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Nonconvex Complexity: Motivation and Context

Practical algorithms are a traditional area of study in nonconvex
optimization.

I Unconstrained: Newton, quasi-Newton, nonlinear conjugate
gradient (CG), ...

I Constrained: Interior-point / barrier, SQP, augmented
Lagrangian, penalty, reduced gradient, ...

Most classical convergence theory proves two types of results

I “accumulation points satisfy first-order conditions ∇f (x∗) = 0;”
I “if the sequence converges to a second-order point (∇f (x∗) = 0,
∇2f (x∗) � 0), it converges rapidly.”

Not a lot of work on “global complexity:” Upper bound on the
number of iterations (or computational cost) required to find an
approximate optimum.
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Nonconvex Complexity: Motivation and Context

Meanwhile, complexity results have long been a focus of research in
convex optimization.

polynomial interior-point for LP, convex QP, problems that admit
self-concordant barriers (80s-90s).

momentum methods for nonlinear convex (heavy ball, Nesterov):
faster rates than steepest descent (80s, then 2010-)

subgradient and stochastic subgradient: convergence rates for
averaged iterates.

Interest in complexity for nonconvex optimization is more recent. WHY?

Enhance the theory, possibly the practice too.

Intense interest from machine learning (ML) — nonconvex
applications in matrix optimization with nice properties such as “strict
saddle point” and “all local minima are global.”

(Cultural reason: ML people love complexity.)
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Unconstrained Nonconvex Complexity

Optimization literature (≥2006): cubic regularization and trust-region
methods with complexity guarantees for 2oN points e.g.
[Nesterov and Polyak, 2006, Birgin and Mart́ınez, 2017,
Cartis et al., 2011, Curtis et al., 2017a, Curtis et al., 2017b,
Mart́ınez and Raydan, 2017]

Machine learning / optimization researchers since 2014:

I Adapting accelerated gradient in various ways
[Carmon et al., 2017a, Carmon et al., 2017b];

I Approximate minimization of the cubic approximation
[Agarwal et al., 2017];

I Gradient descent (+ acceleration), with noise injected to escape
from saddles [Jin et al., 2017a], [Jin et al., 2017b].

(NOT exhaustive!)
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Algorithms for Smooth Nonconvex Optimization
minx∈Rn f (x) where f is smooth, nonconvex, and general.

Seek a second-order necessary (2oN) point:

∇f (x) = 0, ∇2f (x) � 0.

Let D be an open set containing level set {x | f (x) ≤ f (x0)}. Assume

f is bounded below: f (x) ≥ flow for all x .

Gradient and Hessian are Lipschitz continuous: For all y , z ∈ D, have

‖∇f (y)−∇f (z)‖ ≤ Lg‖y − z‖, ‖∇2f (y)−∇2f (z)‖ ≤ LH‖y − z‖.

At any x , have quadratic and cubic upper bounds on f over all D:

f (x + p) ≤ f (x) +∇f (x)Tp +
Lg

2
‖p‖2,

f (x + p) ≤ f (x) +∇f (x)Tp +
1

2
pT∇2f (x)p +

LH

6
‖p‖3.
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Approximate 2oN Points & Guarantees
Seek approximate 2oN points satisfying

‖∇f (x)‖ ≤ εg , ∇2f (x) � −εH I ,

where εg and εH are small positive tolerances.

Seek iteration complexities for finding such points. Also seek operation
complexities in terms of the number of fundamental operations required.
Bound these in terms of εg and εH . (Also Lg , LH , n.)

We take the “fundamental operations” to be

gradient evaluations, and

Hessian-vector products,

whose cost is comparable.

Can use computational differentiation (“backprop”) or finite differences:

∇2f (x)d ≈ 1

δ
[∇f (x + δd)−∇f (x)].
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A Basic Algorithm with Pretty Good Complexity

When Lg and LH are known, there is an elementary steepest-descent +
negative curvature method that finds an approximate 2oN point in
O(max(ε−2

g , ε−3
H )) iterations.

For k = 0, 1, 2, . . . :

If ‖∇f (xk)‖ > εg , take a short steepest-descent step:

xk+1 = xk − 1
Lg
∇f (xk).

Use quadratic upper bound to get a decrease of ≥ ε2
g/(2Lg ).

Otherwise, if λmin(∇2f (xk)) < −εH , find direction dk such that

‖dk‖ = 1, (dk)T∇2f (xk)dk = λkmin < −εH , ∇f (xk)Tdk ≤ 0.

Take a step of length 2|λkmin|/LH along dk to get decrease of
≥ 2

3ε
3
H/L2

H (using the cubic upper bound).
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Iteration Complexity

Because of the lower bound flow, the number of iterations is at most

max

(
2Lg ε

−2
g ,

3

2
L2
Hε
−3
H

)
(f (x0)− flow).

(Our line-search methods use slightly damped Newton steps, which

improve from ε−2
g to ε

−3/2
g without being too much more elaborate.)

Cost of each iteration in this scheme includes

gradient evaluation and

(sometimes) cost of finding the most negative eigenvalue of ∇2f (xk).

The second operation may cost O(n3) (direct implementation on a general
dense problem).
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Operation Complexity

In fact, for the negative curvature step, don’t need the most negative
eigenvalue. Need only a direction d such that

dT∇2f (xk)d ≤ −1
2εH‖d‖

2.

If λmin(∇2f (xk)) ≤ −εH , such a d can be computed to probability 1− δ
using randomly-started Lanczos iteration at a cost of

min

{
n,O

(√
Lg

εH
| log δ|

)}

Hessian-vector products.

Hence, operation complexity is a factor of ε
−1/2
H worse than iteration

complexity.
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Line-Search Newton-CG Procedures (Royer, O’Neill)

Use of Newton directions improves these worst-case bounds.

Line-search methods in [Royer and Wright, 2018, Royer et al., 2018] use
two kind of directions pk :

“sufficient” negative curvature for ∇2f (xk);

approximate (slightly) damped Newton −(∇2f (xk) + 2εH I )−1∇f (xk),

and does a backtracking line search along each such direction.

Monitor the CG procedure for calculating the damped Newton steps

to ensure that no more than O(ε
−1/2
H ) steps are taken. (Requires

some complicated termination tests.)

Randomized CG or randomized Lanczos can be used to search for the
“sufficient negative curvature” direction for ∇2f (xk).

Complexity: If εH = ε
1/2
g , the method finds an approximate 2oN point

w.h.p. in Õ(ε
−3/2
g ) iterations and Õ(ε

−7/4
g ) operations.
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Trust-Region Newton-CG

Trust-region Newton methods for minimizing smooth f solve at k:

sk = arg min
‖s‖≤δk

mk(s) := ∇f (xk)T s + 1
2 sT∇2f (xk)s,

where δk is the trust-region (TR) radius.

Define ratio ρk of actual to predicted decrease in f :

ρk :=
f (xk)− f (xk + sk)

mk(0)−mk(sk)
.

If ρk ≥ η (for some small η > 0), take step xk+1 = xk + sk

If ρk ≥ 1
2 , choose bigger TR for next iteration: δk+1 > δk .

Otherwise, if ρk < η, reject the step; decrease δk , compute new sk .
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Steihaug’s method (1980)
Steihaug (1980) applies CG to minimization of model mk(s).

Start from s = 0;

If it crosses the TR boundary, stop at the TR boundary and return;

If negative curvature direction in ∇2f (xk) is detected, move along
that direction to the TR boundary, then return.

If TR boundary does not interfere, keep iterating to the minimum of
mk . (At most n iterations.)

Properties:

Popular and practical.

First step of CG is to the “Cauchy point,” which is enough to
guarantee overall convergence to a first-order point.

Each CG step reduces model mk , and moves further away from 0.

(No second-order guarantees; method does not move away from a
saddle point.)

No complexity guarantees.
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TR Newton-CG: Modifying for Complexity Guarantees
(Royer, Curtis, Robinson)

[Curtis et al., 2019]: Keep the spirit of Steihaug’s method, but modify to
enable convergence guarantees.

Add regularization term to model function:

mk(s) := ∇f (xk)T s + 1
2 sT∇2f (xk)s + εHsT s.

Use the CG method from the line-search method, but modified
additionally to stay inside the TR.

Add a minimum eigenvalue oracle (MEO) to check explicitly for
negative curvature (in case CG doesn’t find it).

As in the line-search methods, damping with εH ensures that not too
many iterations of CG or MEO are needed to identify directions of
“significantly negative curvature.”
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Minimum Eigenvalue Oracle (MEO)

Inputs: Symmetric H ∈ Rn×n, scalar M with λmax(H) ≤ M, and ε > 0;
Set parameter δ ∈ [0, 1);
Outputs: Estimate λ of λmin(H) such that λ ≤ −ε/2, and vector v
with ‖v‖ = 1 such that v>Hv = λ OR certificate that λmin(H) ≥ −ε.

(If the certificate is output, it is false with probability δ.)

Need MEO, as Modified CG alone may not suffice to identify negative
curvature directions, e.g. when ∇f (xk) = 0 (a possible saddle point).

Can be implemented with randomized Lanczos. Theory from
[Kuczyński and Woźniakowski, 1992, Kuczyński and Woźniakowski, 1994]
shows that this requires Õ((Lg/ε)

1/2) matrix-vector multiplications with H.

(It can also be implemented with conjugate gradient with a random
right-hand side.)
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Complexity Results

CG called at every iteration to compute a step sk ;

MEO called as check when CG does not return a useful result and
gradient ∇f (xk) is small.

Complexity results are broadly the same as the line-search methods: To
find a point x with

‖∇f (x)‖ ≤ εg , ∇2f (x) � −ε1/2
g I ,

with high probability, need Õ(ε
−3/2
g ) iterations and Õ(ε

−7/4
g ) operations.
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Computational Results
Tested several variants of TR-Newton on problems from the CUTEst set
with n > 100 All variants solve 38/41 problems within 104n iterations.

Inexact (CG) and exact subproblems solution.

Performance profiles show similar # iterations across variants
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Nonconvex Optimization in ML

Nonconvexity arises often in model ML, particularly in

matrix problems with explicit low-rank parametrizations (not convex
relaxations);

phase retrieval;

neural networks (NNs).

Nonconvexity is often benign: Reasonable algorithms find useful solutions,
sometimes even global minimizers.

There is some theory to explain this phenomenon in certain cases (see e.g.
[Chi et al., 2018] for matrix problems). The statistical properties induce
nice properties and structure in the optimization formulation. Examples:

All local minima are global minima;

All saddle points are strict saddle points, so are easy to escape from
(e.g. by detecting negative curvature in the Hessian);

Initialization schemes that place x0 near a global minimizer.
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Example: Matrix Completion (Symmetric)
Matrix Completion with symmetric X :

min
X

1

2m

m∑
j=1

(Aj(X )− yj)
2.

When symmetric X has low rank r , write X = ZZT where Z ∈ Rn×r .

Aj(X ) = 〈Aj ,ZZT 〉 for some symmetric Aj ∈ Rn×n.

Assume that the Aj satisfy a RIP property:

(1− δq)‖X‖2
F ≤

1

m

m∑
j=1

〈Aj ,X 〉2 ≤ (1 + δq)‖X‖2
F ,

for all X with rank at most q and some δq ∈ (0, 1).

Formulation is thus

min
Z

h(Z ) :=
1

2m

m∑
j=1

(〈Aj ,ZZT 〉 − yj)
2.
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Example: Matrix Completion (Symmetric)

If the properties above hold with q = 2r and δ2r ∈ (0, .1], then

All local minima of F are global;

All stationary points of F that are not strict have negative curvature
in ∇2F (Z ).

[Bhojanapalli et al., 2016]

Smart initialization: The matrix

Y :=
1

m

m∑
j=1

yjAj

is close to the solution if RIP properties are satisfied for q = 2r . Steepest
descent on F can converge from such a starting point.
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Low-Rank Matrix Opt: log ε Complexity (M. O’Neill)
[Zhu et al., 2017] describe a class of low-rank matrix optimization
problems that generically has a strict saddle property:

Any stationary point ∇f (x) = 0 is either a local solution
(∇2f (x) � 0) or else has λmin(∇2f (x)) ≤ −σ, for some σ > 0.

Since σ is constant — does not depend on whatever tolerance ε we choose
for approximate minimizers — we can escape from such points at a cost
independent of ε, thus get convergence rates that depend much more
weakly on ε than in the general case.

Form of the problem considered by [Zhu et al., 2017]:

min
W

F (W ) := f (UV T ),where W =

[
U
V

]
∈ R(m+n)×r .

Remove scaling ambiguity in the W corresponding to X by regularizing:

G (W ) := F (W ) +
1

2
‖UTU − V TV ‖2

F .
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Further Assumptions and Construction
Assume: f has a critical point X ∗ (∇f (X ∗) = 0) with rank r .

Assume: uniform restricted strong convexity condition for f : there are
positive constants a and b such that

a‖T‖2
F ≤ [∇2f (X )](T ,T ) ≤ b‖T‖2

F

where rank(X ) ≤ 2r and rank(T ) ≤ 4r . Also need

b − a

b + a
≤ σr (X ∗)3/2

‖X ∗‖F‖X ∗‖1/2
.

The space of W is covered by three regions:

R1: dist(W ,W ∗) ≤ σ1/2
r (X ∗): close to X ∗;

R2: λmin(∇2(G (W ))) ≤ −σr (X ∗): large negative curvature;

R3: ‖∇G (W )‖F ≥ min(σr (X ∗)3/2, ‖W ‖3, ‖WW T‖3/2
F ) (large

gradient).
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Sketch of the Algorithm

We can’t just apply the methods for general f and automatically get log ε
complexity. (If we knew σr (X ∗), we could improve the dependence on ε.)

We propose a specialized method that does not require knowledge of
σr (X ∗) is unknown — but maintains a proxy γk .

If gradient ∇G (W k) is large (relative to γ
3/2
k ), take a steepest

descent step (with backtracking).

Else test for negative curvature.

I If not negative curvature, we might be close to X ∗: Try inner
loop: gradient steps and test for linear convergence.

F If not linear, conclude that γk overestimates σr (X ∗), so
halve it for next iteration.

F Else Converged!

I Else do backtracking line search along the negative curvature
direction.
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Complexity

Dependence on accuracy tolerance ε is only through a log term.

Inner loop requires O(log ε) steps to achieve an ε-accurate
second-order point.

Main algorithm: number of iterations is independent of ε (related
instead σr (X ∗)−3.)

Wright (UW-Madison) Nonconvex Optimization Feb 2020 26 / 56



Adversarial Classification (DRO) (Nam-Ho Nguyen)

Problem in image classification: small perturbations of images can change
the classification!1

Left: image of pig, classified correctly.
Right: incorrectly classified (wombat) identical pig obtained by adding
visually imperceptible noise (middle).

1https://adversarial-ml-tutorial.org/introduction/
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Adversarial Classification

This phenomenon arises because the decision boundary is too close to the
data points.

Ideally, want a decision boundary that will give the same classification even
if points are not exactly at the stated location.
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Adversarial Binary Classification
We have points (x , y) ∈ X × {±1} distributed according to P. We want a
function f : X → R such that sign(f (x)) = y .

(x , y) is misclassified ⇐⇒ yf (x) ≤ 0.

Prefer f such that P(x ,y)∼P [yf (x) ≤ 0] is small.

Define distance to boundary:

dist(x , y , f ) := min
∆
{‖∆‖ : yf (x + ∆) ≤ 0} (∆ = 0 if already misclassified)

Three measures of robustness for f (for fixed ε > 0):

P(x ,y)∼P [dist(x , y , f ) ≤ ε] perturbation robustness.

I (small is better)

E(x ,y)∼P [dist(x , y , f )] expected distance to boundary

I (large is better)

maxd(Q,P)≤ε P(x ,y)∼Q [dist(x , y , f ) = 0] distributional robustness

I (small is better)
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Distributional Robustness
We don’t know P, but have i.i.d. samples (xi , yi ) ∼ P, i ∈ [n]. Let P̂n be
the empirical distribution.

We want a classifier with optimal distributional robustness:

min
f ∈F

max
d(Q,P̂n)≤ε

P(x ,y)∼Q [dist(x , y , f ) = 0].

Expected distance from boundary has been shown to have undesirable
properties [Fawzi et al., 2018].

Distributional robustness has attractive out-of-sample guarantees.
I For n sufficiently large, d(P, P̂n) ≤ ε with high probability.

We use Wasserstein distances for adversarial classification:

dW (Q,P) = min
Π

{
E(x ,x ′)∼Π[‖x − x ′‖] : Π has marginals PX ,QX

}
.

Recently popular in data-driven optimization
[Mohajerin Esfahani and Kuhn, 2018, Gao and Kleywegt, 2016,
Blanchet and Murthy, 2019].
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Wasserstein Worst-Case Distributions
Fix a classifier f ∈ F . Consider worst-case distribution [Chen et al., 2018]:

Q∗ = arg max
dW (Q,P̂n)≤ε

P(x ,y)∼Q [dist(x , y , f ) = 0].

Q∗ aims to transport as many points (xi , yi ) to the misclassification
set {(x , y) : dist(x , y , f ) = 0} as possible.

For 1-norm, the sum of transported distances must be ≤ εn.

If it cannot transport a whole point, it can ‘split’ a point.
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Wasserstein vs Perturbation Robustness

Consider a fixed f ∈ F . Perturbation robustness: tries to perturb xi
by ∆i , where ‖∆i‖ ≤ ε, to misclassify yi f (xi + ∆i ) ≤ 0.

Similar to the Wasserstein worst-case distribution, the sum of
perturbed distances is ≤ εn.

However, the distance from a single point xi to its perturbation
xi + ∆ is at most ε, whereas the Wasserstein worst-case distribution
can perturb a single point xi by distance up to εn.
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Optimizing for Wasserstein Distributional Robustness

From the structure of the worst-case distribution:

max
dW (Q,P̂n)≤ε

P(x,y)∼Q [dist(x , y , f ) = 0] = min
t≥0

εt +
1

n

∑
i∈[n]

max{0, 1− dist(xi , yi , f )t}

 .

Nice representations of dist(x , y , f ) exist for certain classes F e.g. linear:

f (x) = 〈w , x〉 =⇒ dist(x , y , f ) = max

{
0,

y〈w , x〉
‖w‖∗

}
.

Transforming w̄ = tw/‖w‖∗, we have

min
w

max
dW (Q,P̂n)≤ε

P[y〈w , x〉 ≤ 0] = min
w̄

ε‖w̄‖∗ +
1

n

∑
i∈[n]

LR(yi 〈w̄ , xi 〉)

 .
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Ramp Loss LR is Nonconvex!

This is actually pretty well known as a classification loss, as an alternative
to the hinge loss traditionally used in SVM because of outliers (lessens
impact from severely misclassified points).

We tried finding global solutions using integer-programming formulations.
But this can handle only very limited problem sizes so far (n < 75).

An “outer approximation” strategy is even slower.

But for reasonable data, based on our (limited) experience, this seems to
be one of those benign nonconvex problems.
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Smoothing the Ramp Loss Function
Ramp loss function is 

1 if r < 0

1− r if r ∈ [0, 1]

0 if r > 1

Approximate it with the smooth function ψ(r) defined by

ψσ(r) := σ log

(
exp(1/σ) + exp(r/σ)

1 + exp(r/σ)

)
.
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Classification

The classification problem with smoothed ramp loss can be formulated as

min
w

ε‖w‖2 +
1

n

n∑
i=1

ψσ(yi 〈w , xi 〉),

which is equivalent for some ε̄ > 0 to

min
w

1

2
ε̄‖w‖2 +

1

n

n∑
i=1

ψσ(yi 〈w , xi 〉),

Solve with standard methods for smooth unconstrained optimization: e.g.
nonlinear conjugate gradient, L-BFGS.
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Separable Data

Choose n training points in xi ∈ [−10, 10]d , uniformly distributed.

Set yi = sign([xi ]1) (sign of first component of xi ).

Thus w̄ = (1, 0, 0, . . . , 0)T defines a separating hyperplane.

Set σ = .1 and minimize from random starting points w 0.

Tried d = 10 and n = 102 − 105. Solve in a few seconds.

For d = 10 and n ≥ 500,

finds an optimal w∗ close (but not identical) to w̄ .

Converges to this w∗ from any random start.

(For n = 100 and n = 200, finds local solutions. Here the data is too
sparse relative to the dimension d = 10 to specify an “obvious” separating
plane.)
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Random Data (Artificial)
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Random Data (Artificial)
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Non-Separable Data

Same setup as before, but flip some of the labels.

For 10% of labels flipped, still finds a solution w∗ close to w̄ from any
random start.

For 20% of labels flipped, occasionally finds a local solution.
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Benign Nonconvexity
Why is the solution “easy” to find, and so robust to label flipping?

Get some clues by looking more closely at the toy example above, where
yi = sign([xi ]1) and w∗ ≈ (1, 0, 0, . . . , 0)T . Loss function is

Fε̄(w) :=
1

2
ε̄‖w‖2 +

1

n

n∑
i=1

ψσ(yi 〈w , xi 〉).

From ∇Fε̄(w∗) = 0, we have

w∗ = − 1

nε̄

∑
i∈[n]

ψ′σ(yi 〈w , xi 〉)yixi .

Note that ψ′σ(·) < 0 for all arguments.

For separable data, since yi [xi ]1 > 0 for all i , the first component of all
terms in the summation above has the same sign, so we expect w∗1 to be
large and positive.

For j = 2, 3, . . . , d , the sign of yi [xi ]j is arbitrary, so by cancellation we
expect each w∗j to be much smaller in magnitude than w∗1 .
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Benign Nonconvexity

This logic suggests that w∗ ≈ (1, 0, 0, . . . , 0)T would be the only credible
stationary point! So any algorithm that finds even a stationary point
should converge to this solution.

No need to even consider second-order optimality, negative curvature
directions, etc.

The same reasoning explains why (1, 0, 0, . . . , 0)T is approximately
stationary even when labels are flipped. There is still a “bias” in the
summation over the first components yi [xi ]1 — most have the same sign
— while cancellation happens for the remaining components.
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Complexity for Constrained Nonconvex Optimization

min f (x) subject to x ∈ S , where S is some closed set.

Many algorithms with O
(
ε
−3/2
g

)
iteration complexity for some

approximate optimality condition when S is “simple” (e.g. projection onto
S can be computed efficiently).

Methods extending cubic regularization
[Cartis et al., 2012, Cartis et al., 2015, Cartis et al., 2018].

Active set method [Birgin and Mart́ınez, 2018].

Interior point/barrier method [Haeser et al., 2018].

No dimension-free operational complexity results for these algorithms.
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Nonnegativity Constraints (M. O’Neill)

min f (x) subject to x ≥ 0: The simplest inequality constrained problem.

First-order conditions: 0 ≤ x∗ ⊥ ∇f (x∗) ≥ 0.

Less tersely: Can partition {1, 2, . . . , n} = A ∪ I ∪ D such that

x∗i = 0, ∇i f (x∗) > 0 for i ∈ A (active);

x∗i > 0, ∇i f (x∗) = 0 for i ∈ I (inactive);

x∗i = 0, ∇i f (x∗) = 0 for i ∈ D (degenerate).

Q. Is there a generalization of line-search Newton-CG that converges to
approximate second-order necessary points with complexity guarantees?

A. Depends what you mean by “second-order necessary (2oN) conditions.”

The strongest 2oN conditions are that vT∇2f (x∗)v ≥ 0 for v such that

S2 = {vi = 0, i ∈ A; vi ≥ 0, i ∈ D}.

But it can be NP-hard to check this condition.
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Second-Order Necessary

f (x) := xTQx for symmetric Q. Satisfies first-order conditions with
D = {1, 2, . . . , n}. But in this case 2oN conditions = copositivity of Q.

This is a worst case — could still be checkable if |D| is not too large.

The standard “cop-out” (dating to at least 1990) is to aim for a weaker
form of 2oN conditions:

[∇2f (x∗)]II � 0.

Define x̄ = min(x , 1) and X̄ = diag(x̄).

We work with the following approximate 2oN conditions (similar to
[Haeser et al., 2018], except that they use X instead of X̄ ).

x > 0, ∇f (x) > −εg1, ‖X̄∇f (x)‖∞ ≤ εg ,

X̄∇2f (x)X̄ � −εH I .
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Log-Barrier Approximation

We reduce the bound-constrained problem to unconstrained minimization
of the log barrier function:

φµ(x) := f (x)− µ
n∑

i=1

log(xi )

for some µ > 0. Only defined on the interior of the set x ≥ 0.

We minimize this for a single (small) value of µ, chosen so that
near-optimal second-order points for φµ satisfy the approximate
second-order conditions for the bound-constrained problem.

Plan: Use our Newton-CG approach — modified to ensure positivity of all
iterates xk) — to minimize this function efficiently.

[O’Neill and Wright, 2019]
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Modifying Newton-CG for the Log-Barrier Function

Gradient and Hessian of the log-barrier function are:

∇φµ(x) = ∇f (x)− µX−1e and ∇2φµ(x) = ∇2f (x) + µX−2.

Modify Newton-CG as follows:

Set µ = 1
4εg and εH =

√
εg .‘

Precondition / scale the Newton equations with the diagonal X̄ .

Keep iterates interior to the nonnegative orthant with a
“fraction-to-the-boundary” rule: xk + dk ≥ (1− β)xk where
β ∈ [εH , 1).

Decrease in terms of optimality conditions: Add extra termination
test to Modified CG (‖r j‖∞ ≤ ζ̄µ).
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Log-Barrier Newton-CG
if Not first-order optimal then

Call Modified CG with H = X̄k∇2φµ(xk)X̄k and g = X̄k∇φµ(xk);
if step type = “negative curvature” then

Scale d to stay interior and flip sign to get dk ;
else {step type is “damped Newton”}

Scale d to stay interior to get dk

end if
else

Call MEO with H = X̄k∇2f (xk)X̄k to output v ;
if MEO certifies that λmin(X̄k∇2f (xk)X̄k) ≥ −εH then

Terminate;
else {direction of sufficient negative curvature found}

Scale v to stay interior and flip sign to get dk ;
end if

end if
Line Search: Require φµ(xk + αk X̄kdk) < φµ(xk)− η

6α
3
k‖dk‖3;

xk+1 ← xk + αk X̄kdk ;
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Sufficient Decrease in Log-Barrier Function

By our 1− β “fraction-to-the-boundary” rule, there is a cubic upper
bound on the logarthmic portion of φµ:

−
n∑

i=1

log(xi + x̄idi ) +
n∑

i=1

log(xi )

≤ −e>X−1X̄ d +
1

2
d>X̄ X−2X̄ d +

2− β
6(1− β)2

‖d‖3.

Combining with the cubic upper bound of f gets at least O
(
ε

3/2
g

)
decrease at each step.
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Theorem [O’Neill and Wright, 2019]

Assume f smooth and bounded below, and we use Log-Barrier Newton-CG
to seek an approximate second-order point.

Iteration complexity is K̄2 = Õ
(

nε
−1/2
g + ε

−3/2
g

)
with probability at

least (1− δ)K̄2 .

Operation complexity is Õ(nε
−3/4
g + ε

−7/4
g ) for large n and Õ(nε

−3/2
g )

for smaller n.

The “n” term seems to be an unavoidable consequence of using the
log-barrier function. Best previous result is Õ(nε−3/2) — we do
better in the “large n” case.

If we assume a priori that {xk} is bounded, get Õ(ε
−7/4
g ) operation

complexity.

Complexities to get an approximate first-order point are the same, but
without the possibility of failure.
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Equality Constraints (Yue Xie)

min f (x) s.t. c(x) = 0,

where f : Rn → R as before, and c : Rn → Rm is a vector function of
equality constraints. f and c are smooth.

For some ε > 0, ε-1o solution requires:

‖∇f (x) +∇c(x)λ‖ ≤ ε, ‖c(x)‖ ≤ ε.

ε-2o solution requires also:

dT

(
∇2f (x) +

m∑
i=1

λi∇2ci (x)

)
d ≥ −ε‖d‖2,

for any d ∈ Rn such that ∇c(x)Td = 0.
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Proximal Augmented Lagrangian (PAL) algorithm
The augmented Lagrangian is

Lρ(x , λ) , f (x) + λT c(x) +
ρ

2
‖c(x)‖2,

where ρ > 0 and λ , (λ1, . . . , λm)T .

PAL Algorithm:

0. Initialize x0, λ0 and ρ > 0, β > 0; Set k := 0;

1. Update xk : Find approximate solution xk+1 to

argmin Lρ(x , λk) +
β

2
‖x − xk‖2;

2. Update λk : λk+1 := λk + ρc(xk+1);

3. If termination criterion is satisfied, STOP; otherwise, k := k + 1 and
return to Step 1.

[Xie and Wright, 2019]
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Complexities and Assumptions

PAL involves two levels of iteration: the outer iteration, and the inner
iterations to solve the nonconvex unconstrained subproblem.

Three types of complexity:

Outer iteration complexity

Total iteration complexity: total number of iterations of the inner loop

Operation complexity: bound on number of first-derivative
evaluations / Hessian-vector products.

The assumptions vary between results, but include the following:

f and c are twice Lipschitz continuously differentiable.

f (x) + (ρ0/2)‖c(x)‖2
2 has compact level sets, for some ρ0 ≥ 0.

Constraint Jacobian ∇c(x) has uniformly full rank for all x . (Can be
weakened to hold only on some compact level set.)
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PAL Results I: Outer Iteration Complexity

For any ε > 0 and η ∈ [0, 2], choose

Prox parameter β = εη (small);

Penalty parameter ρ = O(ε−η) (large).

If we find an exact stationary point for each subproblem, Outer Iteration
complexity to find an ε-1o point is O(1/ε2−η).

When η = 2, need only O(1) outer iterations! (But then the
subproblem is extremely ill conditioned.)

When η = 0 (settings of β and ρ are independent of ε), get O(1/ε2)
outer iterations.

Same complexity achieved for ε-2o point, for η ∈ [1, 2], provided we find
an exact second-order solution to each subproblem.

For inexact subproblem solution (next slides), Outer Iteration complexities
are the same as above!
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PAL Results II: Inexact, Total Iteration Complexity
Suppose we use line-search Newton-CG to solve the subproblems. Can
then get estimates of total iteration complexity and operation complexity.

Subproblems solved inexactly, with square summable error sequence:

∇xLρ(xk+1, λk) + β(xk+1 − xk) = r̃k+1,

∇2
xxLρ(xk+1, λk) + βI � −εHk+1I ,

where ‖r̃k+1‖ ≤ ε/2 and
∑+∞

k=1 ‖r̃k‖2 < +∞.

For εHk ≡
√
ε/2, η ∈ [1, 2], and an ε-1o point:

Constraints Total Iter. complexity Optimal

nonlinear O(ε−2η−7/2) O(ε−11/2) (η = 1)

linear O(εη−7/2) O(ε−3/2) (η = 2)

For εHk ≡ ε/2, η ∈ [1, 2], ε-2o point w.h.p.:

Constraints Total Iter. complexity Optimal

nonlinear O(ε−2η−5) O(ε−7) (η = 1)
linear O(εη−5) O(ε−3) (η = 2)
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PAL Results III: Inexact, Operation Complexity

For εHk ≡
√
ε/2, η ∈ [1, 2], and an ε-1o point:

Constraints Total Iter. complexity Optimal

nonlinear O(ε−5η/2−15/4) O(ε−25/4) (η = 1)

linear O(εη/2−15/4) O(ε−11/4) (η = 2)

For εHk ≡ ε/2, η ∈ [1, 2], ε-2o point w.h.p.:

Constraints Total Iter. complexity Optimal

nonlinear O(ε−5η/2−11/2) O(ε−8) (η = 1)

linear O(εη/2−11/2) O(ε−9/2) (η = 2)
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Summary

Complexity analysis of nonconvex algorithms gives additional insight
into their behavior and even suggests improvements that can help in
some practical cases.

Nonconvex problems are now ubiquitous in ML — but the
performance of models algorithms is not well explained by classical
theory.

It’s interesting to understand the nature of this benign nonconvexity
is key applications.

THANKS!
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