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Our goal Is to show that a variety of linear and nonlinear
problems for which some local description exists can be
Integrated into global conS|stent models by finding the first
few eigenvectors of an “appropriate’ Laplace operator .

Examples include linear and nonlinear difference equations on
graphs (sensor localization problem), nonlinear independent
components analysis (inverse problems, intrinsic variables ) ,
extraction of slow variables in dynamical systems , and of
course dimensional reduction and knowledge organization.



The sensor network local to global positioning problem.

For each city in the US we know the distance to a few
neighbors , how do we get the global position ?
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Let P be the location of city (or sensor) i . From the
knowledge of the distance to a few neighbors P we

can easily calculate, from local connections, weights A
so that :
P = _Z_A.,,-P,- where ZA.,,- =1

Clearly both x and y coordinates (as well as 1)
are elgenvetors of the matrix A, The coordinates
satisfy the mean value theorem and are Harmonic.
The matrix A Is a local encapsulation of the
relation between cities.




Generalization of the fundamental theorem of calculus .

Assume that at each site you know the difference of
altitude between cities and some of their neighbours
we get the global function as the z eigenfunction of the
3 dimensional version .

Basically find the altitude function from its local increments.



\We observe that we can easily solve the Poisson equation on
graphs Au=f, where A=1-A
and A Is any local averaging operator.

In fact let B= A+aAo(l-A) with a:L ,o=sgn(f),

At

It IS easy to check that
Bu=u
and therefore the solution to the Poisson equation Is
an eigenvector of B with eigenvalue 1. This is basically
the obvious observation that we can reduce any nonhomegeneous
linear problem to a homegeneous one by multiplying by a
linear operator with f the only vector in its kernel.



Another example of a similar nonlinear equation that can be
solved through the eigevectors of an appropriate Laplace
operator Is the following;

Invert the map f from R" to R™ knowing only the
transported metric at image points , 1,e

g,=x"f1, wheret =0 f j=1.m, k=1..n.

le compute f* fromg



Parametrize the domain of f by the eigenfunctions of a Laplace Beltrami
operator ,(or a variant).
Around an image point use g to define the metric
( so called Mahalanobis metric).and use the eigenvectors
of the corresponding Laplace operator as coordinates on the image .
Since the Laplace operator on the image was defined
to be identical to the Laplace operator on the domain of f,
these coordinates give the inverse map f * modulo an isometry
on the domain of f.



A simple empirical diffusion matrix A can be constructed as follows

Let X. represent normalized data ,we “soft truncate” the “affinity”
matrix as ,
) exp(—| X, - X, [ /&)

A, = 2
Yexp(-| X, X [ /¢)

I

The eigenvectors of this matrix provide a local non linear local model of
the data . Whose entries are the diffusion coordinates
These are also the eigenfunctions of the discrete Graph Laplace Operator.

A’ :Zﬂftﬁ (Xa (X;)=a(X;, X;)
X = (' (X)), 6,(X), 45 8,(X)),)
dtz(xi’xj) =a,(X;, X)) +a,(X;, X;)—2a,(X;, X;) =HXi(t) —Xj(t)

2

This map is a diffusion (at time t) embedding into Euclidean space
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The First two eigenfunctions organize the small images which were
provided in random order, In fact assembling the 3D puzzle.



Original dumbbell Embedding

The natural diffusion on the surface of the dumbell is mapped out in
the embedding . Observe that A is closer to B than to C ,and that
the two lobes are well separated by the bottleneck.



(1)

(2)

(3)

Construction of the family of diffusions
Fizx v =& B, and a rotation-invariant kernel & (x, o) =
b

h (uﬂu_)

=
Let

gelr) = ,‘rﬁ‘glf-z'-yﬁcﬂy]ﬂ’;m

X

and form the new kernel

Eo(r. )
g2 (xlgs(y)

e (,y) =

Applyv the weighted graph Laplacian normalization to this
kernel by setting

A () = [ KL (y)a(y)dy
'y

and by defining the amsotropic transition lkernel

kL (a, y)
A= )

Pealr,y) =




be the mfimitesimal generator of the Markov chain. Then for a fized K > 1),

we have on By

Alfd™) Al

E:EI% LE'ﬂf - ql—ﬁ B ql—ﬂ' f '

In other words, the eigenfunctions of P , can be used to apprommate those of
the following symmetric Schridinger operator:

where ¢ = f¢'™®.



U

Let's write g = €™, then the generator becomes

VU AU
ﬂ{;}_(” | __)r;,).

1 2

It is shown in {29) that a simple conjugation of this specific Schrodinger op-
erator leads to the forward Fokker-Plank equation

% =V (Vg+qVl),

where ¢(x,t) represents the density of points at position r and time ¢ of a
dynamical system satisfying the Langevin equation

i ==VU(z)+ Vb, (2)



We now describe the inverse map problem mentioned
before , as a tool for data analysis and intrinsic data
parameterization.

The basic model provides for an intrinsic organization of
data driven by a stochastic process or by a black box f
which is a nonlinear mapping from an unknown
parameter space (independent parameters ) into high
dimensions , we assume that f is smooth and invertible on
Its range .

The goal Is to extract a parameterization which is
Independent of f or the mode of observations .

We achieve this by locally undistorting the observations
using the inverse of the square Jacobian of f, as
computed through the local covariance matrix of the data



Asymptotically the local covariance of the data is computable through the Jacobian of f,
this information suffices to construct the inverse map specifically:

The basic idea is that any smooth map between smooth manifolds f : My > My can be linearly approximated in
a local neighborhood of any given point by its differential, The first-order Taylor expansion near x) reads

y=Fx)= 0+ Jr(x0)(x = x0) + OJx ~ xol). 38)

where J¢(xo) 1s the Jacobian of f at xp and yp = f (,1:(}),3 This gives a first-order approximation for the distances

“+0(Je-xl). )

3
Iy = yol* = | ) = 20
Similarly, for the inverse map f =5 My My we have

=30 = ) 100 = 30)* 4 O (1 = 10lP), (40)



Nonlinear independent components Analysis and
the discrete graph laplacian L

L=D'W-1I.
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Leading to Lqg=Aq— VU Vg,

This Fokker Plank operator In the X coorainates ,is a sum of independent
operators in each variable whose first eigenvectors are monotone in the x
variables, these are the intrinsic variables .
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Figure 1: Data sample of N = 500 points drawn randomly from the stationary
distributions of r (5.1) and 4 (5.2).



1.5

[ Y
L}
-]
* -l. ':
. * 1-".' * ' L]
1_ o, +
]
N ". a * W, * . o
. . R - :s . "j [ ]
s » L] b %
L) . * * )
LI * ““u . * A
L . ! L " '
05F P e O L R S T
- -+
o+ P '-“' hy . o a &
N [
* * & "i ' 5 -
" . *
- 7y . * % - -
. ' r L™ ot . " a "
N ] - L ¥ L] n 9 % L "y
L] . * L] L] + *r
) ” = ]
h\ D— 1 * ‘l"' - *y ‘i * * *
e . o, o * i
L]
* - * ‘," : * * s 1 * v
HE ' * o d ' Yan
- . * roos ] *
o
- K, . ' ' “': s 4
L] ) + +
e ¥ n *o * v
T LT T e : iy
-05f LT ¢ o S VN
- * . * ¥ L]
L ] -
" * - - * . »
t * *
L] 5 n‘ * '_"1 o
L] L ) o * * -
! . . . - ¥
* ﬂ{."‘ L] * L .
_1_ ™ [ s T "i
- . Il._.'.ﬂ L]
* - "t
¥ & [
L] L]
*
Ve *
* . *

Figure 2: Cartesian coordinates of data points 2V = 0 coshl)
rWsing® i=1,.... N.



15

LN ]
s
&
1-.I I"r &
.
. o . .
1+ * = s
L
Ld ﬂ-d‘ v dﬁ ¥ [ ] -
[ a ]
? " a e v ‘
v & ® " . 5 9 % *
#7 .ty . .
* ] L) & %
] ' o, 9 5 * .
o e F :.* £ *
05k b oW o
: *
s me R
. .
*
Lo
¢ Tt
¥ a ¥ * &
. .
a ‘tﬂ » . L] + - ° ] -
-0 5} 4 * LI % . B . &
a [ I ] - & - a & .‘-u
. . O v
. * *
4 . L & v * » .
R . 4 g et * v
* L 'S * * 9
. * a . . s . l-'
] '{. . [} "q
-1 * LA * * + 4
- » L]
. . . o g
B v "
8 . .
% » *
& . *

Figure 3: Color map plot of ¢! shows its level lines to be rays aminating from
the origin, thus ¢! reveals the 8 coordinate.
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Oscillating “half-moons”

Next, consider the system of stochastic differential equations

du = ajdf+asduwy, 20|

dv = ag(l—uv)dt +aqdws, 21 ]

where a4, 1 = 1,2,3,4, are constants and wy, ¢ = 1,2 are in-
dependent d-correlated white noises (Wiener processes). We
consider (20)—(21) together with the following nonlinear trans-
formation of variables

r=veoslu+v—1), wy=wvsinlutv-—1). (22

We will assume that the observables  and y are the actual
observables, while u and v are unknown. We choose the val-
ues of parameters as: a; = ag = ll]‘E", as = aq = 1071,



The illustrative trajectory which starts at [2(0),y(0}] = [L,0]
is plotted in the left panel of Figure 3. The trajectory is

colored according to time. We run simulations for a longer
time 8 x 10*, which accounts for about 1213 rotations, and

record 2000 data points at equidistant time intervals of length

8 10% /2000 = 40, This data set is plotted in the middle panel
of Figure 3. Again, points are colored according to time, We

clearly see that there is no correlation between time and the
slow variable (which is w MOD 27) because of oscillations.
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Fig. 3: Oscillating half moons: the short llustrative trajectory of (20)-(22) whach starts at [z(0),y(0)] = [1,0]. The trajectory
18 colored according to time (left panel). The representative data set sampled at equal time steps from a longer stochastic
simulation. The points are colored according to time (middle panel). Plot of L{z) given by (23) (right panel),
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Inherently non-linear chemical reactions

We consider the following set of chemical reactions

k1

X — X 4+ 272, Y+ — Y, [24]
o F vy y EL g, [25]
0 L= X [26]

The first two reactions (24) are production and degradation of
Z (catalyzed by X and VY, respectively). The production and
degradation of Z is assumed to be happening on a fast time
scale. Reactions (25) are production and degradation of ¥ .
They are assumed to occur on an intermediate time scale (i.e.
slower than the fast time scale, but faster than the slow time
scale). The reaction (26) is production of X which is assumed
to be slow. We choose the values of the rate constants as

fr = 1000, k=1, ks=40, ka=1, ks=1. [27]
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For these Intrinsic parametrizations to be useful for modeling
and prediction it Is essential to extend their definition beyond
the known empirical data .

This can be achieved by extending inverse of the local data
correlation matrix ,viewed as an empirical matrix valued
function on the data , our basic assumption is that this function
IS smooth and therefore can be extended by the multiscale
algorithm already discussed previously .

After such an extension has been achieved , we can use the
Gaussian defined by the extended Jacobian to extend the
corresponding coordinates , this should be compared to a direct
extension of the coordinates as described below .
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Multiscale Littlewood Paley expansions with Gaussian kernels
at different scales, described below

We consider an empirical function f defined on a data set X
We diagonalize various scaled Gaussian kernels restricted to the

data as follows:

g Ml > AMOM ()™ (x;) each @™ has an extension " to distance ~ 2™ " given by
|

1
A"
We define the projection Z<g,CDm| >CDm| (x,)=P.(g)  wherel are as above.
I
Given f defined on the data x, let P,( f) be the coarse scale approximation.

D" (x) ==Y e M (x,) if A™ /A" >5=0.1

We then expand the residual f-P,(f) usinge " which is half as wide,
to build P,(f —P,(f)) which extends "to distance =1/2". If B(f)+ P,(f — R (f))
IS a good approximation we stop, otherwise we repeat at the next scale.

YALE
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Many of the applications of Laplacean eigenvectors to geometrize
data and dimensional reduction are pervasive through the
machine learning community, as well as the spectral graph
theory community. Our point here is, that tuning the Laplace
operator to the task enables global integration of local models

( differential and integral calculus).

A simple synthetic description of many of these ideas and more on
diffusion geometries is given in the July 2006 issue of Applied
and Computational Harmonic Analysis.

and

R Coifman , A. Singer, Non-linear independent component analysis
with diffusion maps, Appl. Comput. Harmon, Anal. 25 (2008)
226-239.

A. Singer, “A Remark on Global Positioning from Local
Distances”,Proceedings of the National Academy of Sciences,
105 (28):9507-9511 (2008).
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