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Clustering Mouse Retinal Ganglion Cells ...3D Data
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A Typical Neuron (from Wikipedia)
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Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites



Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites



Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

o Data: 3D images of dendrites of RGCs via a confocal microscope

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites



Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

o Data: 3D images of dendrites of RGCs via a confocal microscope

@ State of the art: A manually intensive procedure using specialized
software!:

!Neurolucida®, MBF Bioscience

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites IPAM 7 /40



Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

o Data: 3D images of dendrites of RGCs via a confocal microscope

@ State of the art: A manually intensive procedure using specialized

software!:
e Trace and segment dendrite patterns from each 3D cube;

!Neurolucida®, MBF Bioscience

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites IPAM 7 /40



Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

o Data: 3D images of dendrites of RGCs via a confocal microscope

@ State of the art: A manually intensive procedure using specialized
software!:

e Trace and segment dendrite patterns from each 3D cube;
o Extract geometric/morphological parameters (totally 14 such
parameters);

!Neurolucida®, MBF Bioscience

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites IPAM 7 /40



Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

o Data: 3D images of dendrites of RGCs via a confocal microscope

@ State of the art: A manually intensive procedure using specialized
software!:

e Trace and segment dendrite patterns from each 3D cube;
o Extract geometric/morphological parameters (totally 14 such

parameters);
e Apply a conventional bottom-up “hierarchical clustering” algorithm

!Neurolucida®, MBF Bioscience

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites IPAM 7 /40



Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

o Data: 3D images of dendrites of RGCs via a confocal microscope

@ State of the art: A manually intensive procedure using specialized
software!:

e Trace and segment dendrite patterns from each 3D cube;

o Extract geometric/morphological parameters (totally 14 such
parameters);

e Apply a conventional bottom-up “hierarchical clustering” algorithm

@ The extracted morphological parameters include: somal size; dendritic
field size; total dendrite length; branch order; mean internal branch
length; branch angle; mean terminal branch length, ...

'Neurolucida®, MBF Bioscience
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Clustering Mouse's Retinal Ganglion Cells

o Neuroscientists' Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

@ Why mouse? = Great possibilities for genetic manipulation

o Data: 3D images of dendrites of RGCs via a confocal microscope

@ State of the art: A manually intensive procedure using specialized
software!:

e Trace and segment dendrite patterns from each 3D cube;

o Extract geometric/morphological parameters (totally 14 such
parameters);

e Apply a conventional bottom-up “hierarchical clustering” algorithm

@ The extracted morphological parameters include: somal size; dendritic
field size; total dendrite length; branch order; mean internal branch
length; branch angle; mean terminal branch length, ...

o |t takes half a day per cell with a lot of human interactions!

!Neurolucida®, MBF Bioscience
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3D Data
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Our Goal

Long-term: Develop an efficient and automatic procedure from
segmentation /tracing to morphological parameter extraction
to clustering and classification to assist neuroscientists
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Long-term: Develop an efficient and automatic procedure from
segmentation /tracing to morphological parameter extraction
to clustering and classification to assist neuroscientists

Segmentation/tracing is a tough but high-return project
= Tractography in Diffusion Tensor MRI, ...
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Long-term: Develop an efficient and automatic procedure from
segmentation /tracing to morphological parameter extraction
to clustering and classification to assist neuroscientists

Segmentation/tracing is a tough but high-return project
= Tractography in Diffusion Tensor MRI, ...

Short-term: Develop algorithms for automatic morphological feature
extraction and clustering
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ring using Features Derived by Neurolucida
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© Our Dataset
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Our Dataset

consists of 130 RGCs each of which in turn consists of

@ A sequence of 3D sample points along dendrite arbors obtained by
Neurolucida® (requires intensive human interaction)
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Our Dataset

consists of 130 RGCs each of which in turn consists of

@ A sequence of 3D sample points along dendrite arbors obtained by
Neurolucida® (requires intensive human interaction)

@ Connectivity and branching information by the same software

@ Each soma is represented as a sequence of points traced along its
boundary (circular/ring shape)

— Constructing a graph representing dendrite structures per RGC is very
natural and simple! In fact, we constructed a tree (i.e., a connected graph
without cycles/loops) by replacing the soma ring by a single vertex
representing a center of the soma.
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Our Dataset = Trees
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Our Dataset = Trees ...

o Let G be a graph (in fact a tree) representing an RGC.
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Our Dataset = Trees ...

o Let G be a graph (in fact a tree) representing an RGC.

o Let V= V(G)={v,...,v,} where vj € R3, be a set of vertices
representing sample points along dendrite arbors. n ranges between
565 and 24474 depending on the RGCs.
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Our Dataset = Trees ...

o Let G be a graph (in fact a tree) representing an RGC.

o Let V= V(G)={v,...,v,} where vj € R3, be a set of vertices
representing sample points along dendrite arbors. n ranges between
565 and 24474 depending on the RGCs.

o Let E=E(G) ={e1,...,en} be a set of edges where e, = (v;, vj)
represents an edge (or line segment) connecting between adjacent
vertices v;, v; for some 1 < i,j < n. Note that |E(G)| = |V(G)| -1
since G is a tree.
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Our Dataset = Trees ...

o Let G be a graph (in fact a tree) representing an RGC.

o Let V= V(G)={v,...,v,} where vj € R3, be a set of vertices
representing sample points along dendrite arbors. n ranges between
565 and 24474 depending on the RGCs.

o Let E=E(G) ={e1,...,en} be a set of edges where e, = (v;, vj)
represents an edge (or line segment) connecting between adjacent
vertices v;, v; for some 1 < i,j < n. Note that |E(G)| = |V(G)| -1
since G is a tree.

o Let d(vx) = d,, be the degree of the vertex vj. In our dataset,

max maxd(vk) =8, min maxd(vg) = 3.
130 cells & 130 cells  k
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Our Dataset = Trees ...

o Let G be a graph (in fact a tree) representing an RGC.

o Let V= V(G)={v,...,v,} where vj € R3, be a set of vertices
representing sample points along dendrite arbors. n ranges between
565 and 24474 depending on the RGCs.

o Let E=E(G) ={e1,...,en} be a set of edges where e, = (v;, vj)
represents an edge (or line segment) connecting between adjacent
vertices v;, v; for some 1 < i,j < n. Note that |E(G)| = |V(G)| -1
since G is a tree.

o Let d(vx) = d,, be the degree of the vertex vj. In our dataset,

B2 M) =8 o, mpe ) =3

@ In principle, we should consider the weighted graph with weights
we, := ||v; — v;|| 1. But for simplicity, we only consider the
unweighted graphs/trees here. (One could justify this by resampling
the dendrite coordinates with a uniform sampling rate.)
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© Our Strategy
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Our Strategy

Step 1: Construct the Laplacian matrix (often called the
combinatorial Laplacian matrix)

L(G) := D(G) — A(G)
D(G) := diag(d,,,...,d,,) the degree matrix
A(G) = (ajj) the adjacency matrix where

1 ifvi~ vy
ajj = .
0 otherwise.
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Our Strategy

Step 1: Construct the Laplacian matrix (often called the
combinatorial Laplacian matrix)

L(G) := D(G) — A(G)
D(G) := diag(d,,,...,d,,) the degree matrix
A(G) = (ajj) the adjacency matrix where

1 if P~ Vi,

0 otherwise.

Step 2: Compute the eigenvalues of L(G);
Step 3: Construct features using these eigenvalues;

Step 4: Repeat the above steps for all the RGCs and feed these
feature vectors to clustering algorithms.
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@ Why Graph Laplacians?
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about the graph including
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Why Graph Laplacians?

e Eigenvalues of L(G) reflect various intrinsic geometric information
about the graph including
e connectivity or the number of separated components
o diameter (the maximum distance over all pairs of vertices)
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Why Graph Laplacians?

e Eigenvalues of L(G) reflect various intrinsic geometric information
about the graph including
e connectivity or the number of separated components
o diameter (the maximum distance over all pairs of vertices)
e mean distance, ...
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Why Graph Laplacians?

e Eigenvalues of L(G) reflect various intrinsic geometric information
about the graph including
e connectivity or the number of separated components
diameter (the maximum distance over all pairs of vertices)
mean distance, ...
Fan Chung: Spectral Graph Theory, AMS, 1997
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Why Graph Laplacians?

e Eigenvalues of L(G) reflect various intrinsic geometric information
about the graph including
e connectivity or the number of separated components
diameter (the maximum distance over all pairs of vertices)
mean distance, ...
Fan Chung: Spectral Graph Theory, AMS, 1997

is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.
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Why Graph Laplacians?

e Eigenvalues of L(G) reflect various intrinsic geometric information
about the graph including

e connectivity or the number of separated components
diameter (the maximum distance over all pairs of vertices)
mean distance, ...

Fan Chung: Spectral Graph Theory, AMS, 1997

is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.

e Eigenvectors of L(G) also play a useful role to understand a graph
(e.g., the discrete nodal domain theorem useful for grouping vertices;
see Biyikoglu, Leydold, & Stadler, LNM, Springer, 2007)
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Aside: Graph Laplacian of a Line = DCT Type Il Basis

-1 2 -1
-1 1

The eigenvectors of this matrix are exactly the DCT Type Il basis vectors

used for the JPEG image compression standard! (See e.g., Strang, SIAM
Review, 1999).
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Some Properties of Graph Laplacians

o Let f € L2(V). Then
L(G)f(u) = duf(u) = > f(v
i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
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Some Properties of Graph Laplacians

o Let f € L2(V). Then
L(G)f(u) = duf(u) = > F(v)

v~u
i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
e Eigenvalues of L(G) cannot uniquely determine the graph G.
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Some Properties of Graph Laplacians

o Let f € L2(V). Then
L(G)f(u) )= f(v

v~u
i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
e Eigenvalues of L(G) cannot uniquely determine the graph G.
~ Kac (1966): “Can one hear the shape of a drum?" = Gordon,
Webb, & Wolpert (1992): “One cannot hear the shape of a drum.”
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Some Properties of Graph Laplacians

o Let f € L2(V). Then
L(G)f(u) )= f(v

v~u
i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
e Eigenvalues of L(G) cannot uniquely determine the graph G.
~ Kac (1966): “Can one hear the shape of a drum?" = Gordon,
Webb, & Wolpert (1992): “One cannot hear the shape of a drum.”
@ An example of “isospectral” graphs (Tan, 1998; Fujii & Katsuda,

U L
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Some Properties of Graph Laplacians ...

@ However, certain classes of graphs can be completely determined by
their Laplacian spectra:
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Some Properties of Graph Laplacians ...

@ However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
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Some Properties of Graph Laplacians ...

@ However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
centipedes (Boulet, 2008), ...

Tl
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Some Properties of Graph Laplacians ...

@ However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
centipedes (Boulet, 2008), ...

Tl

@ 1 some attempts to reconstruct graphs from their Laplacian spectra
via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)
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Some Properties of Graph Laplacians ...

@ However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
centipedes (Boulet, 2008), ...

Tl

@ 1 some attempts to reconstruct graphs from their Laplacian spectra
via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)

@ Nothing prevents us from using the Laplacian spectra for
characterizing dendrite patterns!
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Some Notations and Definitions

o Let |V(G)| =n, and let 0 = Xo(G) < M(G) < -+ < Ap1(G) be the
sorted eigenvalues of L(G).
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Some Notations and Definitions

o Let |V(G)| =n, and let 0 = Xo(G) < M(G) < -+ < Ap1(G) be the
sorted eigenvalues of L(G).
@ mg(\) := the multiplicity of .
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Some Notations and Definitions

o Let |V(G)| =n, and let 0 = Xo(G) < M(G) < -+ < Ap1(G) be the
sorted eigenvalues of L(G).

@ mg(\) := the multiplicity of .

@ Let / C R be an interval of the real line. Then define
mq(1) :== #{\(G) € I}
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pendant vertex is called pendant neighbor.
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Some Notations and Definitions

o Let |V(G)| =n, and let 0 = Xo(G) < M(G) < -+ < Ap1(G) be the
sorted eigenvalues of L(G).

@ mg(\) := the multiplicity of .

@ Let / C R be an interval of the real line. Then define
mq(1) :== #{\(G) € I}

@ A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a
pendant vertex is called pendant neighbor.

e Let p(G) and g(G) be the number of pendant vertices and that of
pendant neighbors, respectively.

@ Let S C V(G) be a nonempty subset of vertices of G.

0 0S:={e=(u,v) € E(G)|ueS,v ¢S} which is called the
boundary of S.
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Some Notations and Definitions

o Let |V(G)| =n, and let 0 = Xo(G) < M(G) < -+ < Ap1(G) be the
sorted eigenvalues of L(G).

@ mg(\) := the multiplicity of .

@ Let / C R be an interval of the real line. Then define
mq(1) :== #{\(G) € I}

@ A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a
pendant vertex is called pendant neighbor.

e Let p(G) and g(G) be the number of pendant vertices and that of
pendant neighbors, respectively.

@ Let S C V(G) be a nonempty subset of vertices of G.

0 0S:={e=(u,v) € E(G)|ueS,v ¢S} which is called the
boundary of S.

@ The distance matrix A(G) of G represents “distances’” among the
vertices, i.e., (A(G));; is the number of edges in a shortest path from
vertex v; to vertex v;.

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites IPAM 22 / 40



Some Notations and Definitions

@ The isoperimetric number of G is defined as

oy i 1051 n
/(G).—lnf{ S| ‘@#SC Vv, \5\§2}7

which is closely related to the conductance of a graph, i.e., how fast a
random walk on G converges to a stationary distribution.
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Some Notations and Definitions

@ The isoperimetric number of G is defined as

oy i 1051 n
/(G).—lnf{ S| ‘@#SC Vv, \5\§2}7

which is closely related to the conductance of a graph, i.e., how fast a
random walk on G converges to a stationary distribution.

o The Wiener index? W(G) of a graph G is the sum of the entries in
the upper triangular part of the distance matrix A(G).

2proposed by Harry Wiener of Brooklyn College in 1947
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Some Notations and Definitions

@ The isoperimetric number of G is defined as

oy i 1051 n
/(G).—lnf{ S| ‘@#SC Vv, \5\§2}7

which is closely related to the conductance of a graph, i.e., how fast a
random walk on G converges to a stationary distribution.

o The Wiener index? W(G) of a graph G is the sum of the entries in
the upper triangular part of the distance matrix A(G).

@ The Wiener index of a molecular graph has been used in chemical
applications because it may exhibit a good correlation with physical
and chemical properties (e.g., the boiling point, density, viscosity,
surface tension, ...) of the corresponding molecule/material.

2proposed by Harry Wiener of Brooklyn College in 1947
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Some Basic Theorems

See Chung (1997), Merris (1994), Mohar (1992), Urakawa (2002), ...
@ mg(0) is equal to the number of connected components of G.

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites



Some Basic Theorems

See Chung (1997), Merris (1994), Mohar (1992), Urakawa (2002), ...
@ mg(0) is equal to the number of connected components of G.
@ The number of pendant neighbors of G is bounded as:
p(G) - mG(l) < q(G) < mG(za n]v

where the second inequality holds if G is connected and satisfies
2q(G) < n.
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Some Basic Theorems

See Chung (1997), Merris (1994), Mohar (1992), Urakawa (2002), ...
@ mg(0) is equal to the number of connected components of G.
@ The number of pendant neighbors of G is bounded as:

p(G) — mg(1) < q(G) < mg(2, n],

where the second inequality holds if G is connected and satisfies
2q(G) < n.
@ For n > 4, the isoperimetric number i(G) satisfies

veV(G)

i(G) < \/<2 max dv—Al(G)> M(G).
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Some Basic Theorems

See Chung (1997), Merris (1994), Mohar (1992), Urakawa (2002), ...
@ mg(0) is equal to the number of connected components of G.
@ The number of pendant neighbors of G is bounded as:

p(G) — mg(1) < q(G) < mg(2, n],

where the second inequality holds if G is connected and satisfies
2q(G) < n.
@ For n > 4, the isoperimetric number i(G) satisfies

i(G) < \/<2 max_dy — >\1(G)> M(G).

veV(G)

@ Let G be a tree. Then

1

W(G) = 5

>
|

x
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© Preliminary Results

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites



Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
the pendant neighbors q(G) with the normalization by
n=V(G)
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
the pendant neighbors q(G) with the normalization by
n=I[V(G)|;

Feature 2: The normalized Wiener index W(G)/|V(G)| ;
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
the pendant neighbors q(G) with the normalization by
n=|V(G)|;

Feature 2: The normalized Wiener index W(G)/|V(G)| ;

Feature 3: mg(4,00)/|V(G)|, i.e., the number of eigenvalues of L(G)
larger than 4 (normalized) ;
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
the pendant neighbors q(G) with the normalization by
n=|V(G)|;

Feature 2: The normalized Wiener index W(G)/|V(G)| ;

Feature 3: mg(4,00)/|V(G)|, i.e., the number of eigenvalues of L(G)
larger than 4 (normalized) ;

Feature 4: \/(2 max,cv(g) dv — A1(G)) A1(G), i.e., the upper bound of
the isoperimetric number i(G).
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
the pendant neighbors q(G) with the normalization by
n=|V(G)|;

Feature 2: The normalized Wiener index W(G)/|V(G)| ;

Feature 3: mg(4,00)/|V(G)|, i.e., the number of eigenvalues of L(G)
larger than 4 (normalized) ;

Feature 4: \/(2 max,cv(g) dv — A1(G)) A1(G), i.e., the upper bound of
the isoperimetric number i(G).

e We normalized Features 1, 2, 3, by n = |V/(G)| because we wanted to
make features less dependent on the number of samples or how the
dendrite arbors are sampled. Of course, the number of vertices itself
could be a feature although it may not be a decisive one.
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Features Used in Our Experiments

Feature 1: (p(G) — mg(1))/|V(G)| as a lower bound of the number of
the pendant neighbors q(G) with the normalization by
n=|V(G)|;

Feature 2: The normalized Wiener index W(G)/|V(G)| ;

Feature 3: mg(4,00)/|V(G)|, i.e., the number of eigenvalues of L(G)
larger than 4 (normalized) ;

Feature 4: \/(2 max,cv(g) dv — A1(G)) A1(G), i.e., the upper bound of
the isoperimetric number i(G).

e We normalized Features 1, 2, 3, by n = |V/(G)| because we wanted to
make features less dependent on the number of samples or how the
dendrite arbors are sampled. Of course, the number of vertices itself
could be a feature although it may not be a decisive one.

o Feature 4 was not explicitly normalized because the isoperimetric
number i(G) itself is a normalized quantity in terms of number of
vertices.
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Features Used in Our Experiments ...

@ Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.
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Features Used in Our Experiments ...

@ Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.

@ Hence, we expect that the larger this lower bound p(G) — mg(1) is,
the more likely for the RGC to have spines.
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Features Used in Our Experiments ...

@ Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.

@ Hence, we expect that the larger this lower bound p(G) — mg(1) is,
the more likely for the RGC to have spines.

(a) RGC #60; Fi large
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Features Used in Our Experiments ...

@ Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.

@ Hence, we expect that the larger this lower bound p(G) — mg(1) is,
the more likely for the RGC to have spines.
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Features Used in Our Experiments ...

e Feature 3, the normalized version of mg(4,00), was used because of
the following observation:
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Features Used in Our Experiments ...

e Feature 3, the normalized version of mg(4,00), was used because of

the following observation:
@ The eigenvalue distribution of each RGC consists of a smooth
bell-shaped curve that ranges over [0, 4] and the sudden burst above

the value 4.
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(a) RGC #60
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Features Used in Our Experiments ...

e Feature 3, the normalized version of mg(4,00), was used because of
the following observation:

@ The eigenvalue distribution of each RGC consists of a smooth
bell-shaped curve that ranges over [0, 4] and the sudden burst above
the value 4.
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(a) RGC #60 (b) RGC #100
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Features Used in Our Experiments ...

We have observed that this value 4 is critical since:
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Features Used in Our Experiments ...

We have observed that this value 4 is critical since:
@ the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
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Features Used in Our Experiments ...

We have observed that this value 4 is critical since:
@ the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
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(a) RGC #100; /\1141 = 3.9994
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Features Used in Our Experiments ...

We have observed that this value 4 is critical since:

@ the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;

@ those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around branches.
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Features Used in Our Experiments ...

We have observed that this value 4 is critical since:

@ the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;

@ those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around branches.
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(a) RGC #100; /\1141 = 3.9994 (b) RGC #100; )\1142 = 4.3829
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Recap: Clustering using Features Derived by Neurolucida®
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Results: Scatter Plot; Feature 1 vs Feature 2
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Results: Scatter Plot; Feature 3 vs Feature 4
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Interpretation of the Results

@ Cluster 6 RGCs separate themselves quite well from the other RGC
clusters.

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites



Interpretation of the Results

@ Cluster 6 RGCs separate themselves quite well from the other RGC
clusters.

@ In fact, the sparse and distributed dendrite patterns such as those in
Clusters 6 and 10 are located below the major axis of the point clouds
in the F; — F, scatter plot and above the major axis of the point
clouds in the F3 — F4 scatter plot.
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Interpretation of the Results

@ Cluster 6 RGCs separate themselves quite well from the other RGC
clusters.

@ In fact, the sparse and distributed dendrite patterns such as those in
Clusters 6 and 10 are located below the major axis of the point clouds
in the F; — F, scatter plot and above the major axis of the point
clouds in the F3 — F, scatter plot. = the dendrite patterns
belonging to Cluster 6 and 10 have smaller number of spines and
smaller Wiener indices compared to the other denser dendrite patterns
such as Clusters 1 to 5.
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Interpretation of the Results

@ Cluster 6 RGCs separate themselves quite well from the other RGC
clusters.

@ In fact, the sparse and distributed dendrite patterns such as those in
Clusters 6 and 10 are located below the major axis of the point clouds
in the F; — F, scatter plot and above the major axis of the point
clouds in the F3 — F, scatter plot. = the dendrite patterns
belonging to Cluster 6 and 10 have smaller number of spines and
smaller Wiener indices compared to the other denser dendrite patterns
such as Clusters 1 to 5.

@ Considerable feature variability in Clusters 7 and 8.
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Cluster 1 vs Cluster 6 ...
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@ Conclusions & Future Plans
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Conclusions & Future Plans

@ Demonstrated the usefulness of the eigenvalues of graph Laplacians
for dendrite pattern analysis although the results are still preliminary.

Observed a global-to-local phase transition phenomenon of the
eigenvalues and eigenfunctions of such dendrite patterns = leads to
a theorem?

Investigate the resampling of dendrite arbor samples.

Analyze the features derived by Neurolucida®: are they derivable
from the Laplacian eigenvalues?

@ Compare the cost of features derivable by directly analyzing a graph
with that by Laplacian eigenvalues (e.g., features related to i(G)).
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Future Plans ...

@ Impose the Dirichlet boundary condition on the terminal nodes =
eigenvalue problems of a graph with boundary; the discrete Dirichlet
problem; the Faber-Krahn inequality, . ..

@ Solve Poisson’s equation with mixed boundary condition <= the
mean exit time u(x) of particles released at a point x inside a bounded
domain driven by Brownian motion is the solution of Poisson’s
equation Au = —1 satisfying the zero Dirichlet boundary condition.

o Investigate metric (or quantum) graphs.

@ Investigate how to model dendrite pattern generation and evolution,
e.g., percolation on trees.
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