview)

e.g. Dirichlet obstacle: represent u = uinc + Dτ DLP on ∂Ω

 

 

BC 0 = u+ = uinc|∂Ω + (D + 1
2
)τ by JR3

integral eqn on ∂Ω: (I + 2D)τ = −2uinc

2nd-kind, D compact op so (I + 2D) sing. vals. 9 0

Why important?

condition # small, iterative solvers (GMRES) fast

Quadrature scheme, choose N nodes yj ∈ ∂Ω, weights wj

Nyström discretization: N -by-N linear system for vector {τ
(N)
k }N

k=1

τ
(N)
k + 2

∑N

j=1 wjD(yk, yj)τ
(N)
j = −2uinc(yk), k = 1, . . . , N
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Integral equations for scattering (overview)

e.g. Dirichlet obstacle: represent u = uinc + Dτ DLP on ∂Ω

 

 

BC 0 = u+ = uinc|∂Ω + (D + 1
2
)τ by JR3

integral eqn on ∂Ω: (I + 2D)τ = −2uinc

2nd-kind, D compact op so (I + 2D) sing. vals. 9 0

Why important?

condition # small, iterative solvers (GMRES) fast

Quadrature scheme, choose N nodes yj ∈ ∂Ω, weights wj

Nyström discretization: N -by-N linear system for vector {τ
(N)
k }N

k=1

τ
(N)
k + 2

∑N

j=1 wjD(yk, yj)τ
(N)
j = −2uinc(yk), k = 1, . . . , N

Thm: (Anselone, Kress) ‖τ (N) − τ‖∞ converges at same rate as

quadrature scheme for the true integrand D(y, ·)τ .
• Analytic curve & data, periodic trapezoid rule: spectral convergence

• e.g. above: N = 60 enough for 10−6 error, N = 100 for 10−12

• error ∼ e−γN , rate γ ≈ distance to nearest singularity of τ in C
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Dielectric (transmission) scattering

 

 

Representu = uinc + Dτ + Sσ outside wavenumber ω

u = Diτ + Siσ inside wavenumber nω
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Dielectric (transmission) scattering

 

 

Representu = uinc + Dτ + Sσ outside wavenumber ω

u = Diτ + Siσ inside wavenumber nω

mismatch on ∂Ω: h := u+ − u−, h′ := u+
n − u−

n

BCs: mismatch m := [h; h′] vanishes, use JRs. . .

[

0

0

]

=

[

uinc|∂Ω

uinc
n |∂Ω

]

+








[

I 0

0 I

]

+

[

D − Di Si − S

T − Ti DT
i − DT

]

︸ ︷︷ ︸

A








[

τ

−σ

]

︸ ︷︷ ︸

η

block 2nd-kind A maps densities to their effect on mismatch

• hypersingular part of T cancels, so A = Id + compact (Rokhlin ’83)

• kernel weakly singular, but exists spectral product quadrature

for f(s) + log(4 sin2 s
2
)g(s), f, g analytic 2π-periodic (Kress ’91)
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Standard way to periodize

replace kernel Φω(x) by Φω,QP(x) :=
∑

m,n∈Z
αmβnΦ(x− me1 − ne2)

Thus the layer potential integral operator A becomes AQP
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Standard way to periodize

replace kernel Φω(x) by Φω,QP(x) :=
∑

m,n∈Z
αmβnΦ(x− me1 − ne2)

Thus the layer potential integral operator A becomes AQP

• common way to do: lattice sums (Ewald, . . . , McPhedran et al. , Linton)

lattice sum = coeffs of Φω,QP(x)−Φω(x) in
∑

cnJn(ωr)e−inθ, x = (r, θ)

e.g. band structures (Leung ’93, Moroz ’99)

e.g. scattering from 2D gratings (Otani ’08)

. . .modifies top-level of FMM, easy in 2D, nightmare in 3D
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Standard way to periodize

replace kernel Φω(x) by Φω,QP(x) :=
∑

m,n∈Z
αmβnΦ(x− me1 − ne2)

Thus the layer potential integral operator A becomes AQP

• common way to do: lattice sums (Ewald, . . . , McPhedran et al. , Linton)

lattice sum = coeffs of Φω,QP(x)−Φω(x) in
∑

cnJn(ωr)e−inθ, x = (r, θ)

e.g. band structures (Leung ’93, Moroz ’99)

e.g. scattering from 2D gratings (Otani ’08)

. . .modifies top-level of FMM, easy in 2D, nightmare in 3D

For band structure:

Null AQP 6= {0} ⇔ (ω, kx, ky) is eigenvalue

• note no uinc, has become eigenvalue problem

But not robust: Φω,QP(x) → ∞ ∀x at certain params (ω, kx, ky) !
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Spurious resonance problem

Φω,QP(x) is Helmholtz Greens function in empty (index 1) torus

=
1

Vol(U)

∑

q∈2πΛ∗

ei(k+q)·x

ω2 − |k + q|2
torus spectral representation

has simple pole wherever (ω, kx, ky) is eigenvalue of empty torus. . .

but physical field u well-behaved here: breakdown is non-physical!

– p. 17



Spurious resonance problem

Φω,QP(x) is Helmholtz Greens function in empty (index 1) torus

=
1

Vol(U)

∑

q∈2πΛ∗

ei(k+q)·x

ω2 − |k + q|2
torus spectral representation

has simple pole wherever (ω, kx, ky) is eigenvalue of empty torus. . .

but physical field u well-behaved here: breakdown is non-physical!

Simply by forming Φω,QP we must cause blow-up of roundoff errors

• problem not widely appreciated

• also true for scattering from gratings and arrays (Linton ’07)

• a non-issue for . . . Laplace, Poisson (ω = 0) (Ethridge ’01)

modified Helmholtz (ω2 < 0) (Cheng ’06)

inhomogeneous Helmholtz (resonance is physical) (Beylkin ’08)
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Our cure: robust way to periodize

represent u = Dτ + Sσ + (densities ξ on walls of U ) outside

↑ ↑
can enforce mismatch m = 0 can enforce discrepancy d := [f ; f ′; g; g′] = 0
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Our cure: robust way to periodize

represent u = Dτ + Sσ + (densities ξ on walls of U ) outside

↑ ↑
can enforce mismatch m = 0 can enforce discrepancy d := [f ; f ′; g; g′] = 0

In block operator form

[

A B

C Q

]

︸ ︷︷ ︸

M

[

η

ξ

]

=

[

m

d

]

• added extra degrees of freedom (a small #, indep. of complexity of Ω)
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Our cure: robust way to periodize

represent u = Dτ + Sσ + (densities ξ on walls of U ) outside

↑ ↑
can enforce mismatch m = 0 can enforce discrepancy d := [f ; f ′; g; g′] = 0

In block operator form

[

A B

C Q

]

︸ ︷︷ ︸

M

[

η

ξ

]

=

[

m

d

]

• added extra degrees of freedom (a small #, indep. of complexity of Ω)

• gain robustness: no matrix element blow-up at spurious resonances

Null M 6= {0} ⇔ (ω, kx, ky) Bloch eigenvalue

• idea of extra sources of waves not new (e.g. Hafner ’02)

• what is new is M = Id + compact ideal for large-scale, iterative, FMM
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How choose new densities on unit cell walls?
• to control 4 discrepancies (f, f ′, g, g′)

need 4 densities ξ = [τL; σL; τB; σB]

Q = 1
2
Id + (self-interactions) + (other interactions)

JRs σL → u|L σL → u|B
BBτ  ,σ

τ  ,σL L
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How choose new densities on unit cell walls?
• to control 4 discrepancies (f, f ′, g, g′)

need 4 densities ξ = [τL; σL; τB; σB]

Q = 1
2
Id + (self-interactions) + (other interactions)

JRs σL → u|L σL → u|B
BBτ  ,σ

τ  ,σL L

• add phased ghost copies on other 2 walls

recall f := u|L − α−1u|L+e1

effect of σL on un|L
effect of ασL on α−1un|L+e1

} cancel apart from Id

1

β

1

α
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How choose new densities on unit cell walls?
• to control 4 discrepancies (f, f ′, g, g′)

need 4 densities ξ = [τL; σL; τB; σB]

Q = 1
2
Id + (self-interactions) + (other interactions)

JRs σL → u|L σL → u|B
BBτ  ,σ

τ  ,σL L

• add phased ghost copies on other 2 walls

recall f := u|L − α−1u|L+e1

effect of σL on un|L
effect of ασL on α−1un|L+e1

} cancel apart from Id

1

β

1

α

• add more ‘sticking-out’ ghost images

effect of on un|L

effect of α on α−1un|L+e1

} cancel apart from Id

⇒ all corner interactions vanish!

β

α

αβ
−1

β
−1

αββ
αβ

αα
−1

α  β
−1

1

1

• result: Q = I+ (interactions of distance ≥ 1)
⇒ low rank, rapid convergence: 20-pt Gauss quadr. on L, B ⇒ 10−12 error
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Full scheme

Finally we add 3x3 phased image copies of densities on ∂Ω, giving:

directly summed

singularities in field

rep by L,B densities

Ω

U
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Full scheme

Finally we add 3x3 phased image copies of densities on ∂Ω, giving:

directly summed

singularities in field

rep by L,B densities

Ω

U

• C cancels similarly to Q, so all its interaction distances ≥ 1
• B does have closer interactions; need tricks if dist(Ω, ∂U) → 0

. . . but since LPs represent fields w/ distant singularities, convergence still rapid
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Full scheme

Finally we add 3x3 phased image copies of densities on ∂Ω, giving:

directly summed

singularities in field

rep by L,B densities

Ω

U

• C cancels similarly to Q, so all its interaction distances ≥ 1
• B does have closer interactions; need tricks if dist(Ω, ∂U) → 0

. . . but since LPs represent fields w/ distant singularities, convergence still rapid

Philosophy: sum neighboring image sources directly

so fields due to remaining lattice have distant singularities
– p. 20



Results: small inclusion

band structure: simply plot log min sing. val. of M vs (ω, kx, ky) . . .
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Results: small inclusion

band structure: simply plot log min sing. val. of M vs (ω, kx, ky) . . .

0.1 sec per eval

1 min per

const-ω slice

movie in ω

• errors 10−9 for 40 pts on ∂Ω, 20 per wall (total N = 160)
• need search in (ω, kx, ky) for where M singular: non-linear EVP
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Error convergence

log10 min sing. val M for known Bloch eigenvalue (should be zero):

N per wall

N
 o

n
 i
n

c
l

 

 

10 15 20 25 30

20

30

40

50

60

70

80

−14

−12

−10

−8

−6

−4

−2

0

Note: is eigenvalue error

up to O(1) const

ω = 5, k = (−0.39 . . . , 2.08 . . . )

mode:

• spectral (exponential) convergence: error ∼ e−cN
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Large inclusion passing through unit cell

src

targ

B matrix:

evaluation
close

As dist(Ω, ∂U) → 0 standard quadrature v. poor

• fix via adaptive quadrature of Lagrange interpolant

• faster: project wall densities onto J-expansion

using addition thm (now N=35 per wall)

– p. 23



Large inclusion passing through unit cell

src

targ

B matrix:

evaluation
close

As dist(Ω, ∂U) → 0 standard quadrature v. poor

• fix via adaptive quadrature of Lagrange interpolant

• faster: project wall densities onto J-expansion

using addition thm (now N=35 per wall)

ω

Γ X M Γ

2

4

6

8

10

12

14
Amazingly (due to far singularities), J-exp

analytically continues the field to outside U :

ω = 4.47

k≈(0.17, 2.11)

n=1 inside

n=3.3 outside

movie

– p. 23



Avoiding the root search

Holding ω constant, can rapidly explore the slice (ω, α, β):

operator (hence matrix) M is of the form
∑1

m,n=−2 αmβnMmn

– p. 24



Avoiding the root search

Holding ω constant, can rapidly explore the slice (ω, α, β):

operator (hence matrix) M is of the form
∑1

m,n=−2 αmβnMmn

• pre-store coeffs Mnm for quick filling of M at any (α, β)

• fix ω, β so get a cubic (polynomial) eigenvalue problem in α
– only eigenvalues with |α| = 1 are traveling Bloch waves

– can be turned into 3N -by-3N dense generalized EVP (slow)

– could use iterative methods since only couple eigvals wanted

– similar linearizations known (Yuan ’08, Dossou ’06)

Hope: find an approximate linearization in ω, as in scaling method ?
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Scaling method

Dirichlet eigenvalue prob:

(∆+Ej)uj=0, uj|∂Ω=0

• Scaling method:

star-shaped domains

no root search

fastest by factor 103

(Vergini ’94, B ’00)

• High-freq. asymptotic

study of Ω with chaotic

ray dynamics (B ’06)

shown: mode numbers j =

1, 10, 102, 103, 104, 105

– p. 25



Conclusions

• efficient integral-eqn formulation for photonic crystal EVP

• periodize via small # extra degrees of freedom on cell walls

• more robust and flexible than quasi-periodic Greens function:

– no spurious breakdown at empty resonances

– search for Bloch phases via cubic EVP

– extends simply to 3D (unlike lattice sums)

Future:

• fast iterative root search for min sing val M(ω, α, β) = 0
• insert Fast Multipole (FMM) scattering code from inclusion

• theorems bounding distance to nearest eigenvalue? (cf. B SINUM ’09)

code:

http://code.google.com/p/mpspack

funding: NSF DMS-0507614

DMS-0811005

Preprints, talks, movies:

http://math.dartmouth.edu/∼ahb

made with: Linux, LATEX, Prosper
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