
Model misspecification in
reinforcement learning

Csaba Szepesvári
DeepMind & University of Alberta

IPAM Workshop on
“Intersections between Control, Learning and Optimization”

LCO 2020

• The world is big
• Need approximate models (Q,V, 𝜋𝜋, P) model

misspecification
• What is the price? How to keep the price low?

• Markov Decision Processes
• 𝑀𝑀 = (𝒮𝒮,𝒜𝒜,𝑃𝑃 = 𝑃𝑃𝑎𝑎 𝑎𝑎∈𝒜𝒜 , 𝑟𝑟 = 𝑟𝑟𝑎𝑎 𝑎𝑎∈𝒜𝒜)

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3

𝑎𝑎0 𝑎𝑎1 𝑎𝑎2

𝑟𝑟0 𝑟𝑟1 𝑟𝑟2

Online RL
• Given: sequential access to 𝑀𝑀
• Goal: Take actions to

maximize expected return (=total reward)

Planning with a simulator (+ reset)
• Given: stochastic simulator of 𝑀𝑀 with reset
• Goal: find a policy with high expected return

with a few queries

Batch RL
• Given: data from past interaction with 𝑀𝑀
• Goal: find a policy with high expected return

• Challenges
–𝒮𝒮 is huge
–𝒜𝒜 is huge

• Theorem: Computing 𝜋𝜋∗ is P-complete

apples_and_lemons
(xkcd)

RL Solver uses
Supervised learning

“generalization
oracle”

Can we design
• efficient methods (no scaling with 𝑆𝑆,𝐴𝐴)
• RL-error ≤ C * SL-error

???

How???

Oracle-using
solver

SL Oracle

Environment
or

Simulator

Modeling: 𝑄𝑄,𝑉𝑉,𝑃𝑃,𝜋𝜋, …

Black box, supervised learning oracles
• Internals unknown/hidden/..
• Input: Data
• Output: Function

– Linear function approximation
– Neural nets
– Nonparametric techniques
–

White box oracles
• Known internals
• Linear function approximation

– Action-value approximation: 𝑄𝑄𝜋𝜋 ≈ Φ𝜃𝜃𝜋𝜋

– Access to Φ ∈ ℝ𝑆𝑆𝑆𝑆×𝑑𝑑

Iterative DP
solver
(VI,PI)

Idealized
SL Oracle

Environment
or

Simulator

Approximate Dynamic Programming
1960-1980s

• Gains from compressed representation
• No learning, no randomization
• Unconventional/unrealistic oracles

Methods: Value-, policy-iteration, LP

𝑉𝑉𝑘𝑘+1 = �𝑇𝑇𝑘𝑘𝑉𝑉𝑘𝑘 = 𝑇𝑇𝑉𝑉𝑘𝑘 + 𝜖𝜖𝑘𝑘

Oracle: Linear function approximation,
model compression, ..

1978!

𝜋𝜋𝑘𝑘 ∈ Γ T𝑉𝑉𝑘𝑘 (greedy one-step lookahead)

𝑉𝑉𝜋𝜋𝑘𝑘 ≥ 𝑉𝑉∗ − 𝛿𝛿𝛿 with some 𝛿𝛿 > 0?

Discounting: 0 ≤ 𝛾𝛾 < 1.
Misspecification error: 𝜖𝜖𝑘𝑘 ∞ ≤ 𝜖𝜖 ∀𝑘𝑘 > 0

Theorem: For 𝑘𝑘 “large” enough,
𝛿𝛿 ≤ 𝐶𝐶 𝜖𝜖

1−𝛾𝛾 2.

𝜖𝜖 ≪ 1
𝐻𝐻
≔ 1 − 𝛾𝛾 gives nontrivial results.

Unimprovable!

1978!

How do we control 𝜖𝜖𝑘𝑘?

Machine learning approach (1990s-today):

Learn 𝑇𝑇 𝑉𝑉𝑘𝑘!
Sampling => random training set
Set-up and solve regression

Problem: 𝜖𝜖𝑘𝑘 ∞ vs. 𝜖𝜖𝑘𝑘 𝐿𝐿2 𝜇𝜇
1978!

Theorem (Sz., Munos, 2005):

𝑉𝑉∗ − 𝑉𝑉𝜋𝜋𝐾𝐾 𝑝𝑝,𝜌𝜌 ≤
2𝛾𝛾

1 − 𝛾𝛾 2 𝐶𝐶 𝜌𝜌, 𝜇𝜇 1/𝑝𝑝 𝜖𝜖1 + 𝜖𝜖2

𝜖𝜖1 = 𝑑𝑑𝐿𝐿𝑝𝑝(𝜇𝜇) 𝑇𝑇𝑇,ℱ +

poly log 𝑁𝑁
𝑁𝑁

, log 𝑁𝑁 𝒜𝒜
𝑀𝑀

, log 𝐾𝐾 , dim ℱ

𝜖𝜖2 = const × 𝛾𝛾𝐾𝐾

Number of queries: 𝑁𝑁𝑁𝑁𝑁𝑁|𝒜𝒜|
no dependence on |𝒮𝒮|!

Approximation
error Estimation

error

Distribution mismatch
price

Iteration
price

Can we control 𝐶𝐶 𝜌𝜌, 𝜇𝜇 ?
White box:

Use linear function approximation!

Can achieve 𝛿𝛿 error with poly(1
𝜖𝜖

, 𝒜𝒜 ,𝑑𝑑)
queries when 𝑑𝑑∞ 𝑄𝑄Π,Φ ≤ 𝜖𝜖?

Du et al. 2019: Nope when 𝛿𝛿 ≤ 𝜖𝜖.

Weisz, Lattimore, Sz.: Yes, when 𝛿𝛿 ≥ 𝐶𝐶 𝑑𝑑𝜖𝜖.

𝛿𝛿 ≤ 𝜖𝜖: Exp complexity

𝛿𝛿 ≥ 𝑑𝑑𝜖𝜖: Poly complexity
Why?

Insight from bandits! 𝒮𝒮 = 1 ,𝒜𝒜 is large!
𝑟𝑟 = Φ𝜃𝜃∗ + 𝕖𝕖

How many queries of 𝑟𝑟(𝑎𝑎) are needed to
find argmax𝑎𝑎𝑟𝑟 𝑎𝑎 ?

𝑟𝑟 = Φ𝜃𝜃∗ + 𝕖𝕖
Φ known, others unknown. Find argmax𝑎𝑎𝑟𝑟 𝑎𝑎 .

Return argmax𝑎𝑎 𝜙𝜙 𝑎𝑎 ⊤ �𝜃𝜃
• �𝜃𝜃 = 𝐺𝐺−1 𝜌𝜌 ∑𝑎𝑎 𝜌𝜌 𝑎𝑎 𝑟𝑟 𝑎𝑎 𝜙𝜙(𝑎𝑎): least squares

estimate of 𝜃𝜃∗
• 𝜌𝜌: distribution over 𝒜𝒜, support 𝑞𝑞 ≪ |𝒜𝒜|

𝐺𝐺 𝜌𝜌 = �
𝑎𝑎

𝜌𝜌 𝑎𝑎 𝜙𝜙(𝑎𝑎) 𝜙𝜙𝑎𝑎⊤

Theorem (WLSz):
Linearly many queries are enough to get
𝛿𝛿 = 2 𝑑𝑑 + 1 𝜖𝜖.

For any Φ ∈ ℝ𝑘𝑘×𝑑𝑑 there exists 𝜌𝜌
with 𝑞𝑞 = supp 𝜌𝜌 = �𝑂𝑂(𝑑𝑑)
such that for any 𝑟𝑟 ∈ ℝ𝑘𝑘:

𝑟𝑟 − Φ �𝜃𝜃 ∞ ≤ (2 𝑑𝑑 + 1) inf
𝜃𝜃

𝑟𝑟 − Φ𝜃𝜃 ∞.

Kiefer-Wolfowitz Theorem (1960):
𝑔𝑔 𝜌𝜌 = max

𝑎𝑎
𝜙𝜙 𝑎𝑎 𝐺𝐺−1 𝜌𝜌

2

𝐺𝐺 𝜌𝜌 = ∑𝑎𝑎 𝜌𝜌 𝑎𝑎 𝜙𝜙 𝑎𝑎 𝜙𝜙⊤ 𝑎𝑎

The following are equivalent:
1. 𝜌𝜌∗ is a minimizer of 𝑔𝑔
2. 𝜌𝜌∗ is a maximizer of log det 𝐺𝐺(𝜌𝜌)
3. 𝑔𝑔 𝜌𝜌∗ = 𝑑𝑑

Todd: ∃𝜌𝜌 s.t. supp 𝜌𝜌 = �𝑂𝑂(𝑑𝑑) and 𝑔𝑔 𝜌𝜌 ≤ 2𝑑𝑑

Good:
• Query complexity is small
Bad:

• Errors blow up by a factor of 𝑑𝑑
• Overall computation scales with 𝑘𝑘

Can we do it with noise? Yes
Can we do it online? Bandits.. Yes.

Can we avoid the blow-up? Not in worst-
case (Du et al. 2019)
Let ℋ = {Φ𝜃𝜃 + 𝕖𝕖: 𝕖𝕖 ∞ ≤ 𝜖𝜖}
(U) If 𝑒𝑒1, … , 𝑒𝑒𝑘𝑘 ∈ ℋ, then at least 𝑘𝑘 queries
will be needed to get 𝛿𝛿 ≤ 1.
If 𝜙𝜙 𝑎𝑎 are unit length, 𝜙𝜙 𝑎𝑎 ,𝜙𝜙 𝑏𝑏 ≤ 𝜖𝜖
for 𝑎𝑎 ≠ 𝑏𝑏 then (U) holds:

with 𝜃𝜃 = 𝜙𝜙 𝑎𝑎 , Φ𝜃𝜃 − 𝑒𝑒𝑎𝑎 ∞ ≤ 𝜖𝜖.

JL Lemma: Such Φ exists if 𝑑𝑑 ≥ log 𝑘𝑘
𝜖𝜖2

.

Corollary (WLSz):
For any 𝛿𝛿 > 𝜖𝜖 there exists Φ ∈ ℝ𝑘𝑘×𝑑𝑑 with
𝑘𝑘 large enough s.t. any method that finds a
𝛿𝛿-optimal action for any 𝑟𝑟 ∈ ℋ needs at
least

1
2

exp
𝑑𝑑 − 1

8
𝜖𝜖
𝛿𝛿

2

queries.
Exponential in 𝑑𝑑 for 𝛿𝛿 = 𝑂𝑂(𝜖𝜖) and

vacuous for 𝛿𝛿 = Ω 𝑑𝑑𝜖𝜖 .

Bandit Algorithm
𝑟𝑟 = Φ𝜃𝜃∗ + 𝕖𝕖

with 𝕖𝕖 ∞ = inf
𝜃𝜃

𝑟𝑟 − Φ𝜃𝜃 ∞.

Set 𝑚𝑚 = �𝑂𝑂 𝑑𝑑 .
1. Find 𝜌𝜌 over 𝒜𝒜 s.t.

supp 𝜌𝜌 = �𝑂𝑂 𝑑𝑑 and 𝑔𝑔 𝜌𝜌 ≤ 2𝑑𝑑.

2. Play each 𝑎𝑎 ∈ 𝒜𝒜, ⌈𝑚𝑚𝑚𝑚 𝑎𝑎 ⌉ times,
3. Estimate 𝜃̂𝜃, let 𝑟𝑟∗ = max𝑎𝑎∈𝒜𝒜𝜙𝜙⊤ 𝑎𝑎 𝜃̂𝜃.
4. Let 𝒜𝒜 = 𝑎𝑎 ∈ 𝒜𝒜:𝜙𝜙⊤ 𝑎𝑎 �𝜃𝜃 > 𝑟𝑟∗ − 𝐶𝐶(𝑑𝑑,𝑚𝑚)
5. Double 𝑚𝑚, goto 1

𝐶𝐶 𝑑𝑑,𝑚𝑚 = 2
4𝑑𝑑
𝑚𝑚 log 𝑘𝑘𝑘𝑘

Theorem (WLSz): With some 𝐶𝐶 > 0
universal, the expected regret, 𝑅𝑅𝑛𝑛, satisfies

𝑅𝑅𝑛𝑛 ≤ 𝐶𝐶 𝑑𝑑𝑑𝑑 log 𝑛𝑛𝑛𝑛 + 𝜖𝜖𝜖𝜖 𝑑𝑑 log 𝑛𝑛

• First, unrealizable stochastic bandit result
• 𝜖𝜖 was not needed by the algorithm
• If it is known, log 𝑛𝑛 can be removed

from the second term
• For 𝑘𝑘 ≈ 𝑛𝑛, the bound is tight

• Back to RL, planning with a simulator
• 𝜖𝜖: = sup

𝜋𝜋
inf
𝜃𝜃

𝑄𝑄𝜋𝜋 − Φ𝜃𝜃 ∞

• Can we find a 𝛿𝛿 = 𝐶𝐶𝐶𝐶 𝑑𝑑/ 1 − 𝛾𝛾 2-
optimal policy with poly(1

𝜖𝜖
, 1
1−𝛾𝛾

,𝑑𝑑)
queries?

• Answer (LWSz): Yes.
– API, with least-squares regression, to

predict action-values using rollouts from a
“core set” obtained by optimizing 𝑔𝑔 𝜌𝜌 .

Details

• #iterations: 𝑘𝑘 = log …
1−𝛾𝛾

• #rollouts: 𝑚𝑚 = log …
2𝜖𝜖2 1−𝛾𝛾 2

• #steps in rollout: 𝑛𝑛 = log …
1−𝛾𝛾

• Queries: 𝑘𝑘𝑘𝑘𝑘𝑘 𝒞𝒞 = �𝑂𝑂 𝑑𝑑
𝜖𝜖2 1−𝛾𝛾 4

• “API, with least-squares regression, to
predict action-values using rollouts from
a “core set” obtained by optimizing
𝑔𝑔 𝜌𝜌 .”

• Why this way?
– Rollouts, core set: Obvious choice given

work on bandits
– For AVI we would need to deal with the max

in setting up the regression problem
(YW’19)

– No max  better query complexity

• Question: What if only 𝑄𝑄∗ ≈ Φ𝜃𝜃?
• AVI/API is doomed!

𝜇𝜇 is the uniform distribution

Alternative approach:
Approximate Linear Programming

Method

1. Reduce # variables using 𝑉𝑉 = Φ𝜃𝜃.
2. Reduce # constraints by keeping

constraints at a core set 𝒞𝒞 ⊂ 𝒮𝒮
3. Choose 𝒞𝒞 such that ∀𝑠𝑠 ∈ 𝒮𝒮,

𝜙𝜙 𝑠𝑠 = ∑𝑠𝑠′∈𝒞𝒞 𝜆𝜆 𝑠𝑠′ 𝜙𝜙(𝑠𝑠𝑠) with 𝜆𝜆 ≥ 0.

Theorem (LBSz’18):
Let 𝜃̂𝜃 be the output. Then:

𝑉𝑉∗ − Φ𝜃̂𝜃 1,𝑐𝑐 ≤ 𝐶𝐶
inf
𝜃𝜃

V∗ − Φ𝜃𝜃 ∞

1 − 𝛾𝛾

with a universal constant 𝐶𝐶 > 0.

Theorem (w. Roshan Shariff, in prep.):

Query complexity to get an

𝛿𝛿 = 𝐶𝐶𝐶𝐶 𝑑𝑑/ 1 − 𝛾𝛾 2-optimal action

at some state is

poly(1
𝜖𝜖

, 1
1−𝛾𝛾

,𝑑𝑑, |𝒞𝒞|).

Beyond worst-case?

Yes: 𝑑𝑑𝜖𝜖 can be reduced if Φ is “nice”
What makes a feature map nice?

Blow-up factor:
Allow algorithms 𝑞𝑞 queries.

How much does the approximation error
blow up? 𝜆𝜆𝑞𝑞 Φ

Proposition:
𝜆𝜆𝑞𝑞 Φ = min

𝐶𝐶⊂ 𝑘𝑘
𝐶𝐶 =𝑞𝑞

max
𝑖𝑖

𝜙𝜙 𝑖𝑖 Φ𝐶𝐶

𝑥𝑥 𝐴𝐴 ≔ inf{∑𝑗𝑗 𝑢𝑢𝑗𝑗 : 𝑥𝑥 = ∑𝑗𝑗 𝑢𝑢𝑗𝑗𝑎𝑎𝑗𝑗 ,𝑢𝑢𝑖𝑖 ∈ ℝ}

“gauge fn. of 𝑥𝑥 w.r.t co{𝑎𝑎1, … ,𝑎𝑎𝑞𝑞 ,−𝑎𝑎1, … ,−𝑎𝑎𝑞𝑞}”

Note: 𝑥𝑥 𝐴𝐴 ≤ min
𝜌𝜌

𝑥𝑥 𝐺𝐺𝐴𝐴
−1(𝜌𝜌).

Refines Zanette et al. 19

Other bandit results
• Infinite action sets:

– Covering argument, replace log 𝑘𝑘 with 𝑑𝑑.

• Ghosh et al’17: Cheap linearity test:
𝑅𝑅𝑛𝑛 ≤ min 𝑑𝑑, 𝑘𝑘 𝑛𝑛

• Contextual case; LinUCB?
– Gopalan et al’16 𝕖𝕖 2 ≈ 𝜖𝜖.
– Needs modification! Needs knowledge of
𝜖𝜖. Refinement of Jin et al.’19

Approximately linear MDPs (𝑄𝑄𝜋𝜋 ≈ Φ𝜃𝜃𝜋𝜋)
– Avila-Pires, Sz’16:

• 𝒫𝒫 ≈ ℛ𝒬𝒬; solve compressed model ⇒𝑈𝑈∗

• errors at 𝑉𝑉∗, 𝑉𝑉�𝜋𝜋, 𝑈𝑈∗ matter only!

– Yang and Wang’19a: discounting, “feature
regularity” (anchors), incomparable result

– Yang and Wang’19b: online RL, finite
horizon

– Jin et al.’19: online RL, finite horizon (LSVI)

With 𝑄𝑄∗ ≈ Φ𝜃𝜃

– Zanette et al.’19
Finite-horizon backward computation;
multiplicative error propagation!

– Du et al.’20: Deterministic MDPs.
Find optimal policy when
approximation error is very small

Summary
• Models arise because of the need for “compression”

– Not optional
– Long history

• Good model  good performance? How good?
• Many modeling assumptions; comparable vs. incomparable
• Even under strong assumptions graceful degradation is not trivial to

obtain
– To control query complexity, we had to open the “black box”!

• Linear function approximation
– Core sets/good extrapolation are key: How to get them? Implications for

feature learning?
– Not all feature maps are born equal; 𝑑𝑑 is upper bound

• Do we need to know the level of misspecification? Oh no!
• Beyond linear function approximation?
• Modeling policies?

Details

• #iterations: 𝑘𝑘 =
log 1

𝜖𝜖 𝑑𝑑
1−𝛾𝛾

• #rollouts: 𝑚𝑚 =
log 2𝑘𝑘 𝒞𝒞

𝛼𝛼
2𝜖𝜖2 1−𝛾𝛾 2

• #steps in rollout: 𝑛𝑛 =
log 1

𝜖𝜖 1−𝛾𝛾
1−𝛾𝛾

• Queries: 𝑘𝑘𝑘𝑘𝑘𝑘 𝒞𝒞 = �𝑂𝑂 𝑑𝑑
𝜖𝜖2 1−𝛾𝛾 4

Wang et al 20:
FAPP closed under optimistic
improvement.
No misspecification

• Ancient history
• Fox, B. L. (1973). Discretizing Dynamic Programs. J. Optimization Theory

Appl.
• Hinderer, K. (1978). On Approximate Solutions of Finite-Stage Dynamic

Programs. Proceedings of the International Conference on Dynamic
Programming

• Morin, T. L. (1978). Computational Advances and Reduction of
Dimensionality in Dynamic Programming: A Survey. Proceedings of the
International Conference on Dynamic P

• Ward Whitt. Approximations of dynamic programs, I. Mathematics of
Operations Research, 3(3):231–243, 1978.

• Schweitzer & Seidmann, JMAA, 1985

	Model misspecification in reinforcement learning
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Summary
	Slide Number 41
	Slide Number 42
	Slide Number 43

