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What is the Landau damping? (I)

Roughly speaking: damping of spatial oscillations in a
collisionless plasma close to a spatially homogeneous steady
state.
Predicted by Landau in a famous paper in 1946 on the basis of
a linearized study of the Vlasov-Poisson equation.
(The other main contribution of Landau to plasma physics:
Landau-Coulomb equation for collisional plasma 1936.)
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What is the Landau damping? (II)
Vlasov-Poisson-Landau equation (1936)

∂f
∂t

+ v · ∇x f + F [f ] · ∇v f =
logΛ

2πΛ
QL(f , f ) Λ ∼ 102 − 1030

For very long time (O(Λ/ logΛ)), dissipative phenomena,
increase of entropy and (slow) cvg to Maxwellian
But Landau 1946 made a much more subtle prediction:
“stability” of many homogeneous equilibria (not necessarily
gaussians) in shorter times (O(1)), by means of purely
conservative mechanisms.
Observed (with exponential rate)! Stunned the physics
community: relaxation without dissipation (hamiltonian PDE)
CM-Villani: first proof of the Landau damping for the
non-linear Vlasov equation, global in time (or “quasi-global” for
Coulomb-Newton interaction).
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Many-particle system
System of N interacting particles

d2

dt2 xi =
∑
j 6=i

F (xj − xi ), F = −∇φ, 1 ≤ i ≤ N

Interaction potential φ with long-range interaction:
in dim. 3, Coulomb: φ(r) = r−1, Newton: φ(r) = −r−1, other
smoother mathematical models. . .
Limit N → +∞ on f (t, x , v) ≥ 0 probability density:

Very low density: free transport eq. ∂t + v · ∇x f = 0;
Low density: Vlasov Eq.

∂t f + v · ∇x f − (∇φ ∗ ρ[f ])∇v f = 0 ρ[f ](t, x) =

∫
v
f dv

Long-time collision correction: cf. Landau-Coulomb eq.. . .
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The Vlasov-Poisson equation (I)

∂t f + v · ∇x f − (∇φ ∗ ρ[f ]) · ∇v f = 0

Modelization:
Repulsive φ ≥ 0 (cf. Coulomb): gaz of electrons in a plasma
(heavy ions, no relativistic effects);
Attractive φ ≤ 0 (cf. Newton): gaz of stars (!) in galactic
dynamics (very large scale).

Cauchy theory:
Lions-Perthame: weak solutions in L∞(R3 × R3) with
polynomial moments (key tool: averaging lemmas);
Pfaffelmoser, Schaeffer, Bouchut-Golse-Pallard: Classical
solutions by characteristics methods (needs compact support).

Still incomplete but important progress. But it does not tell much
about the dynamics?
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The Vlasov-Poisson equation (II)

∂t f + v · ∇x f − (∇φ ∗ ρ[f ]) · ∇v f = 0

Transport equation: time-reversible, preservation of entropy.
Any spatially homogeneous f (v) is stationary with vanishing
force field. (More general stationary states: “BGK” waves. . . )
Landau damping (LD): stability of homogeneous profiles f (v)
and “homogeneization” in their vicinity
A tentative picture of time-scales from physics: Lagmuir waves
/ Landau damping / regularization by diffusion (?) / entropic
convergence / appearance of correlations. . .
Indeed study of Landau purely linearized and LD is
controversial at the non-linear level since Landau: global in
time? rate (exponential, polynomial)? for gravitation
(Lynden-Bell’62)? explanation?
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Physical interpretations
Wave-particle interaction:

Less known interpretation in terms of phase mixing (Van
Kampen, Case, 1950’)
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Conceptual difficulty (I)

Dissipative behavior but equation is time-reversible

Some answers: quasi-modes Van Kampen, add noise,
coarse-graining. . .
Our answer: Physically information still stored in large
oscillations of the density distribution, not in observables.
Lynden-Bell: “A [galactic] system whose density has achieved
a steady state will have information about its birth still stored
in the particular velocities of its stars”
Mathematically weak convergence (dual of dispersion, the
other key relaxation mechanism for reversible PDEs: here
dispersion in frequency space!)
Basic example: u(t, x) = e itx ui (x)
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Conceptual difficulty (II)

Why would the large-time behavior of a nonlinear conservative
equation be accurately predicted by the linearized system?

Linearized case, ft → 〈fi 〉(v) space-averaging of the initial
datum, preserved (infinitely many conservation laws)
Nonlinear case: no such conservation laws; no reason to cvg!
The quasilinear theory of LD “establishes” convergence via ad
hoc diffusion eq. in velocity space for statistical averages. . .
Still the original work of Landau was in a linearized setting,
and almost all works since on LD as well! Therefore validity of
LD in the long-time is a debate among physicists. . .
Our answer: homogeneization true for linearized Vlasov, and
“KAM”-like feature of this ∞-dim. hamiltonian close to this
“integrable case” (cf. Nash-Moser flavor in our proof)
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Conceptual difficulty (III)

Analyticity of the data versus filamentation!

What is filamentation? Velocity regularity of solution
ft(x , v) = fi (x − vt, v) of free transport grows in time
whatever the initial regularity. . .
Landau’s computation is based on the analyticity of the
“background” distribution f 0(v) around which he linearizes
But in the nonlinear pb, distribution evolves in time and
depends on x : its analytic norm diverges, at best exp. fast
Our answer: construct “gliding” analytic norms with a
time-shift (as for free transport)
Subdifficulty related: impossible to work only along
characteristics of free transport to get rid of filamentation
because the force depends on ρ! → combine eulerian &
lagrangian viewpoints with scattering-like estimates
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Existing results

Orbital stability: many works over past 15 years (Wolanski,
Strauss, Guo, Rein. . . ): Linear stability is easy, nonlinear
stability much more tricky
Linear LD: Saenz, Degond, Maslov-Fedoryuk. . .
↪→ We revisit linear LD without spectral theory, and also
extend it from f 0(v) to a damped f 0(t, x , v)

Nonlinear LD: Caglioti-Maffei, Hwang-Velazquez: existence
of some damped solutions (no information about which and
how many initial data would yield a damped solution. . . )
Although a short list, kind of exhaustive for math. study of LD!
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Numerics (I) (performed by Francis Filbet)

Electric field (1-dim, repulsive, perturbation of Maxwellian)
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Numerics (II) (performed by Francis Filbet)

Gravitational field (1-dim, attractive, perturbation of Maxwellian)
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Numerics (III) (performed by Francis Filbet)

Filamentation (repulsive case). . .

Other simulations on the webpage of Francis Filbet. . .
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The linear damping

(LVP) ∂t f + v · ∇x f − (∇xφ ∗ ρf ) · ∇v f 0(v) = 0

with f 0 analytic, x ∈ Td
L (torus with size L), v ∈ Rd .

Proposition (CM-Villani, 2009)

Sufficient conditions for damping:
(1) Either(

max
k 6=0
|φ̂(k)|

) (
sup
|σ|=1

∫ +∞

0

∣∣∣f̃ 0(rσ)
∣∣∣ r dr

)
<

1
4π2

(good for Newton interaction below Jeans scale)
(2) Or φ̂ ≥ 0 and z F ′(z) < 0 for any one-dimensional marginal F
of f 0 (good for Coulomb interaction at all scales)
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Non-linear Landau damping

(NLV ) ∂t f + v · ∇x f − (∇xφ ∗ ρf ) · ∇v f = 0 x ∈ Td
L , v ∈ Rd

Theorem (CM-Villani, 2009)

Assume (i) f 0(v) and φ satisfy the linear damping condition;

(i) φ is not too singular:
∣∣∣φ̂(k)

∣∣∣ ≤ C
|k |1+γ

, γ > 1;

(ii) δ := ‖|fi − f 0‖| ≤ ε << 1: exponential localization in v , k , η.
Let f solve NLV with f (t = 0) = fi .

Then (a) ρ[f ](t, x)
t→±∞−−−−→ c strongly (exp. fast);

(b) f (t, x , v) ⇀ f±∞(v) as t → ±∞ weakly;

(c) 〈f 〉(t, v)
t→±∞−−−−→ f±∞(v) strongly (space average).

Coulomb-Newton case γ = 1: same for t = O(A1/δ)
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Some new ingredients

Mixed Lagrangian/Eulerian approach: estimate simultaneously
the density and the trajectories
Estimate regularity by comparison to the solution of free
transport (gliding regularity: energy goes from large to small
scales)
Use new analytic norms that are well adapted to the geometry
of the problem, and composition (!) as well
Some new functional inequalities, quantifying how a
background reacting to a plasma lend regularity to the plasma
(flavor of averaging lemma but seems different)
Understanding the destabilizing features (math. estimates lead
us to study plasma echos)
Newton scheme (as in KAM!) but no regularization
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What do we learn from this result?

ft converges for all time without appealing to extra
randomness;
f (t, x + vt, v) remains close to f 0(v) in analytic norms (“super
orbital stability”);
limit not determined by conservation laws or thermodynamical
issues; keeps memory of initial datum and interaction;
convergence “for no reason”, just because near the “completely
integrable” linear case: “KAM spirit”
A whole neighborhood (in analytic topology) of f 0 is filled
with homoclinic/heteroclinic (in weak topology) trajectories;
From our proof: constructive scheme to approximate the
whole dynamics and the limits f±(v) in terms of δ;
Coulomb/Newton interaction is critical, as well as analyticity
(echos. . . )!
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Basic fundamental tool: Fourier transform

Consider f = f (x , v) where x ∈ Td
L := Rd/(LZd ) and v ∈ Rd

We denote

f̂ (k , v) :=

∫
Td

L

e−2iπ k
L ·x f (x , v) dx , k ∈ Zd

f̃ (k , η) :=

∫
Td

L×Rd
e−2iπ k

L ·x e−2iπη·v f (x , v) dx dv , k ∈ Zd , η ∈ Rd

For simplification, in most of the computations in the sequel, set
L = 1. . .
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Phase mixing for the free transport (I)

∂f
∂t + v · ∇x f = 0 in Td

L × Rd with initial data fi (x , v)

total mass is of course preserved;
also zero mode (k = 0) is preserved:

∀ v ∈ Rd ,

∫
f (t, x , v) dx =

∫
fi (x , v) dx

Fourier transform:

f̃ (t, k , η) = f (t, k , η + kt)

Hence convergence to zero for any k 6= 0, with a rate given by
the smoothness of fi in v (analyticity → exponential rate!)
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Phase mixing for the free transport (II)

Free transport “cascade”

Regularity improves in x , deteriorates in v
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Recalls on the linearized Vlasov equation (I)

Consider the VP equation

∂f
∂t

+ v · ∇x f + F [f ] · ∇v f = 0, x ∈ Td , v ∈ Rd

Linearize around a spatially homogeneous profile f 0 = f 0(v):
F [f 0] = 0 and therefore:

∂f
∂t

+ v · ∇x f + F [f ] · ∇v f 0 = 0

Recall that
F [f ] = −(∇xφ) ? ρ[f ]

where
ρ[f ](t, x) =

∫
Rd

f (t, x , v) dv
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Recalls on the linearized Vlasov equation (II)

Duhamel formulation along free transport:

f (t, x , v) = fi (x − vt, v) +

∫ t

0
(∇φ? ρ)(s, x − v(t − s)) ·∇v f 0(v) ds

Integrate in v and Fourier transform in x :

ρ̂(t, k) = f̃i (k , kt)− 4π2φ̂(k)

∫ t

0
ρ̂(s, k) f̃ 0(k(t − s)) |k |2 (t − s) ds

→ Series of Volterra-like equations decoupled for each mode
k for the density

ϕ(t) = ak(t) +

∫ t

0
Kk(t − s)ϕ(s) ds

Clément Mouhot On the Landau damping. . .
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What do we want to prove?

∂t f + v · ∇x f − (∇xφ ∗ ρf ) · ∇v f 0(v) = 0

with f 0 analytic, x ∈ Td
L (torus with size L), v ∈ Rd .

Proposition (CM-Villani, 2009)

Sufficient conditions for damping:
(1) Either(

max
k 6=0
|φ̂(k)|

) (
sup
|σ|=1

∫ +∞

0

∣∣∣f̃ 0(rσ)
∣∣∣ r dr

)
<

1
4π2

(2) Or φ̂ ≥ 0 and z F ′(z) < 0 for any one-dimensional marginal F
of f 0
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An elementary computation (assumption (1))

Assumption (1) means for the kernel Kk of the Volterra equation of
any k mode: For some λ > 0:∫ +∞

0
e2πλs Kk(s) ds < 1− κ, κ ∈ (0, 1)

Then by simple computations one gets∫ +∞

0
e2πλt ϕ(t) dt ≤

∫ +∞
0 e2πλt ak(t) dt

1−
∫ +∞
0 e2πλs Kk(s) ds

≤ 1
κ

∫ +∞

0
e2πλt ak(t) dt

Therefore exponential decay of the modes of the density in terms of
the initial regularity in v
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Analysis of a Volterra equation (assumption (2))

Let us first discuss informally:

ϕ(t) = ak(t) +

∫ t

0
Kk(t − s)ϕ(s) ds

Laplace transform: ϕL = aL
k + KL

k ϕ
L

Hence formally ϕ should be given by

ϕ = (Laplace)−1
(

aL

1− KL

)
We expect the correct condition is: KL does not approach 1 in a
strip including some {0 < <ξ < λ} in the complex plane

Clément Mouhot On the Landau damping. . .



Introduction
The linearized study
The non-linear study

Perspectives

Phase mixing for the free transport
The linearized Vlasov equation
Construction of suitable analytic norms
The linearized study revisited

Analysis of a Volterra equation (assumption (2))
More precise statement:

ϕ(t) = a(t) +

∫ t

0
K (t − s)ϕ(s) ds

(i) Assume K (t) = O(e−2πλt)

(ii) Define L(ξ) :=
∫ +∞
0 e2πξ∗t K (t) dt and assume (for some

ε > 0)

(L) ∀ ξ ∈ {−ε < <ξ < λ}, |L(ξ)− 1| ≥ κ > 0

Then for all λ′ < λ:

sup
t≥0
|ϕ(t)|e2πλ′t ≤ C (λ, λ′, κ) sup

t≥0

(
|a(t)|e2πλt

)
Clément Mouhot On the Landau damping. . .
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Application to the case of assumption (2)

It remains to prove the following proposition:
The condition

(L) ∀ ξ ∈ {−ε < <ξ < λ}, |L(ξ)− 1| ≥ κ > 0

is satisfied as soon as one of the following assumptions is true:
(1) Either(

max
k 6=0
|φ̂(k)|

) (
sup
|σ|=1

∫ +∞

0

∣∣∣f̃ 0(rσ)
∣∣∣ r dr

)
<

1
4π2

(2) Or φ̂ ≥ 0 and z F ′(z) < 0 for any one-dimensional marginal F
of f 0 (good for Coulomb interaction at all scales)
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Requirements

Analyticity is compulsory in order to get exponential decay
(remark that however at the linear level one could relax the
regularity at the price of a slower decay)
Analytic norms based on Fourier seem well-adapted in the x
variable in view of the linearized equation
Analyticity of f 0 (and therefore f in the non-linear case)
needed, but we shall need also analytic estimate (in v) of the
characteristics, which are unbounded functions of v , therefore
the analytic norm in v should be of L∞ type rather
The “gliding regularity” means that we should include a
time-shift in the definition of the norm, accounting for the
“cascade” of free transport
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Analytic norms in one variable

Two natural families of analytic norms:

Cλ;p norm:
∑
n∈Nd

λn

n!
‖∇nf ‖p

Fλ norm:
∑
k∈Zd

e2π|k||f̂ (k)|

Fλ and Cλ,∞ are algebra and as a consequence will satisfy nice
composition properties.
Example:

‖f ◦ (aId + G )‖Yλ ≤ C ‖f ‖Ya(λ+ν)

where ν = ‖G‖Yλ
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Analytic norms in two variables

Of course one could define Cλ;p and Fλ with two variables. From
the previous requirements discussion we shall hydridize these two
spaces:

‖f ‖Zλ,µ;p :=
∑
k∈Zd

∑
n∈Nd

λn

n!
e2πµ|k|‖∇n

v f̂ (k , v)‖Lp(dv)

Remark: In the proof we need in fact even more flexibility, with an
additionnal index for a Sobolev correction in the x variable:

‖f ‖Zλ,(µ,γ);p :=
∑
k∈Zd

∑
n∈Nd

(1 + |k |)γ λ
n

n!
e2πµ|k|‖∇n

v f̂ (k , v)‖Lp(dv)

For p =∞, this is still an algebra!
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Gliding norms (I)

Now we introduce the time-shift, the guiding principle is (remember
the discussion on the free transport):

‖f ‖Y∗∗τ = ‖f ◦ S0
τ ‖Y∗∗0 (and thus also ‖f ‖Y∗∗t+τ

= ‖f ◦ S0
τ ‖Y∗∗t )

Therefore we obtain

‖f ‖Zλ,(µ,γ);p
τ

:=
∑
k∈Zd

∑
n∈Nd

(1 + |k |)γ λ
n

n!
e2πµ|k|‖(∇v + 2iπτk)n f̂ (k , v)‖Lp(dv)

For p =∞, still an algebra!
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Gliding norms (II)

We have subtle composition properties like:

‖f (x + bv + X , av + V )‖Zλ,(µ,γ);p
τ

≤ |a|−d/p‖f ‖Zα,(β,γ);p
σ

with (!)

α = λ|a|+ ‖V ‖Zλ,µτ , β = µ+ λ|b + τ − aσ|+ ‖X − σV ‖Zλ,µτ

(Composition properties crucial for treating characteristics)
Finally it can be proved (fastidious!) some comparison results with
more “usual norms” such as for instance:

‖f ‖λ,µ,β = sup
k,η

(
|f̃ (k , η)| e2πλ|η| e2πµ|k|

)
+

∫∫
Td×Rd

|f (x , v)| e2πβ|v | dv dx .

Clément Mouhot On the Landau damping. . .



Introduction
The linearized study
The non-linear study

Perspectives

Phase mixing for the free transport
The linearized Vlasov equation
Construction of suitable analytic norms
The linearized study revisited

The linearized theorem reframed
Assume ‖∇φ‖L1 ≤ CW , and fi (x , v) such that

(i) (L) holds for some constants λ, κ > 0
(ii) ‖f 0‖Cλ;1 ≤ C0

(iii) ‖fi‖Zλ,µ;1 ≤ δ for some µ > 0

Then for any λ′ < λ, µ′ < µ,

sup
t∈R

∥∥f (t, · )
∥∥
Zλ
′,µ′;1

t
≤ C δ

for some constant C = C (d ,CW ,C0, λ, λ
′, µ, µ′, κ). In particular,

ρ =
∫

f dv satisfies

sup
t∈R

∥∥ρ(t, · )
∥∥
Fλ′|t|+µ′ ≤ C δ
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Ideas of the proof
First estimate

sup
t≥0

∥∥ρ(t, · )
∥∥
Fλ′t+µ′ = sup

t≥0

∑
k∈Zd

e2π(λ′t+µ′)|k||ρ̂(t, k)|

by summing the estimate we have for each mode and using the
margin on µ to get k-summability
Then estimate

sup
t∈R

∥∥f (t, · )
∥∥
Zλ
′,µ′;1

t

using the Hölder like inequality

‖fg‖Zλ′,µ′;1t
≤ ‖f ‖Zλ′,µ′;∞t

× ‖g‖Zλ′,µ′;1t

and the fact that Zλ
′,µ′;1

t = Fλ′t+µ′ for functions only of x .
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Abstract Newton scheme (I)

∂t f = Q(f ) around stat. solution f 0 (Q(f 0) = 0)
Write Cauchy problem with initial datum fi ' f 0 as:

Φ(f ) :=
(
∂t f − Q(f ), f (0, · )

)
= (0, fi ).

Newton iteration: start from f 0 and solve inductively
Φ(f n−1) + Φ′(f n−1) · (f n − f n−1) = 0 for n ≥ 1:

∂th1 = Q ′(f 0) · h1 h1(0, · ) = fi − f 0

∀n ≥ 1, ∂thn+1 = Q ′(f n)·hn+1+
[
Q(f n)−∂t f n], hn+1(0, · ) = 0.

By substraction, for n ≥ 1 this is the same as

∂thn+1 = Q ′(f n) · hn+1 +
[
Q(f n−1 + hn)− Q(f n−1)− Q ′(f n−1) · hn

]
Clément Mouhot On the Landau damping. . .
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Abstract Newton scheme (II)

∂thn+1 = Q ′(f n) · hn+1+
[
Q(f n−1 + hn)− Q(f n−1)− Q ′(f n−1) · hn

]
hn+1(0, · ) = 0

Green: linearized semi-group around solution of the previous
step
Red: Source term quadratic in terms of the previous step if “Q
twice differentiable”
Blue: Apart from the first step, zero initial data
So it replaces a nonlinear problem by an infinite system of
linearized problems with source term
BUT linearization around a non-stationnary solution! Yields
new difficulties.
Formally if the linearized semi-group can be solved correctly,
we expect convergence like δ2

n
, typical of a Newton scheme
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Concrete Newton scheme for our problem

f n = f 0 + h1 + . . .+ hn,

First step:

∂th1 + v · ∇xh1 + F [h1] · ∇v f 0 = 0, h1(0, · ) = fi − f 0

n ≥ 1:

∂thn+1+v ·∇xhn+1+F [f n] · ∇vhn+1+F [hn+1]·∇v f n = −F [hn] · ∇vhn

hn+1(0, · ) = 0

In Nash-Moser approach: regularization operators at each step.
Here no (we need the full power of the convergence), but we shall
allow summable losses of regularity.
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New issues to be solved

Initial data enters through the first step only in the scheme,
and the smallness δ should propagate
First step is exactly the linearized study of the second course!
Therefore we need the linearized stability condition (L).
For n ≥ 1, 3 new difficulties:

1 Green: Perturbation of the free transport characteristics by
F [f n] (force field small but not going to 0 as n→∞)

2 Yellow: The background in the reaction term is now depending
on t, x , v → growth of its ∇v !

3 Red: An additionnal quadratic source term, which should yield
a quadratic error in some norm if we want the scheme to
converge very fast
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General strategy (I)

We propagate a number of estimates along the scheme; the most
important are (slightly simplifying)

sup
τ≥0

∥∥∥∥∫
Rd

hn(τ, · , v) dv
∥∥∥∥
Fλnτ+µn

≤ δn,

sup
t≥τ≥0

∥∥∥hn(τ,Ωn
t,τ
)∥∥∥
Zλn(1+b),µn ;1

τ− bt
1+b

≤ δn, b = b(t) =
B

1 + t
,

∥∥∥Ωn
t,τ−Id

∥∥∥
Zλn(1+b),(µn,γ);∞
τ− bt

1+b

≤ C

(
n∑

k=1

δk e−2π(λk−λn+1)τ

2π(λk − λn+1)2

)
min{t−τ ; 1}.

Ωn
t,τ denote the (finite-time) scattering operators, see below

Remark: Stratification of all the estimates. . .
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General strategy (II)
Step 1. estimate Ωn − Id (the bound should be uniform in n);
Step 2. estimate Ωn − Ωk (k ≤ n − 1; the error should be
small when k →∞);
Step 3. estimate ∇Ωn − Id;
Step 4. estimate (Ωk)−1 ◦ Ωn;
Step 5. estimate hk and its derivatives along the composition
by Ωn;
Step 6. estimate ρ[hn+1];
Step 7. estimate F [hn+1] from ρ[hn+1];
Step 8. estimate hn+1 ◦ Ωn;
Step 9. estimate derivatives of hn+1 composed with Ωn;
Step 10. show that for hn+1, ∇ and composition by Ωn

asymptotically commute.
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Implication of the convergence of the scheme
The goal is to prove sthg like

∀ t ≥ 0, ‖hn(t, ·)‖Zλn,µn
t

≤ δn

where δn converges very fast to 0 (summable) and λn decaying to
λ∞ > 0, µn decaying to µ∞ > 0
Then we deduce by summation that f n = f 0 + h1 + . . .+ hn → f∞

with
∀ t ≥ 0, ‖f∞(t, ·)‖Zλ∞,µ∞t

≤ C δ

This concludes the proof of the theorem as in the (reframed)
linearized case.
Also it allows for rigorous expansion of the solution, and therefore
its limiting profiles, by computing the solution to a finite number of
linearized problems.
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Remark on the short-time estimate

As a preliminary, in our proof, we shall need small times estimates

Cauchy-Kowalevskaya style problem (loss of one derivative)

To compensate for the loss of one derivative, allow for a loss of
regularity:

λ(t) = λ− Kt, µ(t) = µ− Kt

and use

d
dt

+
∣∣∣∣∣
t=τ

‖f ‖Zλ(t),µ(t);p
τ

≤ − K
1 + τ

‖∇f ‖Zλ(τ),µ(τ);p
τ
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The characteristics method

Linearize around f̄ :

∂t f + v · ∇x f + F [f ] · ∇v f̄ + F [f̄ ] · ∇v f = 0

We want to get rid of the last term by characteristics method:
(X ,V )s,t(x , v) position/velocity at time t, starting at time s from
(x , v), driven by F [f̄ ] (non autonomous):

dX
dt

= V ,
dV
dt

= F [X ]

Hence: ∂t f (t,X0,t ,V0,t) = ∂t f| + v · ∇x f| + F · ∇v f| and so

f (t, x , v) = fi (Xt,0(x , v),Vt,0(x , v))

+

∫ t

0
F [f ](Xt,s(x , v)) · ∇v f̄ (s,Xt,s(x , v),Vt,s(x , v)) ds
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Finite-time scattering

F = −∇φ ? ρ, with ‖ρt‖Fλt+µ ≤ C
Ss,t = (Xs,t ,Vs,t): characteristics induced by F
S0

s,t = (x + v(t − s), v): characteristics of free transport
Ωt,s = St,s ◦ S0

s,t “scattering operators” (be careful: not
semigroup)
the kind of estimates we establish:

‖Ωt,s − Id‖Zλ′,µ′s′
≤ C ′ min{(t − s), 1} e−αs

Uniform in t >> s, small for s ∼ t and s → +∞
Proof: Fixed point theorems combined with properties of Z
spaces. . .
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The bilinear term to be estimated

σ(t, x) =

∫ t

0

∫
Rd

(
F [f ] · ∇v f̄

)(
τ, x − v(t − τ), v

)
dv dτ.

This quantity can be interpreted as follows:
If particles distributed according to f exert a force on particles
distributed according to f̄ , then σ is the variation of density

∫
f dv

caused by the reaction of f̄ on f
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Regularity extorsion in short times
Straight trajectories must be replaced by characteristics (this
reflects the fact that f̄ also exerts a force on f )
→ source of considerable technical difficulties
Key tool (together with finite-time scattering estimates) used
to overcome them: regularity extorsion in the short time
(reminding somehow velocity-averaging lemmas)
Here is a simplified version:

‖σ(t, · )‖Ḟλt+µ ≤
∫ t

0

∥∥F [f (τ, · )
]∥∥
Fλ[τ−b(t−τ)]+µ,γ

×
∥∥∇f (τ, · )

∥∥
Zλ(1+b),(µ,0);1
τ−bt/(1+b)

dτ.

Observe that the regularity of σ is better than that of F [f ],
with a gain that degenerates as t →∞ or τ → t.

Clément Mouhot On the Landau damping. . .
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Regularity extorsion in long times

We show that if f̄ has a high gliding regularity, then the decay of σ
in large time is better than what would be expected:

‖σ(t, · )‖Ḟλt+µ ≤
∫ t

0
K (t, τ)

∥∥F [f (τ, · )
]∥∥
Fλτ+µ,γ dτ,

where

K (t, τ) =

[
sup

0≤s≤t

(∥∥∇v f̄ (s, · )
∥∥
Zλ̄,µ̄;1

s

1 + s

)]
K0

K0 = (1 + τ) sup
k 6=0, ` 6=0

e−2π(λ̄−λ)|k(t−τ)+`τ | e−2π(µ̄−µ)|`|

1 + |k − `|γ
.
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The time-response kernel (I)

Recall

‖σ(t, · )‖ ˙Fλt+µ ≤
∫ t

0
K (t, τ)

∥∥F [f (τ, · )
]∥∥
Fλτ+µ,γ dτ,

where

K (t, τ) =

[
sup

0≤s≤t

(∥∥∇v f̄ (s, · )
∥∥
Zλ̄,µ̄;1

s

1 + s

)]
K0

K0 = (1 + τ) sup
k 6=0, ` 6=0

e−2π(λ̄−λ)|k(t−τ)+`τ | e−2π(µ̄−µ)|`|

1 + |k − `|γ
.
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The time-response kernel (II)

The kernel K0(t, τ), together with an approximate upper bound for
α = 0.5 and t = 10, t = 100, t = 1000.
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Stabilization by echoes (I)

Kernel K (t, τ) has integral O(t) as t →∞ → risk of violent
unstability
But it is also more and more concentrated on discrete times
τ = kt/(k − `)
This is the effect of plasma echoes, discovered and
experimentally observed in the sixties.
The stabilizing role of the echo phenomenon, related to the
Landau damping, is uncovered in our study.
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Stabilization by echoes (II)

Case γ < 1 → subexponential response, so that it can be
controlled by an arbitrarily small loss of gliding regularity, at
the price of a gigantic constant, which later will be absorbed
by the ultrafast convergence of the Newton scheme.
In the end, part of the gliding regularity of f̄ has been
converted into a large-time decay.
Case γ = 1: exponential growth due to echoes!
Hence analyticity seems the critical regularity for the Landau
damping in the Coulomb/Newton case (whereas L∞ is the
critical regularity in the Cauchy theory of Lions-Perthame. . . )
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Coulomb-Newton case under more investigation;
Work in progress to try to prove the inviscid damping for
two-dimensional incompressible fluids (asymptotic stability and
“attraction” of very large scale structures like radially
symmetric vortex and shear flows);
Stability of BGK waves in a plasma. . .
Wigner-Poisson / Schrödinger-Poisson? Link with dispersion
results?. . .
Link with weak KAM theory?. . .
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