Caltech Can We Really Use Machine Learning in (Large-Scale) Safety-Critical Systems?

Richard M. Murray

California Institute of Technology IPAM Workshop on Intersections between Control, Learning and Optimization 27 February 2020

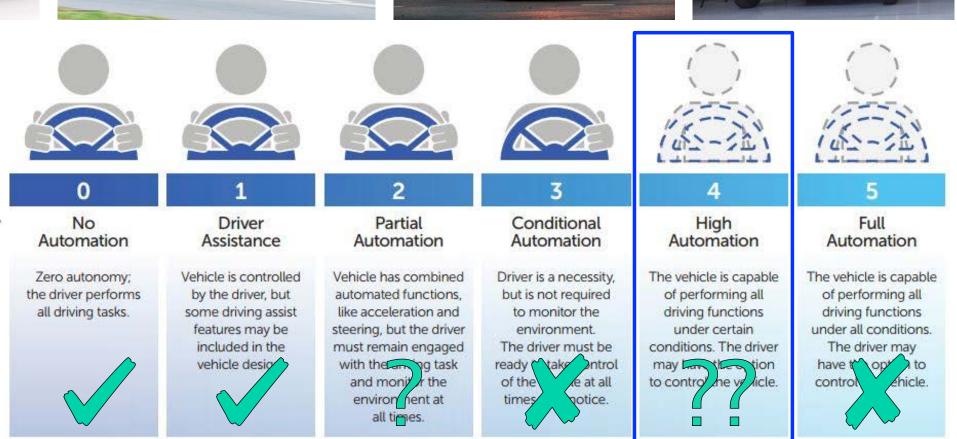
Where did this talk come from:

- ML is revolutionizing our approach to many problems (images/speech recognition, etc)
- ML is being applied to complex decision-making tasks in safety-critical systems
- I am worried: do we really understand how deploy ML in the physical world, at scale?

What this talk is about:

- How (large-scale) safety-critical systems are designed today (aerospace focus)
- Challenges of adopting those techniques to ML-based components
- Problems I would like to see more people working on (but not really what my group is doing)

Current Landscape: Self-Driving Cars



SAE Levels of Automation:

Safety Critical Autonomous Systems

Question: How safe do autonomous vehicles need to be?

- As safe as human-driven cars (7 deaths every 10⁹ miles)
- As safe as buses and trains (0.1-0.4 deaths every 10⁹ miles)
- As safe as airplanes (0.07 deaths every 10⁹ miles)

I. Savage, "Comparing the fatality risks in United States transportation across modes and over time", *Research in Transportation Economics*, 43:9-22, 2013.

How this is done in the aerospace industry?

- Strong certification requirements/process (DO-178C)
 - Fault tree analysis (1e-9 failure rates)
 - Model-based design + SIL, HIL testing
 - Fleet-wide analysis (⇒ rare cases matter)
- Very structured operating environments
- Well-trained personnel (pilots, FAs)
- Expensive vehicles (~\$1M/passenger)

?	FLIGH www.fightglobal								
es)		And And							
cross 2013.		Hazard Class		SW Level	Failure/ Flight Hr				
		Cataso	phic	Α	10 ⁻⁹				
] 10 -8	DO-178C / ED-12C Software Considerations in Airborne Systems								
		Equipment Certification							
10 ⁻⁹	Late	st Revision		01/05/2012 RTCA SC-205 EUROCAE WG-12					
	Prep	ared by							
	m	Formal methods supplement		el-based lopment plement	Object- oriented technologies supplement				
78									

10-9

Subsystem A

10-3 10-3 10-3

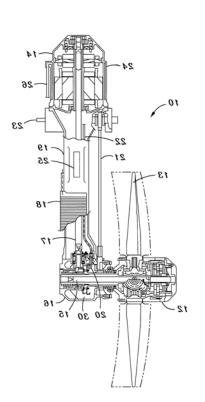
10⁻⁹

What Goes Wrong: ZA002, Nov 2010

Official Word from Boeing: ZA002 787 Dreamliner fire and smoke details

By David Parker Brown, on November 10th, 2010 at 3:46 pm

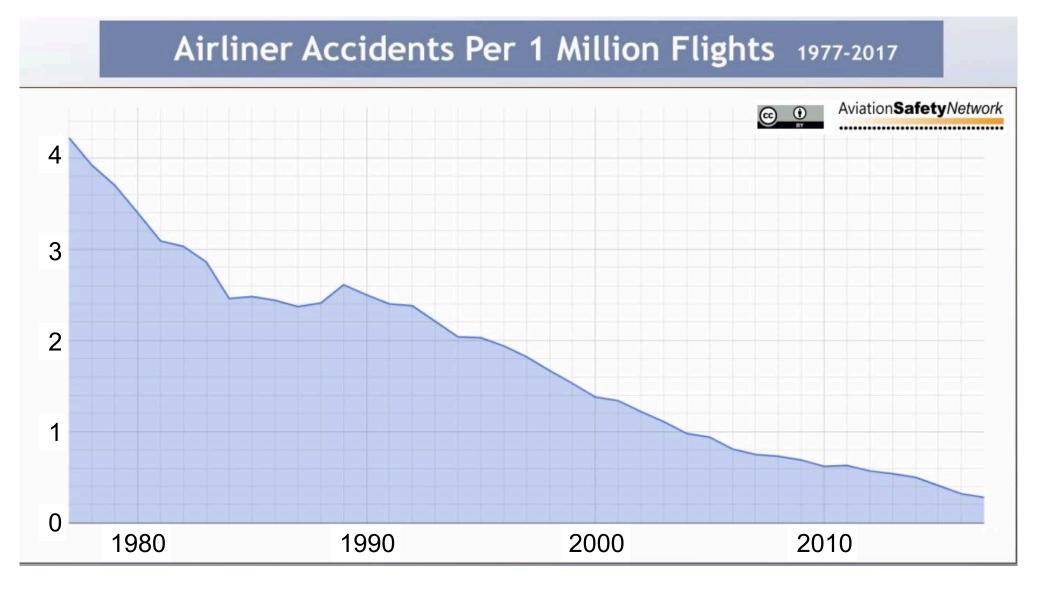
Boeing 787 Dreamliner ZA002 at Paine Field on January 27, 2010 before its first flight.


For the last day there are been bits and pieces of information coming from Boeing, inside sources and different media outlets on ZA002's sudden landing due to reported smoke in the cabin. Boeing has just released an official statement putting some of the rumors to rest and explaining what they know of ZA002's recent emergency landing in Laredo, TX.

Boeing confirms that ZA002 did lose primary electrical power that was related to an on board electrical fire. Due to the loss, the Ram Air Turbine (RAT), which provides back up power (photo of RAT from ZA003) was deployed and allowed the flight crew to land safely. The pilots had complete control of ZA002 during the entire incident.

After their initial inspection, it appears that a power control panel in the rear of the electronics bay will need to be replaced. They are checking the surrounding areas for any additional damages. At this time, the cause of the fire is still being investigated and might take a few days until we have more answers.

Ram Air Turbine (RAT) deployed and allows safe landing Loss of primary electrical power => cockpit goes "dark"

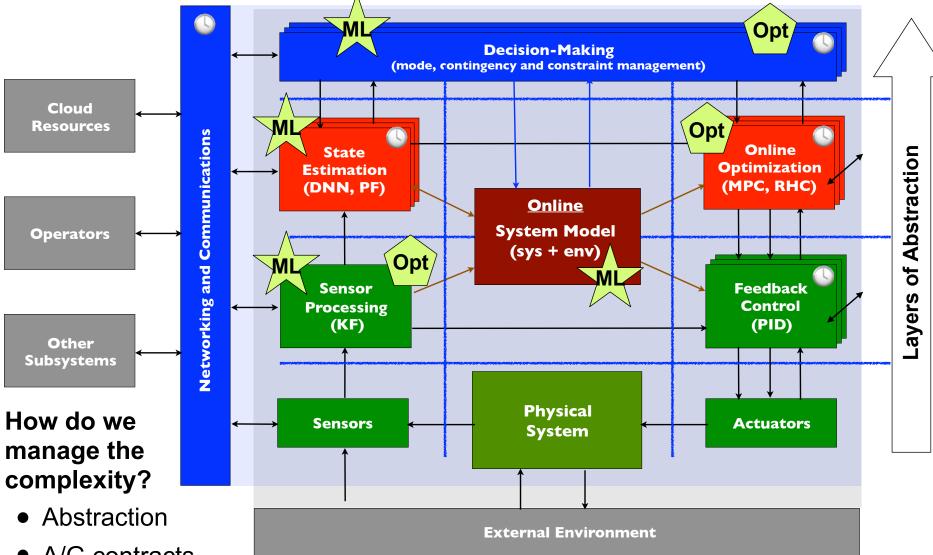


RAT stats

- ~100K flights/ day globally => 35M flights/year
- ~6 documented RAT deployments in the last 20 years
- Assume 10X that amount => 3 per year => 1 in every 10M flights (!)

Key point: aerospace engineers worry about the worst case

Continuous Improvement Over Time


Early history

- Failures led to government regulation
- Industry groups developed standards

Challenges for self-driving cars

- Already starting with a pretty low accident rate
- 10X improvement could take 40+ years (!)
- Economics are very different...

Design of Modern (Networked) Control Systems

Examples

- Aerospace systems
- Autonomous vehicles
- Factory automation/ process control
- Smart buildings, grid, transportation

Challenges

seem to occur here)

(most errors

- How do we define the layers/interfaces (vertical contracts)
- How do we scale to many devices (horizontal contracts)
- Safety, robustness, security, privacy

- A/G contracts
- Formal methods for verification/synthesis + model- & data-driven sims/testing

Thoughts on ML and Control ("Easy" Problems)

ML Challenges

Failure rates are too high, w/ poor metrics

- 1 hour = 10K frames => 1B hours = ...
- Classification error is not that useful

Data requirements are unknown (but large)

- Size of error vs amount of training data?
- How do we catch corner cases?

Focus on ML output vs system behavior

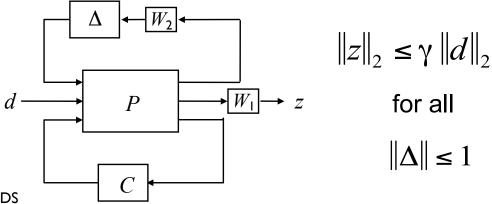
• Classification error is not what we actually care about; do we hit anything?

Early adoption in safety-critical settings

- Use of ML for decision-making is not ready
- Advice: ML for *performance*, optimization and control for safety and robustness

Controls Perspective

Stability margins with uncertainty balls


- Bounds on disturbances, uncertainty
- Model/analyze temporal response

Model-based, parametric representations

- Constrain model class (TFs, ARMAX, etc)
- Reason over worst case behavior

Input/output focus

• Focus on outputs that matter for the task and impact of uncertainty on those outputs

Thoughts on ML and Control (Hard Problems)

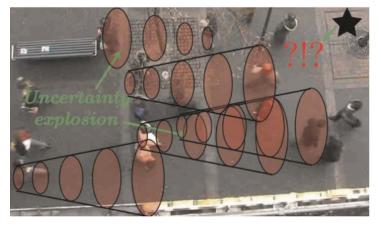
Autonomous Vehicles for Urban Mobility

Emilio Frazzoli, ETH Zurich & Aptiv

... [As] we move past the peak of the hype cycle, the industry is bracing for a development timeline that is much longer than many early predictions.

... fundamental issues that remain essentially unresolved, and will require a concerted effort by industry, academia, and regulatory bodies to address.

These issues essentially go beyond the (very hard, but in a sense "standard" and well studied) problems of control, perception, etc. and revolve around making sound decisions on precisely how we want these vehicles to behave, both at the individual, single-car level, and at the fleet level. In other words, how we want these vehicles to behave when interacting with pedestrians, cyclists, or other cars, and what effect we want them to have on urban mobility, including, e.g., their impact on the urban environment, public transit, and society.



Trautman, Ma, M and Krause IJRR, 2014

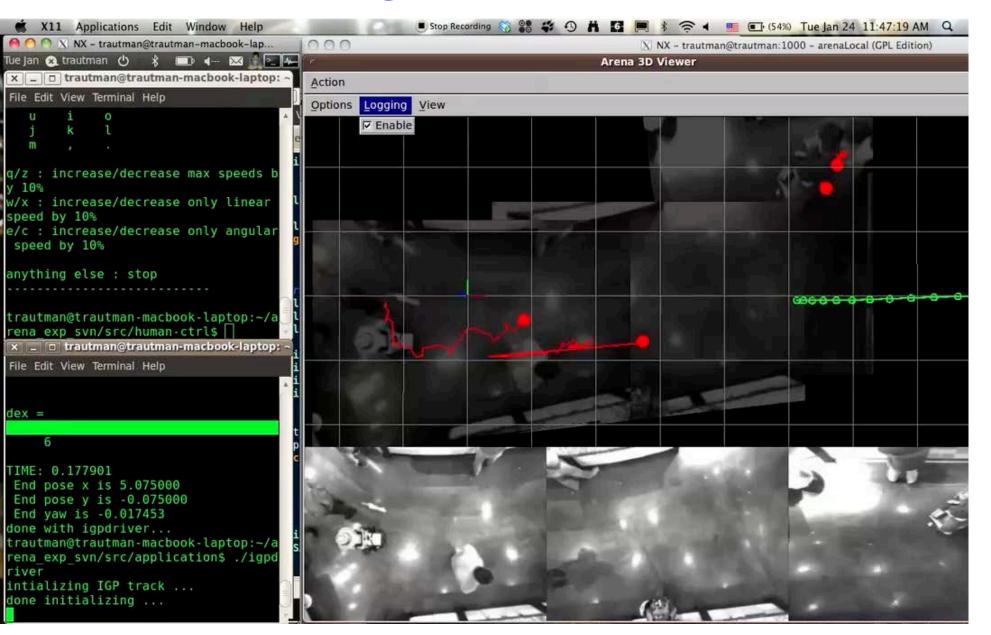
Some Prior Work: Navigation in Crowds

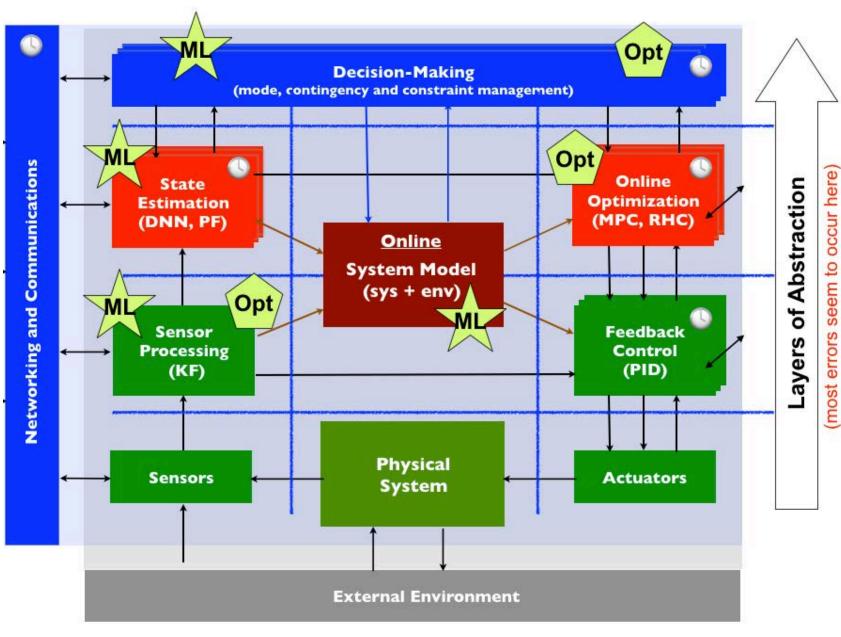
Key results

- Address "freezing robot problem": planner decides that all forward paths are unsafe and freezes in place
- Approach: interacting Gaussian processes
 - captures cooperative collision avoidance
 - allows goal-driven nature of human decision making
- Validation in Caltech staff cafeteria
 - Performs comparably with human teleoperators
 - non-cooperative planner exhibits unsafe behavior
 - reactive planner fails for crowd densities > 0.55 ppl/m²

Sample from GPs
Reconstruct
$$p(\mathbf{f}^{(R)}, \mathbf{f} | \mathbf{z}_{1:t})$$

 $p(\mathbf{f}^{(R)}, \mathbf{f} | \mathbf{z}_{1:t}) = \frac{1}{Z} \psi(\mathbf{f}^{(R)}, \mathbf{f}) \prod_{i=R}^{n} p(\mathbf{f}^{(i)} | \mathbf{z}_{1:t}^{(i)})$


$$\psi(\mathbf{f}^{(R)}, \mathbf{f}) = \prod_{i=R}^{n} \prod_{j=i+1}^{n} \prod_{\tau=t}^{n} (1 - \alpha \exp(-\frac{1}{2h^2} |\mathbf{f}^{(i)}(\tau) - \mathbf{f}^{(j)}(\tau)|))$$


Trautman, Ma, M and Krause IJRR, 2014

Some Prior Work: Navigation in Crowds

Current Assessment: Wait for Others to Figure out ML...

Assume/guarantee contracts

- Assume: properties of other components in the system
- Guarantee: properties that will hold for my component

 $A_i \Rightarrow G_i$

 $G_2 \wedge G_3 \Rightarrow A_1, \ G_1 \wedge G_3 \Rightarrow A_2, \ \ldots$

 Contracts can be horizontal (within a layer) or vertical (between two layers)

Integrating ML (eventually)

- Wait for smart people to create ML w/ A/G contracts
- Think about how to best integrate these into the larger NCS architecture

Machine Learning in Safety-Critical Systems

nuTonomy

0.07 deaths every 10⁹ miles \leftarrow 7 deaths every 10⁹ miles

35K/year (US)

Claim: ML can solve problems that we can't solve otherwise

??

Q: How do we move ML into safety-critical applications?

- Certification methodology for ML-based components
- Error rates (of decisions) measured in 1 per billions of hrs/miles
- Robust operation across wide range of conditions

Hazard Class	SW Level	Failure/ Flight Hr
Catasophic	Α	10- ⁹
Hazardous	В	10 -7
Major	С	10 ⁻⁵
Minor	D	
No Effect	E	

D	0-178	BC / ED-12	C	
Software Consid Equipment Cert			ne Systems and	
Latest Revision		01/05/2012		
Prepared by		RTCA SC-205 EUROCAE WG-12		
Formal methods supplement	deve	lel-based elopment oplement	Object- oriented technologies supplement	