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Burgers turbulence is the study of the 
statistics of shocks in Burgers equation with 

random intial data or forcing.  The main 
motivation is to provide insights and  rigorous 

results on turbulence  in  fluids (Burgers, 1940).

 It is a vastly simplified problem, but still of  
interest as a benchmark.  There are  fascinating 
links  to problems in statistics, kinetic theory  

and other areas of mathematical physics.



We study the following general question. Let  f  
be a  convex flux function. What can we say 

about the statistics of the entropy solution to 
the scalar conservation law 

when the initial data is random?

∂tu + ∂xf(u) = 0, x ∈ R, t > 0,



But first a quick refresher on Burgers 
equation. In this case,  f (u)=u/2     2

The  unique entropy  solution, or the Cole-Hopf  
solution, is given by a  variational principle. 

u(x, t) =
x− a(x, t)

t

a(x, t) = argmin+
y

{
U0(y) +

(x− y)2

2t

}

U0(y) =
∫ y

0
u0(s) ds



u (x,t) is the velocity field.  U is called the potential and  
a (x,t) the inverse Lagrangian  function.   The variational 
principle is a geometric recipe that uses  the potential.    

y x a (x,t)a (0,t) 0

Glide parabola  under  U 

U

and find first contact.

o

o
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1)  a (x,t)  is increasing  in   x.

2)  a (x,t)  gives the `correct’‘characteristic  through 
the point (x,t)  in space-time. 

(x, t )

a (x, t ) Space

Time



3) As  a consequence,  u (x,t)  is of bounded variation.  
Jumps in a  give rise to shocks  in u. These correspond 

to `double-touches’ in the geometric principle. 

x

u (x, t)



Numerical experiments with  Brownian  initial 
potential  (white  noise  as  initial  velocity)
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Brownian motion

White  noise



Some fundamental questions

1) How  do we  describe the  n point statistics  for 
u(x,t)? More precisely,  how can we understand the 
shock structure and the coalescence of shocks? 

2)  Can we understand  the fine structure of  u(x,t) -- eg. 
Hausdorff dimension of Lagrangian regular points?

3) How special are these choices of initial data.  In what 
sense are white noise and Brownian motion `typical’?



Both problems have remarkable  exact solutions!

 White noise  initial velocity:  

P. Groeneboom, Brownian motion with a parabolic drift and Airy 
Functions, Prob.Th. Rel. Fields, 81, (1989).   

L. Frachebourg, P. Martin, Exact statistical properties  of the Burgers 
equation, J. Fluid Mech, 417, (2000). 

Brownian motion initial velocity :  

L. Carraro, J. Duchon,  C.R. Acad. Sc. Paris. Math  319, (1994) , 
Ann. IHP Anal. Nonlineaire  15,(1998).

J. Bertoin,   Commun. Math. Phys. 193, (1998).



A first glimpse at Groeneboom’s solution

The one-point distribution  of u at time 1  has density 

p(u) = J(u)J(−u), u ∈ R.

The function J  has an explicit Laplace transform

where Ai(q)  is the (first) Airy function.

∫ ∞

−∞
e−quJ(u) du =

1
Ai(q)

,



Classical Tauberian theorems yield asymptotics  of J  and p

J(u)

0 u
ea1ue−

2
3 |u|3

a  is the first zero of the Airy function. 1

p(u) = J(u)J(−u) ∼ e−
2
3 |u|3 , |u|→∞.



Brownian  motion  as  initial velocity, 
and Levy processes .‘



Brownian motion  as  initial velocity

x x

u u

t=0 t=1

Initial data is a one sided 
Brownian motion (for simplicity).

We  then study u(x,t) - u (0,t).



Generators   of   Markov   processes

A  Markov  process  is characterized by  its transition 
semigroup Q and generator.  For suitable test functions 

For Levy processes we may use Fourier analysis.  That is, 
we consider exponentials as test functions and find

Aeiks = ψ(ik)eiks, k ∈ R.

For example,  if  u(x) is a Brownian motion,  ψ(ik) = −k2

2
.

Aϕ = lim
h↓0

Qhϕ− ϕ

h
.



The building blocks of  our Levy  processes 

- =

Pure  drift 
Increasing 
compound 

Poisson(inverse 
Lagrangian a(x,t))

x xx

Velocity field



The Levy-Khintchine formula 

The  processes we consider have one-sided jumps because 
of the entropy condition.  The multiplier     is called the  

Laplace exponent and has the representation:

ψ(q) =
∫ ∞

0

(
e−qs − 1 + qs

)
Λ(ds), q ∈ C+.

ψ

The  jump measure     describes the jumps in the  
compound Poisson process (in fact,  by taking limits we do 

not  need to assume  that this measure is finite).

Λ



Closure   for   spectrally  negative   processes 

The entropy  solution  to Burgers equation  admits a 
remarkable closure property:   Assume  that the initial data  
is a Levy process  with  only downward jumps (spectrally 

negative).  Then so is  the solution  for every t >0. 

Here   by  the term closure we mean that this class of  
random processes  is  preserved  by the entropy solution. 

This was  observed formally by Carraro and Duchon (1994), and  
proved rigorously by Bertoin (1998). It yields the exact 

solution for Brownian motion initial data, and  a lot more.



The  solution  for  spectrally negative  Levy processes 

x

u

x

u

u(x, 0)

u(x, t)

Entropy solution to 
Burgers equation.

ψ(q, 0)

ψ(q, t)
Closure  theorem

??

Closure  theorem



∂tψ + ψ∂qψ = 0

Levy-Khintchine  formulaψ(q, t)

ψ(q, 0) Λ0

Λt

The   kinetic equation  for  clustering  of  shocks   

Smoluchowski’s  coagulation
equation  with additive kernel

Levy-Khintchine  formula



Assume  the  jump measure     has a density n.  Then the 
Smoluchowski coagulation equation with additive kernel is

Λ

∂tn(t, s) = Q1 −Q2

Q1 =
s

2

∫ s

0
n(t, s′)n(t, s− s′) ds′

Q2 =
∫ ∞

0

s + s′

2
n(t, s)n(t, s′) ds′

If  we take the Laplace  exponent of this equation, we 
obtain Burgers equation. This has long been known (Golovin, 
1963)  but the link with Burgers turbulence is very recent.

Birth

Death



An elementary  argument for  the additive kernel

u

w

v

1)  Since  u is a Levy process, 
shock sizes  are independent of 
spatial location and velocity.

 u + w

2

v + w

2

2)  The shock speed is given by   
the Rankine-Hugoniot condition.
Relative velocity  in a collision is  

the sum of shock sizes. 



It has taken a while for this simple description to 
arise.  We can use it as a basis for a complete 

description of self-similarity in  shock statistics, and  
various `turbulence heuristics’.  Our perspective, 
based on   the closure theorem may be found in:

J. Bertoin, Some aspects of additive coalescents, Proc. ICM 2002.  

G. Menon  and R. Pego,  Commun. Math. Phys., 273 (2007).   

Several precise links between stochastic coalescence 
and  Burgers turbulence  may be found in:



White  noise  as  initial velocity  and  
general convex flux functions.



Despite the elegance of the previous solution, Levy 
processes are too rigid.  The analysis does not apply to:

1) Noise initial data, in particular, for white noise, 
which was the initial motivation for Burgers study.

2) Any scalar conservation law aside from Burgers 
equation,  even for Levy process initial data. 



∂tu + ∂xf(u) = 0, x ∈ R, t > 0,

The Hopf-Lax  formula

The entropy solution to the scalar conservation  law

with convex flux f is given by the Hopf-Lax formula

f ′(u(x, t)) =
x− a(x, t)

t

Here  f*  is the convex dual of f.

a(x, t) = argmin+
y

{
U0(y) + tf∗

(
x− y

t

)}
.



Typical profile  of  solutions

x

u
Rarefactions are nonlinear. This is 
incompatible with Levy processes.



The motivation for our work

1) Groeneboom’s exact solution  is  a spectrally negative 
Markov process (but not Levy). In fact, he computed 

the generator of this process explictly (1988).        

2) In a very interesting formal analysis, Chabanol and 
Duchon, (J. Stat. Phys. 114 (2004) found evolution 

equations (in t) for the generator of  a  velocity field 
that is Markov (in x). Our work relies strongly on this.

3 ) The precise links to coalescence for Levy processes, 
described earlier.   This suggests a unified viewpoint.       



Generators   of   spectrally negative Markov  processes

A spectrally negative Feller process with BV sample 
paths has an infinitesimal generator  of  the  form   

Aϕ(u) = b(u)ϕ′(u) +
∫ u

−∞
n(u, dv) (ϕ(v)− ϕ(u)) .

︸︷︷︸ ︸︷︷︸
Drift  at level u. 

A spectrally negative Feller process has an 
infinitesimal generator  of  the  form   

Jumps  from u to v. 

Sample paths look locally like a Levy process, but 
the infinitesimal `Levy’ characteristics depend on the 

level u.  This allows curved paths for example. 
‘

‘



Closure theorems (Srinivasan, Ph.D thesis 2009)

Thm. 1. Assume the initial velocity u(x,0) is a 
spectrally negative Markov  process. Then  so  is the 

entropy  solution  u(x,t)  for every t>0.   

Thm. 2. Assume the initial potential U(x,0) is a 
spectrally negative Levy  process. Then  the entropy 
solution  is a spectrally negative Markov process for 

every t>0.   

∂tu + ∂xf(u) = 0.

‘

f  strictly convex.



Since the process is Markov, it has an 
infinitesimal generator that depends on (x,t).  
Conceptually, we have the following  picture.  

∂tu + ∂xf(u) = 0.

u(x, 0)

u(x, t)

A(x,0)

A(x,t)

Closure  theorem

??

Closure  theorem



The  `generator`   in  time

First recall the definition of the generator: 

Now define an associated operator (here f is the 
flux function in the scalar conservation law):

Bϕ(u) = −f ′(u)b(u)ϕ′(u)

−
∫ u

−∞
n(u, dv)

f(v)− f(u)
v − u

(ϕ(v)− ϕ(u)) .

Aϕ(u) = b(u)ϕ′(u) +
∫ u

−∞
n(u, dv) (ϕ(v)− ϕ(u)) .



The operator     corresponds to the stochastic 
process  u(x,t)  now viewed as a process in  t.

B

u is not Markov in t, but this works! Simply 
consider how the paths evolve without collisions. 

is  the  speed  at  level u, so we have 

for evolution by the drift.

f ′(u)

f(u)− f(v)
u− v

∂tu = −f ′(u)b(u)

is  the  speed of a shock 
connecting levels u and v.

Similarly, 



The equation of evolution

Consider compatibility of the semigroups in x, t 
generated by the forward Kolmogorov equations 

∂tϕ = Bϕ∂xϕ = Aϕ and

to obtainThat is,  we impose ∂t∂xϕ = ∂x∂tϕ

.

the Lax equation

∂tA− ∂xB = [B,A].



The   general  kinetic equation  for  shock coalescence

The Lax equation expands into a kinetic equation.  For 
simplicity, assume no x dependence (stationarity).



The   kinetic equation  for  clustering  (Burgers)  

ḃ = −b2, ∂tn(u, dv, t) = D(b, n) + Q(n, n)

Q(n, n) =
u− v

2

∫ u

v
n(u, dw)n(w, dv)

−n(u, dv)
∫ v

−∞
n(v, dw)

(
u− w

2

)

−n(u, dv)
∫ u

−∞
n(u, dw)

(
w − v

2

)
.

Drift Collisions
︸︷︷︸ ︸︷︷︸

Birth

Death

D(b, n) =
(

u− v

2

)
(b(u)∂un− ∂v(b(v)n))



Self-similar  solution  for  white  noise (Groeneboom ’88)  

j(q) =
1

Ai(q)
, k(q) = 2 log(j)′′ = −2

(
Ai′(q)
Ai(q)

)′
.

where J and K have Laplace transforms:

The profile  decomposes into:

n∗(u, v) =
J(v)
J(u)

K(u− v),

b(u, t) =
1
t
, n(u, v, t) =

1
t1/3

n∗

( u

t2/3
,

v

t2/3

)
.



More  on  Groeneboom’s  solution   

In order to verify that this is a solution we need 
to use some interesting identities. These are best 
written in terms of the variable  e = j’/ j. Then

e′ = −q + e2,

k′ = −2(1− ek),
k′′′ = 6kk′ + 4qk′ + 2k.

Riccati  eqn.

These yield three moment identities, such as  

K ∗ J(x) = x2J − J ′ and  some amazing cancellations.



In fact,  e  is  the first Airy solution  to Painleve 2!

w′′ = 2w3 + 2wq +
1
2
.

Complete  integrability  and  the  Painleve  property  

Self-similar solutions to several  completely 
integrable systems (Kdv, NLS, Sine-Gordon) can be 
expressed in terms of Painleve transcendents.  They 

also appear in  famous  `solvable’  problems in 
mathematical physics.  In particular, the celebrated 
Tracy-Widom distributions in random matrix theory 

are described by Painleve 2 with parameter 0.  



 The Wigner semicircle law is the law of large 
numbers for the distribution of eigenvalues of random 

matrices from the GOE, GUE and GSE ensembles. 
The Tracy-Widom distributions describe universal 

fluctuations around the largest  eigenvalues.

 I cannot connect Groeneboom’s solution to Tracy-
Widom,  but I can  connect the first exact solution 
(Cararro-Duchon, Bertoin)  very nicely to the Wigner 
semicircle law through  Dyson’s Brownian motion!

Burgers turbulence and random matrices



Much  remains  to  be  done...   

1)  Rigorous analysis of state-dependent coagulation:       

a) Persistence of Feller property.

b) Well-posedness of  Lax equation. 

2)  A deeper conceptual understanding of Lax equation:

a) Inverse scattering/ Riemann-Hilbert problems.

b) Connections to Tracy-Widom laws?

c)  Cube-root asymptotics in statistics.
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