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DeepMind’s mission

Solve Intelligence. Use it to solve everything else.

Intelligence is the ability to solve a wide variety of tasks: 
Artificial General Intelligence (AGI)
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● Atari (2014): Learning super human behaviour on 50+ Atari 
games from pixels (Mnih et.al, 2014)

● AlphaGo (2016): Beating the human world champion Lee Sedol
(Silver etl.al, 2016)

● AlphaZero (2018): Learning from zero knowledge: Chess, Go, 
Shogi (Silver et.al, 2018)



AlphaZero in Go

AlphaZero beats
AlphaGo after 8 hours

AlphaZero wins 100
AlphaGo    wins 0

4h  beats Stockfish wins 155: 6

wins 911: 772h beats Elmo
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What would AGI mean for control? 

from scratch, from raw signals, yet efficient
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Control team: our mission

learning reactive (closed-loop) control from scratch
Artificial General Control Intelligence (AGCI) 
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Overview

● Basics: the ‘collect and infer’ viewpoint of RL
● Advanced aspects
● Challenges/ Wishlist



Presentation Title — NAME

The promise of RL: Learn by success/ failure
(Sutton and Barto, 1983, 1998, Bertsekas, 1996)

given: stochastic dynamical system    p(s’ | s,a)
            immediate reward per decision:    r(s,a)

   e.g.: r = 1, if object is lifted, 0, else       (-> ‘sparse’)

wanted: optimal policy 

Methods: dynamic programming
(Bellman, 1959, Watkins 1989)

● can be made model-free and adapted to continuous states: 
Neural networks to approximate Q (e.g., Riedmiller, 1996)
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Challenges for control

● continuous states, continuous actions, high 
number of DoFs

● huge search tree 
-> sparse rewards are difficult to find

● e.g. 9 DoFs, 3 actions/ DoF, 50 steps:
(3^9)^50 ≈ 10^200 paths

● approaches:
○ sim2real (e.g. OpenAI et.al 2018, Chebotar et.al, 2018, Rusu et.al, 2016))
○ learning from demonstrations (e.g. Peters et.al, 2010)
○ from scratch with minimal prior knowledge (e.g. Kalashinikov, et.al,  2018): 

data-efficeny is key for real robots/ systems
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Classical RL

● ‘classical’ RL (Sutton, Barto, 1998, 2018): 
act - observe - update - act

● highly data-consuming
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Data-efficient RL

● key insight:
Data is precious and data is true
-> store all transitions (s,a,s’) in a transition 
memory and learn on entire memory:
 ‘sample based model of the world’

● ‘infer’ knowledge: off-policy RL learning
e.g. Neural Fitted Q Iteration (NFQ, NFQCA) 
(Riedmiller, 2005, Ernst, 2005, Lin 1992, Hafner & Riedmiller, 2011)
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Data-efficient RL (2)

● key insight 2 (‘collect’): collecting the ‘right’ 
transitions. objective: learn fast

● interaction with the environment and learning are 
detached: 
real time capability
+ exploit huge compute (‘Dreaming’)
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‘Collect and Infer’ (Riedmiller, EWRL 2018)

● infer: how to squeeze out most information of the experience in 
the transition memory -> efficient off-policy learning methods

● collect: how to efficiently sample the relevant information about 
the environment by interacting with it -> efficient exploration
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Collect and Infer:
Learning from transition memories
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Neural Fitted Q: RL from transition memories
(Riedmiller, 2005, related: Ernst 2005)

● given a (large) set of transitions (‘batch’)  D={(s,a,s’)_i, i=1...N}
● Approximate Q by NN
● iteratively minimize   

○ turns RL into a series of supervised learning problems
○ personal experience: online TD update > 1 Mio episodes for cart-pole, NFQ: < 300
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NFQ examples

RL learns to drive
Riedmiller et.al 2008

RL in RoboCup, 1998-2008
Riedmiller et.al, 2007

Deep RL from pixels,
Lange and Riedmiller, 2009

model-free, from scratch
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Memory-based, model-free RL beyond NFQ

● NFQCA (Hafner and Riedmiller, 2011): continuous actions
actor-critic uses dQ/da to update actor

● DQN (Mnih et.al, 2014): huge transition sets
mini-batch updates, target network, convolutional layers

● DDPG (Lillicrap et.al, 2015): huge transition sets, continuous actions
● SVG (Heess et.al, 2015): stochastic policies
● Soft-Actor-Critic (Haarnoja et.al 2018): stochastic policies
● MPO (Maximum a posteriori policy optimisation; Abdolmaleki et.al, 2018, 2019):

○ policy improvement by sampling
○ KL constraints on mean

and variance
○ Q-learning as before



RL via GEM — Abbas Abdolmaleki

Example results MPO (Abdolmaleki et.al, 2018, 2019)

● Humanoid, action dim: 22, 
state dim: 534

● 2017: 128 actors, several days
● MPO:  1 actor, 1 learner, < 2 days

data efficiency reliability
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Collect and Infer - Collect:
Collecting the ‘right’ data
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Learning by Playing: Scheduled Auxiliary Control 
(Riedmiller, Hafner,  et.al, 2018)

What to do when goal is far and rewards are sparse?

● babys play: learn to activate their senses deliberately
● robots play: deliberately activate sensors:  touch, move objects, arrange 

objects, …



Scheduled Auxiliary Control (SAC-X) main principles

● Extrinsic intention + intrinsic/ auxiliaries 
intentions : reward vector

● Execute all intentions during learning

● Put all data in one transition memory 
and share transitions
(related: HER, Andrychowicz et.al, 2017)

● Learn all intentions in parallel by 
off-policy RL method (e.g. MPO)

Learning by Playing - Roland Hafner - DeepMind
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Meta-learning in Scheduled Auxiliary Control: SAC-Q

● in general, a random selection of intentions works (SAC-U)
● a learning-to-learn (‘meta-learning’) approach helps to improve data-efficiency
● SAC-Q scheduler:

○ learn Q function
○ tabular MC approximation 

conditioned on last intention
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The ‘Cleanup’ task

● 9 DOF continuous control
● 15 sparse auxiliary rewards

○ MOVED(obj)
○ TOUCH, NOTOUCH
○ LEFTOF(obj1, obj2), RIGHTOF(obj1,obj2), ABOVE(obj1,obj2)
○ CLOSE(obj1, obj2)

● 6 extrinsic task rewards



Learning by playing

Untrained

Learned to put 
objects left and right

Learned to stack 
objects

Learned to touch
and move
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The ‘Cleanup’ task - final policy

● all ‘flat’ RL approaches fail
● SAC-Q  20,000 episodes 

with 36 actors
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Generality: different robot

● same auxiliary rewards are used 
as before
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Generality: varying environments

● same auxiliaries 
as before

Different Arms / Tasks
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SAC-X applied to general control domains

● additional auxiliary rewards; 
stability points: up-down, 
down-down, down-up, up-up

● accelerates learning for up-up 
+ can solve different tasks

Control
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Intermediate summary

● collect and infer is a powerful principle: offline RL algorithms based on 
transition memories scale surprisingly well, if right data is collected

● research directions:
○ efficiency, e.g. through better exploration, richer policy classes (hybrid MPO, 

Neunert  et.al, 2019), hierarchies (RHPO, Wulfmeier et.al, 2019), model based support 
(embed2control, IVG, Byvaran et.al 2019), computationally intense updates (treePI, 
Springenberg et. al, 2020)

○ less prior knowledge, e.g. raw signals: learning from pixels, simple reward 
functions, ...

○ extending application cases, e.g. learning from pre-recorded batches of data 
(batch RL), constraints, ...
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Research directions (1): use of learned models



Philosophy: learned models to increase data-efficiency by generalisation

● actor: better action selection through planning (e.g. Embed 2 Control, Watter et. 
al, 2016)

● learner: improve learning, e.g. IVG: better gradients (Byravan et.al, 2019)

1. train model from data (various losses)
2. train policy by backpropagating value estimates through model

The use of learned models



Imagined Value Gradients (IVG) (Byravan et.al, 2019)

● model to predict observations, r, and V
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Training losses:
● Image reconstruction
● Proprio prediction
● Reward + V prediction
● Consistency between 

encoder & transition 
model



Integrating model with SVG(n) -- Policy loss
● Then Train policy with regularized imagined rollouts alongside!
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Integrating model with SVG(n) -- Policy loss
● Then Train policy with regularized imagined rollouts!

𝜋𝜃(a | z)
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𝜋prior(a | z)

Policy Gradient of KL Regularized Objective:  

● This can be calculated analytically via
backprop through the model!



              

IVG results
● lift and stack from scratch
● 2-3 times faster learning

episode *  1e3 (x 16 actors)

Lift  

Stack  

3.5k RS0 Lift (pixels)

~5k RS0 Stack (pixels)

https://docs.google.com/file/d/1WlRPED-sNeM8xnD0QGXw_WEk8-N_NS1K/preview
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Research directions (2): richer policy representations
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Hybrid MPO: mixed continuos/ discrete policies
Neunert et.al, 2019

● hybrid policies using Gaussian and 
categorical distributions

● fits nicely into MPO policy 
improvement scheme:
‘hybrid MPO’ 
(Q-learning remains unchanged)



Private & ConfidentialHybrid MPO - results

● “Action attention” applied to control suite
● 2-dimensional agent action space:

○ 1-dimensional continuous actuator activation
○ 1-dimensional discrete actuator selection

● Due to loss of control authority, the agent is finding alternative solutions.

environment

actuator 0

actuator 1

physics

ad

ac

...

actuator N

https://docs.google.com/file/d/171GB7n3F6WZTtjz2jlxEHOjztQ6kjqU2/preview
https://docs.google.com/file/d/12j-PLXzs6pAFo1vzQ8gQa-s6CJ18QKUN/preview


Private & ConfidentialHybrid MPO - results

● Real robot insertion task
● Two control modes: Coarse and fine
● Agent learns state-dependent switching and control law

environment

coarse mode

fine mode

robot

ad

ac

https://docs.google.com/file/d/1DlySePQImvmON81UtD1ZdEKPVG3S8U86/preview
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RHPO: Multi Task and Hierarchical Learning
Wulfmeier et.al, 2019

● learn multiple tasks by a single 
agent

● idea: categorical selection of 
gaussian policy + task id is hidden 
from low-level policies enforces 
learning of re-usable sub-skills

● significant increase in 
data-efficiency in multi-task settings



● Learning to pile a cube on real 
robot

● 5 DOF, from scratch
● auxiliaries: reach, grasp, lift, place, 

stack

Real Robot - Pile Cube with SAC-U and RHPO



● RHPO + SAC-X: 
trained from raw 
pixels in <10 days
directly on real 
robot.

Final performance
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Research directions (3): training from raw inputs
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Ball-in-Cup from pixels (Schwab et.al, 2019)

● 4 DOFs, raw joint control
● raw pixels as input
● prior work (Peters et.al 2011):

‘kinesthetic teaching’
● prior work (Schwab et.al 2019): 

asymetric actor critic: privileged 
information for learning.

● now: learn directly from raw 
pixels only! (Improved network 
structures, improved SAC-Q) 

https://docs.google.com/file/d/1O0sMhjN_b_IH-FdEvBksUboWSkBUxzVG/preview
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Conclusion: AGI for Control (AGCI)

● we’re aiming at the far end of learning control: AGCI 
‘ a minimum set of maximal general priors’
raw inputs, raw outputs, pure task specification, yet data-efficient

● guided by our principle of  ‘collect & infer’, we can go surprisingly far
● the less we put in a priori, the more creative the solutions get 

interesting read: Sutton’s ‘bitter lessons’
● wishlist: reliability/ stability proofs, interpretability, sound benchmarks, 

comparison to classical control
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Supplementary slides
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Candidates for Internal Reward Predicates

● abstract principle: deliberately change sensor values
● there is a broad range of concrete implementations: 

from manipulating raw sensor values (very general) to features 
● practical realisation:

○ finding a compromise between generality/ simplicty and realistic learning times
● example predicates: 

○ activate touch sensor: Touch/ NoTouch
○ camera: relation between objects: e.g. Moved, LeftOf, Above, Near, ...
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A recent result with NFQ (Wülfing et.al, 2018)

Controlling a set of real biological neurons
(BrainLinks BrainTools)
● control signal: place, time and amplitude of stimuli
● target: get desired neural activity
● no model available
● Epilepsy, Alzheimer, ...
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Generality: varying enviroments

● same auxiliary tasks are used as 
before

● special adaptations: ‘above close 
precise’ to enforce incentive for 
seeing ‘clicks’

Stack Lego Tower
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Research directions (3): training from fixed data (Batch RL)
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Learning Behavioral Cloning Policies

Behavioral Cloning

Advantage-Weighted Behavioral Cloning

Keep Doing What Worked

Optimizer wants to maximize functions:

We use
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Block Stacking in Sim, Main Task Performance

No BC Prior,  BC Prior,  Advantage-Weighted BC Prior

Prior (BC) Policy RL Policy

Final Online Policy Performance

https://docs.google.com/file/d/1DTKAntopgd-nVmPHQly00sMjoJgPf0hR/preview


Reward augmentation in off-policy - learning
Real Robot

● Several days of data from learning to 
grasp

● Trained FlipUp, FlipDown skills purely 
offline by reward augmentation

● ‘creative’ solutions: "pushing", "poking", 
"dropping" using wall and other brick

https://docs.google.com/file/d/11SzK1Hf3P4ZMEkmy1PgGVi2Zirj2huAu/preview
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● 15 dim action space
● dynamics
● model-free, from 

scratch



Problem Statement
     

                              

Iterate :

Policy Evaluation (learning a Q-function or model ...)

Policy Improvement (MPO)

    (a,s)                      Q value

 

Only accessible data : Samples of Q values given a state,action 

Goal: Next policy gives better probability to better actions



MPO and V-MPO
● MPO and V-MPO are simple algorithms for policy improvement given 

a policy , a state distribution and an evaluation function

● MPO : when we can evaluate multiple actions given a state, e.g:
1. Access to Q-function 
2. Access to model with state reset

● V-MPO: when we can evaluate only one action given a state e.g: 
1. On-policy setting or transitions from replay buffer
2. Expensive compute (still use model or Q-function)
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Maximum A Posteriori Policy Optimisation

Given Q(s,a) and state distribution

1-Step :
 Find non-parametric distribution:

  

Step 2 :   
1. Supervised learning:



Step (1) MPO

weightssamplingClosed Form Solution:

1. Sample actions from current policy
2. Weight action samples via Q values
3. Note that this standard RL objective
4. Assuming parametric q would lead to 

policy gradient methods 



Step (2) MPO

Controls learning rate directly on policy space 

Objective: Fit a policy                 to 
                  non-parametric distributions, i.e,

Conservative supervised learning: 

1. Weighted maximum likelihood                 

2. Bound information loss 

weightssampling


