
Model misspecification in 
reinforcement learning

Csaba Szepesvári
DeepMind & University of Alberta

IPAM Workshop on
“Intersections between Control, Learning and Optimization”

LCO 2020



• The world is big
• Need approximate models (Q,V, 𝜋𝜋, P) model 

misspecification
• What is the price? How to keep the price low?



• Markov Decision Processes
• 𝑀𝑀 = (𝒮𝒮,𝒜𝒜,𝑃𝑃 = 𝑃𝑃𝑎𝑎 𝑎𝑎∈𝒜𝒜 , 𝑟𝑟 = 𝑟𝑟𝑎𝑎 𝑎𝑎∈𝒜𝒜)

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3

𝑎𝑎0 𝑎𝑎1 𝑎𝑎2

𝑟𝑟0 𝑟𝑟1 𝑟𝑟2



Online RL
• Given: sequential access to 𝑀𝑀
• Goal: Take actions to 

maximize expected return (=total reward)



Planning with a simulator (+ reset)
• Given: stochastic simulator of 𝑀𝑀 with reset
• Goal: find a policy with high expected return 

with a few queries



Batch RL
• Given: data from past interaction with 𝑀𝑀
• Goal: find a policy with high expected return



• Challenges
–𝒮𝒮 is huge 
–𝒜𝒜 is huge

• Theorem: Computing 𝜋𝜋∗ is P-complete

apples_and_lemons
(xkcd)



RL Solver uses
Supervised learning 

“generalization
oracle”

Can we design 
• efficient methods (no scaling with 𝑆𝑆,𝐴𝐴)
• RL-error ≤ C * SL-error 

???



How???

Oracle-using 
solver

SL Oracle

Environment
or

Simulator

Modeling: 𝑄𝑄,𝑉𝑉,𝑃𝑃,𝜋𝜋, …



Black box, supervised learning oracles
• Internals unknown/hidden/..
• Input: Data
• Output: Function

– Linear function approximation
– Neural nets
– Nonparametric techniques
– ....



White box oracles
• Known internals
• Linear function approximation

– Action-value approximation: 𝑄𝑄𝜋𝜋 ≈ Φ𝜃𝜃𝜋𝜋

– Access to Φ ∈ ℝ𝑆𝑆𝑆𝑆×𝑑𝑑



Iterative DP 
solver 
(VI,PI)

Idealized
SL Oracle

Environment
or

Simulator

Approximate Dynamic Programming
1960-1980s

• Gains from compressed representation
• No learning, no randomization
• Unconventional/unrealistic oracles



Methods: Value-, policy-iteration, LP

𝑉𝑉𝑘𝑘+1 = �𝑇𝑇𝑘𝑘𝑉𝑉𝑘𝑘 = 𝑇𝑇𝑉𝑉𝑘𝑘 + 𝜖𝜖𝑘𝑘

Oracle: Linear function approximation, 
model compression, ..

1978!



𝜋𝜋𝑘𝑘 ∈ Γ T𝑉𝑉𝑘𝑘 (greedy one-step lookahead) 

𝑉𝑉𝜋𝜋𝑘𝑘 ≥ 𝑉𝑉∗ − 𝛿𝛿𝛿 with some 𝛿𝛿 > 0?

Discounting: 0 ≤ 𝛾𝛾 < 1. 
Misspecification error: 𝜖𝜖𝑘𝑘 ∞ ≤ 𝜖𝜖 ∀𝑘𝑘 > 0

Theorem: For 𝑘𝑘 “large” enough,
𝛿𝛿 ≤ 𝐶𝐶 𝜖𝜖

1−𝛾𝛾 2.

𝜖𝜖 ≪ 1
𝐻𝐻
≔ 1 − 𝛾𝛾 gives nontrivial results. 

Unimprovable!

1978!



How do we control 𝜖𝜖𝑘𝑘?

Machine learning approach (1990s-today):

Learn  𝑇𝑇 𝑉𝑉𝑘𝑘! 
Sampling => random training set
Set-up and solve regression

Problem: 𝜖𝜖𝑘𝑘 ∞ vs. 𝜖𝜖𝑘𝑘 𝐿𝐿2 𝜇𝜇
1978!



Theorem (Sz., Munos, 2005): 

𝑉𝑉∗ − 𝑉𝑉𝜋𝜋𝐾𝐾 𝑝𝑝,𝜌𝜌 ≤
2𝛾𝛾

1 − 𝛾𝛾 2 𝐶𝐶 𝜌𝜌, 𝜇𝜇 1/𝑝𝑝 𝜖𝜖1 + 𝜖𝜖2

𝜖𝜖1 = 𝑑𝑑𝐿𝐿𝑝𝑝(𝜇𝜇) 𝑇𝑇𝑇,ℱ +

poly log 𝑁𝑁
𝑁𝑁

, log 𝑁𝑁 𝒜𝒜
𝑀𝑀

, log 𝐾𝐾 , dim ℱ

𝜖𝜖2 = const × 𝛾𝛾𝐾𝐾

Number of queries: 𝑁𝑁𝑁𝑁𝑁𝑁|𝒜𝒜|
no dependence on |𝒮𝒮|!

Approximation
error Estimation

error

Distribution mismatch
price

Iteration
price



Can we control 𝐶𝐶 𝜌𝜌, 𝜇𝜇 ?
White box: 

Use linear function approximation!

Can achieve 𝛿𝛿 error with poly(1
𝜖𝜖

, 𝒜𝒜 ,𝑑𝑑)
queries when 𝑑𝑑∞ 𝑄𝑄Π,Φ ≤ 𝜖𝜖? 

Du et al. 2019: Nope when 𝛿𝛿 ≤ 𝜖𝜖.

Weisz, Lattimore, Sz.: Yes, when 𝛿𝛿 ≥ 𝐶𝐶 𝑑𝑑𝜖𝜖.



𝛿𝛿 ≤ 𝜖𝜖: Exp complexity

𝛿𝛿 ≥ 𝑑𝑑𝜖𝜖: Poly complexity
Why?

Insight from bandits! 𝒮𝒮 = 1 ,𝒜𝒜 is large! 
𝑟𝑟 = Φ𝜃𝜃∗ + 𝕖𝕖

How many queries of 𝑟𝑟(𝑎𝑎) are needed to 
find argmax𝑎𝑎𝑟𝑟 𝑎𝑎 ?



𝑟𝑟 = Φ𝜃𝜃∗ + 𝕖𝕖
Φ known, others unknown. Find argmax𝑎𝑎𝑟𝑟 𝑎𝑎 .  

Return argmax𝑎𝑎 𝜙𝜙 𝑎𝑎 ⊤ �𝜃𝜃
• �𝜃𝜃 = 𝐺𝐺−1 𝜌𝜌 ∑𝑎𝑎 𝜌𝜌 𝑎𝑎 𝑟𝑟 𝑎𝑎 𝜙𝜙(𝑎𝑎): least squares 

estimate of 𝜃𝜃∗
• 𝜌𝜌: distribution over 𝒜𝒜, support 𝑞𝑞 ≪ |𝒜𝒜|

𝐺𝐺 𝜌𝜌 = �
𝑎𝑎

𝜌𝜌 𝑎𝑎 𝜙𝜙(𝑎𝑎) 𝜙𝜙𝑎𝑎⊤



Theorem (WLSz): 
Linearly many queries are enough to get 
𝛿𝛿 = 2 𝑑𝑑 + 1 𝜖𝜖.

For any Φ ∈ ℝ𝑘𝑘×𝑑𝑑 there exists 𝜌𝜌
with 𝑞𝑞 = supp 𝜌𝜌 = �𝑂𝑂(𝑑𝑑)
such that for any 𝑟𝑟 ∈ ℝ𝑘𝑘:  

𝑟𝑟 − Φ �𝜃𝜃 ∞ ≤ (2 𝑑𝑑 + 1) inf
𝜃𝜃

𝑟𝑟 − Φ𝜃𝜃 ∞.  



Kiefer-Wolfowitz Theorem (1960):
𝑔𝑔 𝜌𝜌 = max

𝑎𝑎
𝜙𝜙 𝑎𝑎 𝐺𝐺−1 𝜌𝜌

2

𝐺𝐺 𝜌𝜌 = ∑𝑎𝑎 𝜌𝜌 𝑎𝑎 𝜙𝜙 𝑎𝑎 𝜙𝜙⊤ 𝑎𝑎

The following are equivalent:
1. 𝜌𝜌∗ is a minimizer of 𝑔𝑔
2. 𝜌𝜌∗ is a maximizer of log det 𝐺𝐺(𝜌𝜌)
3. 𝑔𝑔 𝜌𝜌∗ = 𝑑𝑑

Todd: ∃𝜌𝜌 s.t. supp 𝜌𝜌 = �𝑂𝑂(𝑑𝑑) and 𝑔𝑔 𝜌𝜌 ≤ 2𝑑𝑑



Good:
• Query complexity is small
Bad:

• Errors blow up by a factor of 𝑑𝑑
• Overall computation scales with 𝑘𝑘

Can we do it with noise? Yes
Can we do it online? Bandits.. Yes. 



Can we avoid the blow-up? Not in worst-
case (Du et al. 2019)
Let ℋ = {Φ𝜃𝜃 + 𝕖𝕖: 𝕖𝕖 ∞ ≤ 𝜖𝜖}
(U) If 𝑒𝑒1, … , 𝑒𝑒𝑘𝑘 ∈ ℋ, then at least 𝑘𝑘 queries 
will be needed to get 𝛿𝛿 ≤ 1.
If 𝜙𝜙 𝑎𝑎 are unit length, 𝜙𝜙 𝑎𝑎 ,𝜙𝜙 𝑏𝑏 ≤ 𝜖𝜖
for 𝑎𝑎 ≠ 𝑏𝑏 then (U) holds:

with 𝜃𝜃 = 𝜙𝜙 𝑎𝑎 , Φ𝜃𝜃 − 𝑒𝑒𝑎𝑎 ∞ ≤ 𝜖𝜖.

JL Lemma: Such Φ exists if 𝑑𝑑 ≥ log 𝑘𝑘
𝜖𝜖2

.



Corollary (WLSz):
For any 𝛿𝛿 > 𝜖𝜖 there exists Φ ∈ ℝ𝑘𝑘×𝑑𝑑 with 
𝑘𝑘 large enough s.t. any method that finds a 
𝛿𝛿-optimal action for any 𝑟𝑟 ∈ ℋ needs at 
least

1
2

exp
𝑑𝑑 − 1

8
𝜖𝜖
𝛿𝛿

2

queries.
Exponential in 𝑑𝑑 for 𝛿𝛿 = 𝑂𝑂(𝜖𝜖) and

vacuous for 𝛿𝛿 = Ω 𝑑𝑑𝜖𝜖 .



Bandit Algorithm
𝑟𝑟 = Φ𝜃𝜃∗ + 𝕖𝕖

with 𝕖𝕖 ∞ = inf
𝜃𝜃

𝑟𝑟 − Φ𝜃𝜃 ∞. 

Set 𝑚𝑚 = �𝑂𝑂 𝑑𝑑 .
1. Find 𝜌𝜌 over 𝒜𝒜 s.t.

supp 𝜌𝜌 = �𝑂𝑂 𝑑𝑑 and 𝑔𝑔 𝜌𝜌 ≤ 2𝑑𝑑.

2. Play each 𝑎𝑎 ∈ 𝒜𝒜, ⌈𝑚𝑚𝑚𝑚 𝑎𝑎 ⌉ times, 
3. Estimate 𝜃̂𝜃, let 𝑟𝑟∗ = max𝑎𝑎∈𝒜𝒜𝜙𝜙⊤ 𝑎𝑎 𝜃̂𝜃.
4. Let 𝒜𝒜 = 𝑎𝑎 ∈ 𝒜𝒜:𝜙𝜙⊤ 𝑎𝑎 �𝜃𝜃 > 𝑟𝑟∗ − 𝐶𝐶(𝑑𝑑,𝑚𝑚)
5. Double 𝑚𝑚, goto 1

𝐶𝐶 𝑑𝑑,𝑚𝑚 = 2
4𝑑𝑑
𝑚𝑚 log 𝑘𝑘𝑘𝑘



Theorem (WLSz): With some 𝐶𝐶 > 0
universal, the expected regret, 𝑅𝑅𝑛𝑛, satisfies  

𝑅𝑅𝑛𝑛 ≤ 𝐶𝐶 𝑑𝑑𝑑𝑑 log 𝑛𝑛𝑛𝑛 + 𝜖𝜖𝜖𝜖 𝑑𝑑 log 𝑛𝑛

• First, unrealizable stochastic bandit result
• 𝜖𝜖 was not needed by the algorithm
• If it is known, log 𝑛𝑛 can be removed 

from the second term
• For 𝑘𝑘 ≈ 𝑛𝑛, the bound is tight



• Back to RL, planning with a simulator
• 𝜖𝜖: = sup

𝜋𝜋
inf
𝜃𝜃

𝑄𝑄𝜋𝜋 − Φ𝜃𝜃 ∞

• Can we find a 𝛿𝛿 = 𝐶𝐶𝐶𝐶 𝑑𝑑/ 1 − 𝛾𝛾 2-
optimal policy with poly(1

𝜖𝜖
, 1
1−𝛾𝛾

,𝑑𝑑)
queries?

• Answer (LWSz): Yes. 
– API, with least-squares regression, to 

predict action-values using rollouts from a 
“core set” obtained by optimizing 𝑔𝑔 𝜌𝜌 .



Details

• #iterations: 𝑘𝑘 = log …
1−𝛾𝛾

• #rollouts:       𝑚𝑚 = log …
2𝜖𝜖2 1−𝛾𝛾 2

• #steps in rollout: 𝑛𝑛 = log …
1−𝛾𝛾

• Queries: 𝑘𝑘𝑘𝑘𝑘𝑘 𝒞𝒞 = �𝑂𝑂 𝑑𝑑
𝜖𝜖2 1−𝛾𝛾 4



• “API, with least-squares regression, to 
predict action-values using rollouts from 
a “core set” obtained by optimizing 
𝑔𝑔 𝜌𝜌 .”

• Why this way?
– Rollouts, core set: Obvious choice given 

work on bandits
– For AVI we would need to deal with the max 

in setting up the regression problem 
(YW’19)

– No max  better query complexity



• Question: What if only 𝑄𝑄∗ ≈ Φ𝜃𝜃?
• AVI/API is doomed!

𝜇𝜇 is the uniform distribution



Alternative approach:
Approximate Linear Programming



Method

1. Reduce # variables using 𝑉𝑉 = Φ𝜃𝜃.
2. Reduce # constraints by keeping 

constraints at a core set 𝒞𝒞 ⊂ 𝒮𝒮
3. Choose 𝒞𝒞 such that ∀𝑠𝑠 ∈ 𝒮𝒮, 

𝜙𝜙 𝑠𝑠 = ∑𝑠𝑠′∈𝒞𝒞 𝜆𝜆 𝑠𝑠′ 𝜙𝜙(𝑠𝑠𝑠) with 𝜆𝜆 ≥ 0.



Theorem (LBSz’18):
Let 𝜃̂𝜃 be the output. Then:

𝑉𝑉∗ − Φ𝜃̂𝜃 1,𝑐𝑐 ≤ 𝐶𝐶
inf
𝜃𝜃

V∗ − Φ𝜃𝜃 ∞

1 − 𝛾𝛾

with a universal constant 𝐶𝐶 > 0.



Theorem (w. Roshan Shariff, in prep.):

Query complexity to get an 

𝛿𝛿 = 𝐶𝐶𝐶𝐶 𝑑𝑑/ 1 − 𝛾𝛾 2-optimal action 

at some state is

poly(1
𝜖𝜖

, 1
1−𝛾𝛾

,𝑑𝑑, |𝒞𝒞|).



Beyond worst-case? 

Yes: 𝑑𝑑𝜖𝜖 can be reduced if Φ is “nice”
What makes a feature map nice?

Blow-up factor: 
Allow algorithms 𝑞𝑞 queries. 

How much does the approximation error 
blow up? 𝜆𝜆𝑞𝑞 Φ



Proposition:
𝜆𝜆𝑞𝑞 Φ = min

𝐶𝐶⊂ 𝑘𝑘
𝐶𝐶 =𝑞𝑞

max
𝑖𝑖

𝜙𝜙 𝑖𝑖 Φ𝐶𝐶

𝑥𝑥 𝐴𝐴 ≔ inf{∑𝑗𝑗 𝑢𝑢𝑗𝑗 : 𝑥𝑥 = ∑𝑗𝑗 𝑢𝑢𝑗𝑗𝑎𝑎𝑗𝑗 ,𝑢𝑢𝑖𝑖 ∈ ℝ}

“gauge fn. of 𝑥𝑥 w.r.t co{𝑎𝑎1, … ,𝑎𝑎𝑞𝑞 ,−𝑎𝑎1, … ,−𝑎𝑎𝑞𝑞}”

Note: 𝑥𝑥 𝐴𝐴 ≤ min
𝜌𝜌

𝑥𝑥 𝐺𝐺𝐴𝐴
−1(𝜌𝜌).

Refines Zanette et al. 19



Other bandit results
• Infinite action sets:

– Covering argument, replace log 𝑘𝑘 with 𝑑𝑑.

• Ghosh et al’17: Cheap linearity test:   
𝑅𝑅𝑛𝑛 ≤ min 𝑑𝑑, 𝑘𝑘 𝑛𝑛

• Contextual case; LinUCB?
– Gopalan et al’16 𝕖𝕖 2 ≈ 𝜖𝜖. 
– Needs modification! Needs knowledge of 
𝜖𝜖. Refinement of Jin et al.’19



Approximately linear MDPs  (𝑄𝑄𝜋𝜋 ≈ Φ𝜃𝜃𝜋𝜋)
– Avila-Pires, Sz’16: 

• 𝒫𝒫 ≈ ℛ𝒬𝒬; solve compressed model ⇒𝑈𝑈∗

• errors at 𝑉𝑉∗, 𝑉𝑉�𝜋𝜋, 𝑈𝑈∗ matter only!

– Yang and Wang’19a: discounting, “feature 
regularity” (anchors), incomparable result

– Yang and Wang’19b: online RL, finite 
horizon

– Jin et al.’19: online RL, finite horizon (LSVI)



With 𝑄𝑄∗ ≈ Φ𝜃𝜃

– Zanette et al.’19 
Finite-horizon backward computation; 
multiplicative error propagation! 

– Du et al.’20: Deterministic MDPs. 
Find optimal policy when 
approximation error is very small



Summary
• Models arise because of the need for “compression”

– Not optional
– Long history

• Good model  good performance? How good?
• Many modeling assumptions; comparable vs. incomparable
• Even under strong assumptions graceful degradation is not trivial to 

obtain
– To control query complexity, we had to open the “black box”!

• Linear function approximation
– Core sets/good extrapolation are key: How to get them? Implications for 

feature learning?
– Not all feature maps are born equal; 𝑑𝑑 is upper bound

• Do we need to know the level of misspecification? Oh no!
• Beyond linear function approximation?
• Modeling policies?



Details

• #iterations: 𝑘𝑘 =
log 1

𝜖𝜖 𝑑𝑑
1−𝛾𝛾

• #rollouts:       𝑚𝑚 =
log 2𝑘𝑘 𝒞𝒞

𝛼𝛼
2𝜖𝜖2 1−𝛾𝛾 2

• #steps in rollout: 𝑛𝑛 =
log 1

𝜖𝜖 1−𝛾𝛾
1−𝛾𝛾

• Queries: 𝑘𝑘𝑘𝑘𝑘𝑘 𝒞𝒞 = �𝑂𝑂 𝑑𝑑
𝜖𝜖2 1−𝛾𝛾 4



Wang et al 20: 
FAPP closed under optimistic 
improvement.
No misspecification



• Ancient history
• Fox, B. L. (1973). Discretizing Dynamic Programs. J. Optimization Theory 

Appl.
• Hinderer, K. (1978). On Approximate Solutions of Finite-Stage Dynamic 

Programs. Proceedings of the International Conference on Dynamic 
Programming

• Morin, T. L. (1978). Computational Advances and Reduction of 
Dimensionality in Dynamic Programming: A Survey. Proceedings of the 
International Conference on Dynamic P

• Ward Whitt. Approximations of dynamic programs, I. Mathematics of 
Operations Research, 3(3):231–243, 1978.

• Schweitzer & Seidmann, JMAA, 1985
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