ON THE ROBIN PROBLEM IN FRACTAL DOMAINS

Krzysztof Burdzy
University of Washington
Collaborators

Richard Bass, Zhenqing Chen
Robin problem

\[\Delta u(x) = 0, \quad x \in D \setminus B, \]
\[\frac{\partial u}{\partial n}(x) = cu(x), \quad x \in \partial D, \]
\[u(x) = 1, \quad x \in \partial B. \]
Applications of the Robin problem

A natural system: oxygen transport in human lungs.
Applications of the Robin problem

- A man made system: ion transport in battery electrolyte.
Is the whole surface active?

For what domains is it true that $\inf_{x \in D \setminus B} u(x) = 0$?
Is the whole surface active?

For what domains is it true that \(\inf_{x \in D \setminus B} u(x) = 0 \)?

\[y = x^\alpha \]
Is the whole surface active?

For what domains is it true that \(\inf_{x \in D \setminus B} u(x) = 0? \)

\[
y = x^\alpha
\]

THEOREM (Bass, B, Chen)

\[
\inf_{x \in D \setminus B} u(x) = 0 \text{ if and only if } \alpha \geq 2.
\]
Branching fractals
Example: von Koch snowflake.

The normal vector does not exist at almost all boundary points.
Approximate the snowflake domain D with an increasing sequence of smooth domains D_k, such that $\bigcup_k D_k = D$.

Let u_k be the solution to the Robin boundary problem in D_k, with the same c (adsorption rate) for all k, and let $u(x) = \lim_{k \to \infty} u_k(x)$. Then u satisfies the Dirichlet boundary conditions $u(x) = 0$ on ∂D.

Krzysztof Burdzy

Robin problem
Approximate the snowflake domain D with an increasing sequence of smooth domains D_k, such that $\bigcup_k D_k = D$.

Let u_k be the solution to the Robin boundary problem in D_k, with the same c (adsorption rate) for all k, and let

$$u(x) = \lim_{k \to \infty} u_k(x).$$
Approximate the snowflake domain D with an increasing sequence of smooth domains D_k, such that $\bigcup_k D_k = D$.

Let u_k be the solution to the Robin boundary problem in D_k, with the same c (adsorption rate) for all k, and let

$$u(x) = \lim_{k \to \infty} u_k(x).$$

Then u satisfies the Dirichlet boundary conditions $u(x) = 0$ on ∂D.
Assuming that D is smooth, the Green-Gauss formula implies that for $u, v \in C^2(D)$,

$$\int_D \nabla u(x) \cdot \nabla v(x) \, dx = - \int_D v(x) \Delta u(x) \, dx - \int_{\partial D} v(x) \frac{\partial u}{\partial n}(x) \sigma(dx),$$

where σ is the surface measure on ∂D.

A weak solution u to the Robin problem is characterized by

$$\int_D \nabla u(x) \cdot \nabla v(x) \, dx = - \int_{\partial D} cu(x)v(x) \sigma(dx),$$

for every $v \in C^2(D)$ that vanishes on B.

Krzysztof Burdzy
Robin problem
Assuming that D is smooth, the Green-Gauss formula implies that for $u, v \in C^2(\overline{D})$,

$$\int_D \nabla u(x) \cdot \nabla v(x) \, dx = - \int_D v(x) \Delta u(x) \, dx - \int_{\partial D} v(x) \frac{\partial u}{\partial n}(x) \sigma(dx),$$

where σ is the surface measure on ∂D.

A weak solution u to the Robin problem is characterized by

$$\int_D \nabla u(x) \cdot \nabla v(x) \, dx = - \int_{\partial D} cu(x)v(x) \sigma(dx),$$

for every $v \in C^2(\overline{D})$ that vanishes on B.
$d = \log 4 / \log 3$

Let μ be d-dimensional Hausdorff measure.
Solution to Robin problem in von Koch snowflake

$d = \log 4 / \log 3$

Let μ be d-dimensional Hausdorff measure.

DEFINITION

We will say that a function u is a weak solution to the Robin problem in the snowflake domain if for all smooth v,

$$\int_D \nabla u(x) \cdot \nabla v(x) dx = - \int_{\partial D} cu(x)v(x) \mu(dx).$$
Alternative representation

\[D \] – von Koch snowflake domain
\[X \] – reflected Brownian motion in \(D \)
\[\sigma_B \] – hitting time of \(B \)

\text{CONJECTURE (B, Chen)}

The continuous additive functional \(L \) with Revuz measure \(\mu \) exists.

The function \(u(x) = \mathbb{E}_x \left[\exp \left(-c \int_0^{\sigma_B} ds \right) \right] \), \(x \in D \setminus B \), is the unique weak solution to the Robin problem.
Alternative representation

\(D\) – von Koch snowflake domain
\(X\) – reflected Brownian motion in \(D\)
\(\sigma_B\) – hitting time of \(B\)
\(L\) – “local time” on \(\partial D\), i.e., a continuous additive functional of \(X\) with Revuz measure \(\mu\)

CONJECTURE (B, Chen)
The continuous additive functional \(L\) with Revuz measure \(\mu\) exists.

The function \(u(x) = \mathbb{E}_x \left[\exp \left(-c^2 \int_0^{\sigma_B} ds \right) \right], x \in D \setminus B\), is the unique weak solution to the Robin problem.
Alternative representation

\(D \) – von Koch snowflake domain
\(X \) – reflected Brownian motion in \(D \)
\(\sigma_B \) – hitting time of \(B \)
\(L \) – “local time” on \(\partial D \), i.e., a continuous additive functional of \(X \) with Revuz measure \(\mu \)

CONJECTURE (B, Chen)

- The continuous additive functional \(L \) with Revuz measure \(\mu \) exists.
Alternative representation

\[D \] – von Koch snowflake domain
\[X \] – reflected Brownian motion in \(D \)
\[\sigma_B \] – hitting time of \(B \)
\[L \] – “local time” on \(\partial D \), i.e., a continuous additive functional of \(X \) with Revuz measure \(\mu \)

CONJECTURE (B, Chen)

- The continuous additive functional \(L \) with Revuz measure \(\mu \) exists.
- The function

\[
u(x) = \mathbb{E}_x \left[\exp \left(-\frac{c}{2} \int_0^{\sigma_B} dL_s \right) \right], \quad x \in \overline{D} \setminus B,
\]

is the unique weak solution to the Robin problem.
Generalization: $c(x)$

$$\int_D \nabla u(x) \cdot \nabla v(x) \, dx = - \int_{\partial D} c(x)u(x)v(x)\mu(dx).$$

$$u(x) = \mathbb{E}_x \left[\exp \left(-\frac{1}{2} \int_0^{\sigma_B} c(X_s)\,dL_s \right) \right], \quad x \in \overline{D} \setminus B.$$
Smooth killing

Krzysztof Burdzy
Robin problem
Increasing families of domains

$D \subset \mathbb{R}^d$ – open bounded connected set

$D_k \subset D_{k+1}, \bigcup_k D_k = D, \ D_k$ have smooth boundaries

THEOREM (B, Chen)

Reflected Brownian motions X_k converge, as $k \to \infty$, to reflected Brownian motion in D.

Krzysztof Burdzy

Robin problem
Increasing families of domains

$D \subset \mathbb{R}^d$ – open bounded connected set

$D_k \subset D_{k+1}$, $\bigcup_k D_k = D$, D_k have smooth boundaries

X^k – reflected Brownian motion in D_k
Increasing families of domains

\(D \subset \mathbb{R}^d \) – open bounded connected set

\(D_k \subset D_{k+1}, \bigcup_k D_k = D \), \(D_k \) have smooth boundaries

\(X^k \) – reflected Brownian motion in \(D_k \)

THEOREM (B, Chen)

Reflected Brownian motions \(X^k \) converge, as \(k \to \infty \), to reflected Brownian motion in \(D \).
Let m denote the Lebesgue measure on \mathbb{R}^2 and

$$D_k = \{ x \in D : \text{dist}(x, \partial D) < 1/k \}.$$
Let m denote the Lebesgue measure on \mathbb{R}^2 and

$$D_k = \{x \in D : \text{dist}(x, \partial D) < 1/k\}.$$

Suppose that a_k are chosen so that $a_k 1_{D_k} m$ converge weakly to μ as $k \to \infty$.

CONJECTURE (B, Chen)

Functions u_k converge to u (the Robin problem solution in D), as $k \to \infty$.

Krzysztof Burdzy
Robin problem
Let m denote the Lebesgue measure on \mathbb{R}^2 and

$$D_k = \{x \in D : \text{dist}(x, \partial D) < 1/k\}.$$

Suppose that a_k are chosen so that $a_k1_{D_k}m$ converge weakly to μ as $k \to \infty$.

Let

$$u_k(x) = \mathbb{E}_x \left[\exp \left(-\frac{a_k c}{2} \int_0^{\sigma_B} 1_{D_k}(X_s) ds \right) \right], \quad x \in \overline{D} \setminus B.$$
Let \(m \) denote the Lebesgue measure on \(\mathbb{R}^2 \) and

\[
D_k = \{ x \in D : \text{dist}(x, \partial D) < 1/k \}.
\]

Suppose that \(a_k \) are chosen so that \(a_k 1_{D_k} m \) converge weakly to \(\mu \) as \(k \to \infty \).

Let

\[
u_k(x) = \mathbb{E}_x \left[\exp \left(-\frac{a_k c}{2} \int_0^{\sigma_B} 1_{D_k}(X_s) ds \right) \right], \quad x \in \overline{D} \setminus B.
\]

CONJECTURE (B, Chen)

Functions \(u_k \) converge to \(u \) (the Robin problem solution in \(D \)), as \(k \to \infty \).
Invariance principle for reflected random walks

\(D \) – von Koch snowflake
\(X^k \) – reflected random walk on \(D \cap (2^{-k}\mathbb{Z}^2) \)

THEOREM (B, Chen)
Reflected random walks \(X^k \), with sped-up clocks, converge weakly to reflected Brownian motion in \(D \), as \(k \to \infty \).

CONJECTURE (B, Chen)
Feynman-Kac transforms \(u^k(x) = \mathbb{E}_x \left[\exp \left(-b \sum_{0 \leq n \leq \sigma^B} \partial_r \left(D \cap (2^{-k}\mathbb{Z}^2) \right)(X^k_n) \right) \right] \), converge to the solution of the Robin problem in \(D \), as \(k \to \infty \).
Invariance principle for reflected random walks

D – von Koch snowflake
X^k – reflected random walk on $D \cap (2^{-k} \mathbb{Z}^2)$

THEOREM (B, Chen)

Reflected random walks X^k, with sped-up clocks, converge weakly to reflected Brownian motion in D, as $k \to \infty$.
Invariance principle for reflected random walks

D – von Koch snowflake

X^k – reflected random walk on $D \cap (2^{-k}\mathbb{Z}^2)$

THEOREM (B, Chen)

Reflected random walks X^k, with sped-up clocks, converge weakly to reflected Brownian motion in D, as $k \to \infty$.

CONJECTURE (B, Chen)

Feynman-Kac transforms

$$u_k(x) = \mathbb{E}_x \left[\exp \left(-b_k c \sum_{0 \leq n \leq \sigma_B} \mathbbm{1}_{\partial(D\cap(2^{-k}\mathbb{Z}^2))}(X^k_n) \right) \right],$$

converge to the solution of the Robin problem in D, as $k \to \infty$.
Invariance principle – open problem

\(D \) – bounded domain above the graph of a Hölder function

OPEN PROBLEM
Is it true that reflected random walks \(X_k \), with sped-up clocks, converge weakly to reflected Brownian motion in \(D \), when \(k \to \infty \)?

Remark added after the talk: The answer is yes. (B, Chen).
Invariance principle – open problem

\[D \] – bounded domain above the graph of a Hölder function

\[X^k \] – reflected random walk on \(D \cap (2^{-k}\mathbb{Z}^2) \)

Open Problem

Is it true that reflected random walks \(X^k \), with sped-up clocks, converge weakly to reflected Brownian motion in \(D \), when \(k \to \infty \)?

Remark added after the talk: The answer is yes. (B, Chen)
Invariance principle – open problem

D – bounded domain above the graph of a Hölder function

X^k – reflected random walk on $D \cap (2^{-k}\mathbb{Z}^2)$

OPEN PROBLEM

Is it true that reflected random walks X^k, with sped-up clocks, converge weakly to reflected Brownian motion in D, when $k \to \infty$?

Remark added after the talk: The answer is yes. (B, Chen).
Invariance principle – counterexample

X^k – reflected random walk on $D \cap (2^{-k}\mathbb{Z}^2)$
Invariance principle – counterexample

X^k – reflected random walk on $D \cap (2^{-k}\mathbb{Z}^2)$

THEOREM (B, Chen)

There exists a bounded domain $D \subset \mathbb{R}^2$ such that reflected random walks X^k, with sped-up clocks, do not converge weakly to reflected Brownian motion in D, when $k \to \infty$.
Invariance principle – counterexample

X^k – reflected random walk on $D \cap (2^{-k}\mathbb{Z}^2)$

THEOREM (B, Chen)

There exists a bounded domain $D \subset \mathbb{R}^2$ such that reflected random walks X^k, with sped-up clocks, do not converge weakly to reflected Brownian motion in D, when $k \to \infty$.

Example: Remove suitable dust from a square.
Consider N non-overlapping discs with radius $r > 0$ in the square $[0,1]$. Their configuration can be represented as a point in $D \subset [0,1]^N$.

Metropolis algorithm

(i) Pick a disc at random (uniformly).
(ii) Pick a vector v at random (uniformly) from $B(0,\epsilon)$ and move the disc in direction v, provided the dislocated disc does not intersect any other disc.
(iii) The stationary distribution of the discs is uniform in D.

Consider N non-overlapping discs with radius $r > 0$ in the square $[0, 1]$. Their configuration can be represented as a point in $D \subset [0, 1]^N$.

Packing of hard discs and Metropolis algorithm

Metropolis algorithm

(i) Pick a disc at random (uniformly).

(ii) Pick a vector v at random (uniformly) from $B(0, \varepsilon)$ and move the disc in direction v, provided the dislocated disc does not intersect any other disc.

(iii) The stationary distribution of the discs is uniform in D.

Krzysztof Burdzy
Robin problem

Consider N non-overlapping discs with radius $r > 0$ in the square $[0, 1]$. Their configuration can be represented as a point in $D \subset [0, 1]^N$.

Metropolis algorithm

(i) Pick a disc at random (uniformly).
Consider N non-overlapping discs with radius $r > 0$ in the square $[0, 1]$. Their configuration can be represented as a point in $D \subset [0, 1]^N$.

Metropolis algorithm

(i) Pick a disc at random (uniformly).
(ii) Pick a vector \mathbf{v} at random (uniformly) from $B(0, \varepsilon)$ and move the disc in direction \mathbf{v}, provided the dislocated disc does not intersect any other disc.
Consider N non-overlapping discs with radius $r > 0$ in the square $[0, 1]$. Their configuration can be represented as a point in $D \subset [0, 1]^N$.

Metropolis algorithm

(i) Pick a disc at random (uniformly).
(ii) Pick a vector \mathbf{v} at random (uniformly) from $B(0, \varepsilon)$ and move the disc in direction \mathbf{v}, provided the dislocated disc does not intersect any other disc.
(iii) The stationary distribution of the discs is uniform in D.
Consider N non-overlapping discs with radius $r > 0$ in the square $[0, 1]$. Their configuration can be represented as a point in $D \subset [0, 1]^N$.

THEOREM (Diaconis, Lebeau and Michel)

i) D is Lipschitz if $Nr < \alpha$.

ii) D is not Lipschitz if $N \cdot 2^r = 1$.
Consider N non-overlapping discs with radius $r > 0$ in the square $[0, 1]$. Their configuration can be represented as a point in $D \subset [0, 1]^N$.

Theorem (Diaconis, Lebeau and Michel)

(i) D is Lipschitz if $Nr < \alpha$.

(ii) D is not Lipschitz if $N \cdot 2^r = 1$.

P. Diaconis, G. Lebeau and L. Michel, Geometric Analysis for the Metropolis Algorithm on Lipschitz Domains (preprint 2009)
Consider \(N \) non-overlapping discs with radius \(r > 0 \) in the square \([0, 1]\). Their configuration can be represented as a point in \(D \subset [0, 1]^N \).

THEOREM (Diaconis, Lebeau and Michel)

(i) \(D \) is Lipschitz if \(Nr < \alpha \).
P. Diaconis, G. Lebeau and L. Michel, Geometric Analysis for the Metropolis Algorithm on Lipschitz Domains (preprint 2009)

Consider N non-overlapping discs with radius $r > 0$ in the square $[0, 1]$. Their configuration can be represented as a point in $D \subset [0, 1]^N$.

THEOREM (Diaconis, Lebeau and Michel)

(i) D is Lipschitz if $Nr < \alpha$.

(ii) D is not Lipschitz if $N \cdot 2r = 1$.
Myopic conditioning

\[D \subset \mathbb{R}^d \] – open bounded connected set
\[\varepsilon > 0 \]
\[X^\varepsilon_t \] – a continuous process in \(D \)
Myopic conditioning

$D \subset \mathbb{R}^d$ – open bounded connected set

$\varepsilon > 0$

X_ε^t – a continuous process in D

DEFINITION

Given $\{X_\varepsilon^t, 0 \leq t \leq k\varepsilon\}$, the process $\{X_\varepsilon^t, k\varepsilon \leq t \leq (k + 1)\varepsilon\}$ is Brownian motion conditioned not to hit D^c (during the time interval $[k\varepsilon, (k + 1)\varepsilon]$).
Myopic conditioning

$D \subset \mathbb{R}^d$ – open bounded connected set

$\varepsilon > 0$

X_ε^t – a continuous process in D

DEFINITION

Given $\{X_\varepsilon^t, 0 \leq t \leq k\varepsilon\}$, the process $\{X_\varepsilon^t, k\varepsilon \leq t \leq (k + 1)\varepsilon\}$ is Brownian motion conditioned not to hit D^c (during the time interval $[k\varepsilon, (k + 1)\varepsilon]$).

THEOREM (B, Chen)

Processes X_ε^t converge weakly, as $\varepsilon \to 0$, to reflected Brownian motion in D.
Myopic conditioning – a technical observation

\[D \subset \mathbb{R}^d \] – open bounded connected set, \(\varepsilon > 0 \)
$D \subset \mathbb{R}^d$ – open bounded connected set, $\varepsilon > 0$

Given $\{X_t^\varepsilon, 0 \leq t \leq k\varepsilon\}$, the process $\{X_t^\varepsilon, k\varepsilon \leq t \leq (k + 1)\varepsilon\}$ is Brownian motion conditioned not to hit D^c during the time interval $[k\varepsilon, (k + 1)\varepsilon]$.
Myopic conditioning – a technical observation

$D \subset \mathbb{R}^d$ – open bounded connected set, $\varepsilon > 0$

Given $\{X^\varepsilon_t, 0 \leq t \leq k\varepsilon\}$, the process $\{X^\varepsilon_t, k\varepsilon \leq t \leq (k + 1)\varepsilon\}$ is Brownian motion conditioned not to hit D^c during the time interval $[k\varepsilon, (k + 1)\varepsilon]$.

B – Brownian motion in \mathbb{R}^d, $\tau_D = \inf\{t \geq 0 : B_t \notin D\}$

$Y^\varepsilon_k = X^\varepsilon_{k\varepsilon}, \quad k \geq 1$

$m^\varepsilon(dx) = P^x(\tau_D > \varepsilon)dx$
Myopic conditioning – a technical observation

$D \subset \mathbb{R}^d$ – open bounded connected set, $\varepsilon > 0$

Given $\{X^\varepsilon_t, 0 \leq t \leq k\varepsilon\}$, the process $\{X^\varepsilon_t, k\varepsilon \leq t \leq (k + 1)\varepsilon\}$ is Brownian motion conditioned not to hit D^c during the time interval $[k\varepsilon, (k + 1)\varepsilon]$.

B – Brownian motion in \mathbb{R}^d, $\tau_D = \inf\{t \geq 0 : B_t \notin D\}$

$Y^\varepsilon_k = X^\varepsilon_{k\varepsilon}$, $k \geq 1$

$m^\varepsilon(dx) = P^x(\tau_D > \varepsilon)dx$

OBSERVATIONS (B, Chen)

(i) $m^\varepsilon \to$ Lebesgue measure on D as $\varepsilon \to 0$.

Krzysztof Burdzy

Robin problem
Myopic conditioning – a technical observation

$D \subset \mathbb{R}^d$ – open bounded connected set, $\varepsilon > 0$

Given $\{X^\varepsilon_t, 0 \leq t \leq k\varepsilon\}$, the process $\{X^\varepsilon_t, k\varepsilon \leq t \leq (k + 1)\varepsilon\}$ is Brownian motion conditioned not to hit D^c during the time interval $[k\varepsilon, (k + 1)\varepsilon]$.

B – Brownian motion in \mathbb{R}^d, $\tau_D = \inf\{t \geq 0 : B_t \notin D\}$

$Y^\varepsilon_k = X^\varepsilon_{k\varepsilon}$, $k \geq 1$

$m^\varepsilon(dx) = P^x(\tau_D > \varepsilon)dx$

OBSERVATIONS (B, Chen)

(i) $m^\varepsilon \to$ Lebesgue measure on D as $\varepsilon \to 0$.
(ii) $m^\varepsilon(dx)$ is a reversible measure for Y^ε_k.
Increasing families of domains – a technical observation

$D \subset \mathbb{R}^d$ – open bounded connected set

$D_k \subset D_{k+1}$, $\bigcup_k D_k = D$, D_k have smooth boundaries

X^k – reflected Brownian motion in D_k

THEOREM (B, Chen)

Reflected Brownian motions X^k converge, as $k \to \infty$, to reflected Brownian motion in D.

W_k – d-dimensional Brownian motion

(1) is a special case of Lyons–Zheng's forward-backward martingale decomposition.
$D \subset \mathbb{R}^d$ – open bounded connected set
$D_k \subset D_{k+1}, \bigcup_k D_k = D$, D_k have smooth boundaries
X^k – reflected Brownian motion in D_k

THEOREM (B, Chen)

Reflected Brownian motions X^k converge, as $k \to \infty$, to reflected Brownian motion in D.

r_T – time reversal operator for X^k at time T

$X^k_t(r_T(\omega)) = X^k_{T-t}(\omega)$
Increasing families of domains – a technical observation

$D \subset \mathbb{R}^d$ – open bounded connected set

$D_k \subset D_{k+1}$, $\bigcup_k D_k = D$, D_k have smooth boundaries

X^k – reflected Brownian motion in D_k

THEOREM (B, Chen)

Reflected Brownian motions X^k converge, as $k \to \infty$, to reflected Brownian motion in D.

r_T – time reversal operator for X^k at time T

$X^k_t(r_T(\omega)) = X^k_{T-t}(\omega)$

$$X^k_t - X^k_0 = \frac{1}{2} W^k_t - \frac{1}{2} \left(W^k_T \circ r_T - W^k_{T-t} \circ r_T \right) \tag{1}$$

W^k – d-dimensional Brownian motion
Increasing families of domains – a technical observation

\[D \subset \mathbb{R}^d \] – open bounded connected set
\[D_k \subset D_{k+1}, \bigcup_k D_k = D, \ D_k \text{ have smooth boundaries} \]
\[X^k \] – reflected Brownian motion in \(D_k \)

THEOREM (B, Chen)

Reflected Brownian motions \(X^k \) converge, as \(k \to \infty \), to reflected Brownian motion in \(D \).

\(r_T \) – time reversal operator for \(X^k \) at time \(T \)

\[X^k_t(r_T(\omega)) = X^k_{T-t}(\omega) \]

\[X^k_t - X^0_0 = \frac{1}{2} W^k_t - \frac{1}{2} \left(W^k_T \circ r_T - W^k_{T-t} \circ r_T \right) \] (1)

\(W^k \) – \(d \)-dimensional Brownian motion

(1) is a special case of Lyons–Zheng’s forward-backward martingale decomposition.