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Goals

Motivations: graphs, spectral embeddings, data sets
Parametrizations via Eigenfunctions
Parametrizations via Heat Kernels
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Random walks and heat kernels on the data

We are interested in weighted undirected graphs (G,E ,W ):
vertices represent data points, edges connect xi , xj with weight
Wij := W (xi , xj), when positive. Let Dii =

∑
j Wij and

P = D−1W︸ ︷︷ ︸
random walk

, T = D−
1
2 WD−

1
2︸ ︷︷ ︸

symm. “random walk ′′

, H = e−tL︸ ︷︷ ︸
Heat kernel

Here L = I − T is the normalized Laplacian.
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Basic properties

P t (x , y) is the probability of jumping from x to y in t steps
P t (x , ·) is a “probability bump” on the graph
P and T are similar, therefore share the same eigenvalues
{λi} and the eigenfunctions are related by a simple
transformation. Let Tϕi = λiϕi , with 1 = λ1 ≥ λ2 ≥ . . . .
λi ∈ [−1,1]

“typically” P (or T ) is large and sparse, but its high powers
are full and low-rank
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Eigenfunctions and spectral mappings

How do these eigenfunctions look like?
We know a lot when: G=regular lattice in Rn!
We know quite a bit also when G has group structures or
symmetries..., but in general these eigenfunctions may be quite
complicated!
They have been studied by many people in many communities:
physicists (e.g. resonances...), computer scientists (graph
layouts/cuts/flows...), mathematicians (analysis on manifolds,
group theory, representation theory...).
Spectral graph layout: map G→ Rd by

Φ(x) = (ϕ1(x), . . . , ϕd (x)) .

Maps a graph to Rd . In general properties of this map are far
from being well understood.
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Structured data in high-dimensional spaces

A deluge of data: documents, web searching, customer
databases, hyper-spectral imagery (satellite, biomedical, etc...),
social networks, gene arrays, proteomics data, neurobiological
signals, sensor networks, financial transactions, traffic statistics
(automobilistic, computer networks)...
Common feature/assumption: data is given in a high
dimensional space, however it has a much lower dimensional
intrinsic geometry.

(i) physical constraints. For example the effective state-space
of at least some proteins seems low-dimensional, at least
when viewed at the time scale when important processes
(e.g. folding) take place.

(ii) statistical constraints. For example many dependencies
among word frequencies in a document corpus force the
distribution of word frequency to low-dimensional,
compared to the dimensionality of the whole space.
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Text documents

About 1100 Science News articles, from 8 different categories.
We compute about 1000 coordinates, i-th coordinate of
document d represents frequency in document d of the i-th
word in a fixed dictionary.
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Handwritten Digits

Data base of about 60,000 28× 28 gray-scale pictures of
handwritten digits, collected by USPS. Point cloud in R282

.
Goal: automatic recognition.

Set of 10, 000 picture (28 by 28 pixels) of 10 handwritten digits. Color represents the label (digit) of each point.
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A simple example from Molecular Dynamics

[Joint with C. Clementi]

The dynamics of a small protein (12 atoms, H atoms removed)
in a bath of water molecules is approximated by a Langevin
system of stochastic equations ẋ = −∇U(x) + ẇ . The set of
states of the protein is a noisy (ẇ) set of points in R36.

Left: representation of an alanine dipeptide molecule. Right:
embedding of the set of configurations.
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From data to weighted graphs

In all of the above: we assumed the data X = {xi}Ni=1 ⊂ RD.
Define local similarities via a kernel function W (xi , xj) ≥ 0.
Simplest example: Wσ(xi , xj) = e−||xi−xj ||2/σ.
We obtained a weighted graph (G,E ,W ):
We mapped the data via the spectral embedding:
x 7→ (ϕ1(x), . . . , ϕd (x)), where ϕi is the i-th lowest frequency
eigenfunction of the Laplacian.
Note 1: W depends on the type of data.
Note 2: W should be “local”, i.e. close to 0 for points not
sufficiently close.
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From graphs to manifolds

Spectral embeddings “seem to work quite well”, very popular.
Very few results on guarantees on any good property (e.g.
Tutte’s theorem for planar graphs, 1963).
More and more data may be acquired, and larger and larger
graphs constructed: we model the limit as a continuous
manifold, from which the points are sampled and the graph
constructed.
Several results guarantee that natural operators on the graph
(e.g. heat kernel, Laplacian, etc...) approximate in a suitable
sense those on the underlying manifold.
Gallot et al. considered an infinite-dimensional spectral
mapping of a manifold in `2, and showed that it is indeed an
embedding.
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A Theorem, heuristics

LetM be a Riemannian manifold. Coordinate chart:
M⊃ B 7→ B̃ ⊂ Rd , one-to-one, F (x) = (f1(x), . . . , fd (x)).
Distortion of F (on B), ||F ||Lip · ||F−1||Lip, where

||F ||Lip = sup
x ,y∈B,x 6=y

||F (x)− F (y)||
dM(x , y)

.

Prime example: coordinate chart of a simply connected planar
domain D, |D| = 1, given by a Riemann mapping F : D → D
(the unit disk), centered at z0, i.e. normalized so that F (z0) = 0.
For z0 ∈ D, let r = dist(z0, ∂D). Then

B(0, κ−1) ⊂ F (B(z0,
r
2

)) ⊂ B(0,1− κ−1) ,

with distortion less than κ. Think of F on B(z0,
r
2) as a

perturbation of the linear map z → F ′(z0)(z − z0) and
|F ′(z0)| ∼ 1

r .
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Charts and local parametrizations
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A Theorem, heuristics
We look for an analogue of the above, on Riemannian
manifolds of finite unit volume. Back to D, z0, r ,F as above.
Classical formula, known to Riemann:

F (z) = exp{−G(z, z0)− iG∗(z, z0)} ,

G(·, z0) is the Green’s function for D, and G∗ its (multi-valued)
conjugate. But G(z, z0) =

´ +∞
0 K (z, z0, t)dt , K the (Dirichlet) heat

kernel for D. Since

K (z, z0, t) =
+∞∑
j=1

ϕj (z)ϕj (z0)eλj t

where {ϕj} are the global Dirichlet eigenfunctions, and
|F ′(z)| = |∇G(z, z0)|e−G(z,z0) ∼ 1

r on B(z0,
r
2 ), one may guess that

there are eigenfunctions ϕj such that

|∇ϕj | &
1
r

on B(z0, κ
−1r) for some κ > 1, independent of D (a short calculation

with Weyl’s estimates makes this reasonable).
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A Theorem on eigenfunction parametrizations

We prove that there is a locally defined F that has these
properties, and that this choice of F will come from globally
defined Laplacian eigenfunctions. On a metric embedded ball
B ⊂M of radius r , we will choose global Laplacian
eigenfunctions ϕi1 , . . . , ϕid and constants γ1, . . . , γd ≤ κ (for a
universal constant κ) and define

Φ(x) := (γ1ϕi1 , . . . , γdϕid ) .

This choice of Φ, depending heavily on z0 and r , is globally
defined, and on B(z0, κ

−1r) enjoys the same properties as the
Riemann map. In other words, Φ maps B(z0, κ

−1r) to, roughly,
an Euclidean ball of unit size, with low distortion.
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Charts and local parametrizations
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Assumptions and notation

M smooth, d-dimensional compact manifold, possibly with
boundary. Metric tensor g ∈ Cα. Fix z0 ∈M, let (U,F ) be a
coordinate chart s.t. z0 ∈ U and normalized so that
g il(F (z0)) = δil . Assume that for any x ∈ U, ξ, ν ∈ Rd ,

cmin(g)||ξ||2Rd ≤
d∑

i,j=1

g ij (F (x))ξiξj ,

d∑
i,j=1

g ij (F (x))ξiνj ≤ cmax(g)||ξ||Rd ||ν||Rd

Let rU(z0) = sup{r > 0 : Br (F (z0)) ⊆ F (U)}.
Recall Weyl’s estimate: let Ccount be s.t. for any T > 0

#{j : 0 < λj ≤ T} ≤ CcountT
d
2 |Ω| .

[In the Dirichlet case Ccount does not depend on Ω. Neumann
case is more delicate.]
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Embedding with Eigenfunctions, for Manifolds

Theorem (P.W. Jones, MM, R. Schul)

Let (M,g), z ∈M be a d dimensional manifold and (U,F ) be a chart
as above. Assume |M| = 1. There is a constant κ > 1, depending on
d, cmin, cmax, ||g||α, α, such that the following hold.
Let ρ ≤ rU(z), then ∃i1, . . . , id : if γl = (

ffl
B(z,κ−1ρ)

ϕ2
il )
− 1

2 , l = 1, . . . ,d:

(a) the map Φ : B(z, κ−1ρ)→ Rd

x 7→ (γ1ϕi1 (x), . . . , γdϕid (x))

satisfies for any x1, x2 ∈ B(z, κ−1ρ)

κ−1

ρ
dM(x1, x2) ≤ ||Φ(x1)− Φ(x2)|| ≤ κ

ρ
dM(x1, x2) .

(b) κ−1ρ−2 ≤ λi1 , . . . , λid ≤ κρ−2 .

(c) γ1, . . . , γd ≤ κCcount
1
2 .
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An example

Figure: Top left: a non-simply connected domain in R2, and the point
z with its neighborhood to be mapped. Top right: the image of the
neighborhood under the map. Bottom: Two eigenfunctions for
mapping.
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A second Theorem, heuristics

Recall that F (z) = exp{−G(z, z0)− iG∗(z, z0)}, and

G(z, z0) =

ˆ +∞

0
K (z, z0, t)dt ,

K the (Dirichlet) heat kernel for D, and from
K (z, z0, t) =

∑+∞
j=1 ϕj(z)ϕj(z0)eλj t we extracted eigenfunctions

with large gradient, as suggested by
|F ′(z)| = |∇G(z, z0)|e−G(z,z0) ∼ 1

r on B(z0,
r
2).

In fact, this suggest that the heat kernel itself could be used to
generate good coordinate char ts. Instead of d eigenfunctions
we are able to pick d heat kernels {Kt (x , yi)}i=1,...,d , and obtain
a coordinate chart with similar (in fact, stronger!) guarantees.
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Charts and local parametrizations,II

w 7→ (R−d
z K∼R2

z
(xi , w))i=1,...,d

for d reasonably chosen points x1, . . . , xd .

The heat kernel computes distances by averaging along all paths, weighted by their probability of happening

(Wiener measure for Brownian motion), with paths of length∼ d(xi , w) having the highest probability.

Mauro Maggioni Parametrizations with Eigenfunctions and Heat Kernels



Charts and local parametrizations,III

Note: this can be interpreted as a “kernel map” that linearizes the
data to the “largest extent possible” under a distortion constraint.
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Heat Triangulation Theorem

Theorem (P.W. Jones, MM, R. Schul)

Let (M,g), z ∈M and (U,F ) be as above, with the exception we
now make no assumptions on the finiteness of the volume ofM and
the existence of Ccount . Let ρ ≤ rU(z). Let p1, ...,pd be d linearly
independent directions. There are constants c > 0 and c′, κ > 1,
depending on d, cmin, cmax, ρα||g||α, α, and the smallest and largest
eigenvalues of the Gramian matrix (〈pi ,pj〉)i,j=1,...,d , such that the
following holds. Let yi be so that yi − z is in the direction pi , with
cρ ≤ dM(yi , z) ≤ 2cρ for each i = 1, . . . ,d and let t = κ−1ρ2. The
map

x 7→ (ρdKt (x , y1)), . . . , ρdKt (x , yd )) (1)

satisfies, for any x1, x2 ∈ B(z, κ−1ρ),

κ−1

c′ρ
dM(x1, x2) ≤ ||Φ(x1)− Φ(x2)|| ≤ κc′

ρ
dM(x1, x2) . (2)
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Applications

Applications of the above and related ideas:
(i) construct provably good charts (i.e. large, robust and with

low-metric distortion) of manifolds [joint with P.W. Jones
and R. Schul];

(ii) do semisupervised learning on manifolds and graphs [joint
with A. Szlam and R. Coifman];

(iii) construct multiscale decompositions and multiscale bases
on manifolds and graphs [joint with R. Coifman];

(iv) applied the above to various data sets, Markov Decision
Processes, image denoising, hyperspectral images, etc...
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Some open questions and applications

Generalizations:
Unions of manifolds, of possibly different dimensions
Graphs
Manifolds+noise

Implementation:
Need to know intrinsic dimensionality - done: use
multiscale geometric techniques.
Need to know ρ - done: use greedy algorithm with
increasing choices of ρ.
Need to know how to pick xi ’s in the heat kernel theorem -
done: almost any random choice in the correct annulus will
work
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