
Our goal is to show that a variety of linear and nonlinear 
problems for which some local description exists can be 
integrated into global consistent models by finding the first 
few eigenvectors of an “appropriate” Laplace operator . 

Examples include linear and nonlinear difference equations on 
graphs (sensor localization problem), nonlinear independent 
components analysis (inverse problems, intrinsic variables ) , 
extraction of slow variables in dynamical systems , and of 
course dimensional reduction and knowledge organization.
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The sensor network local to global positioning problem. 
For each city in the US we know the distance to a few 
neighbors , how do we get the global position ?
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Let  P  be the location of city (or sensor) i . From the
 knowledge of the distance to a few neighbors P  we
 can easily calculate, from local connections, weights  A
so that :
P P  where 
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Clearly both x and y coordinates (as well as 1) 
are eigenvetors of the matrix A, The coordinates 
satisfy the mean value theorem and are Harmonic.
The matrix A is a local encapsulation of the
relat
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ion between cities.



   Generalization of the fundamental theorem of calculus .

Assume that at each site you know the difference of
altitude between cities and some of their neighbours
we get the global function as the z eigenfunction of the 
3 dimensional version .  
Basically find the altitude function from its local increments.



We observe that we can easily solve the Poisson equation  on
 graphs   u=f,  where , 
and A is any local averaging operator.

In fact let   B= A+ A (I-A) with = , sgn( ),

It is easy to check that
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 and therefore the solution to the Poisson equation is 
an eigenvector of B with eigenvalue 1. This is basically 
the obvious observation that we can reduce any nonhomegeneous 
linear problem to a homegeneous one by multiplying by a 
linear operator with f the only vector in its kernel.



   

Another example of a similar nonlinear equation that can be
 solved through the eigevectors of an appropriate Laplace
 operator is the following; 
Invert the map f  from R to R  knowing only the
 trans
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ported metric at image points  , i,e 
g  where   f  j=1...m,  k=1...n. 

ie compute  f  from g
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Parametrize the domain of f by the eigenfunctions of a Laplace Beltrami 
operator ,(or a variant).
Around an image point use g  to define the metric
 ( so called Mahalanobis metric).and use the eigenvec

−

tors 
of the corresponding Laplace operator as coordinates on the image .
 Since the Laplace operator on the image was defined 
to be identical to the Laplace operator on the domain of f ,
these coordinat 1es give the inverse map f  modulo an isometry 
on the domain of f.

−



A simple empirical diffusion matrix A  can be constructed as follows

Let            represent normalized data ,we “soft truncate” the “affinity” 
matrix  as 
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The eigenvectors of this matrix  provide a local non linear local model of 
the data . Whose entries are the diffusion coordinates
These are also the eigenfunctions of the discrete Graph Laplace Operator.
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This map is a diffusion (at time t) embedding into Euclidean space 
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The First two eigenfunctions organize the small images which were 
provided in random order, in fact assembling the 3D puzzle.



The natural diffusion on the surface of the dumbell is mapped out in 
the embedding . Observe that A is closer to B  than to C ,and that 
the two lobes are well separated by the bottleneck.









We now describe the inverse map problem mentioned 
before , as a tool for data analysis and intrinsic data 
parameterization. 

The basic model  provides for an intrinsic organization of 
data driven by a stochastic process or by a black box f 
which is a nonlinear mapping from an unknown 
parameter space (independent parameters ) into high 
dimensions , we assume that f is smooth and invertible on 
its range . 

The goal is to extract a parameterization which is 
independent of f or the mode of observations .

We achieve this by locally undistorting the observations 
using the inverse of the square Jacobian of f , as 
computed through the local covariance matrix of the data 



Asymptotically the local covariance of the data is computable through the Jacobian of f , 
this information suffices to construct the inverse map specifically:



Nonlinear independent components Analysis and

This Fokker Plank operator in the x coordinates ,is a sum of independent 
operators in each variable whose first eigenvectors are monotone in the x 
variables, these are the intrinsic variables .

Leading to 

























For these intrinsic parametrizations to be useful for modeling 
and prediction it is essential to extend their definition beyond 
the known empirical data . 

This can be achieved by extending inverse of the local data 
correlation matrix ,viewed as an empirical matrix valued 
function on the data , our basic assumption is that this function 
is smooth and therefore can be extended by the multiscale 
algorithm already discussed previously . 

After such an extension has been achieved , we can use the 
Gaussian defined by the extended Jacobian to  extend the 
corresponding coordinates , this should be compared to a direct 
extension of the coordinates as described below .
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Multiscale Littlewood Paley expansions with Gaussian kernels 
at different scales, described below

We consider an empirical function f defined on a data set   ix
We diagonalize various scaled Gaussian kernels restricted to the 
data as follows;







Many of the applications of Laplacean eigenvectors to geometrize 
data and dimensional reduction are pervasive through the 
machine learning community, as well  as the spectral graph 
theory community.  Our point here is, that tuning the Laplace 
operator to the task enables global integration of local models

( differential and integral calculus). 

A simple synthetic description of many of these ideas and more on 
diffusion geometries  is given in the July 2006 issue of Applied 
and Computational Harmonic Analysis.
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