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Motivations

Kinetic theory- phase transition.

Non trivial andnon uniqueequilibriumstates.

Complex pattern dynamics.Stability-instability

To generate such situations in kinetic theory aforce termis

needed.

The simplest model is a Vlasov-Fokker-Plank dynamics,

modeling a system of particles interacting trough a potential

U and with a reservoir at given temperatureβ−1
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Kinetic models

f solution of theVlasov-Fokker-Plank equation

∂

∂t
f + v · ∇f − F · ∇vf = Lf

L Fokker-Plank operator

Lf := ∇v(Mβ∇v
f

Mβ

)

F = −

∫

dx′dvf(x′, v, t)∇U(x− x′)

Mβ standard Maxwellian, with temperatureT = β−1
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Vlasov-Fokker-Plank
If βŪ (Ū =

∫

dxU(|x|)) is small, there is only one stationary

solution, the homogeneous equilibrium of the form

f∞(v) = ρ 1
(2π)d/2

e
|v2|
2T , ρ = e−βUρ

Villani proved the convergence and the rate to equilibrium,for

the system on the torus.

f∞ is the unique minimizer of thefree-energy functional
∫

dxdv[f ln f + βfv2] + β

∫

dxdyU(|x− y|)ρf (x)ρf (y),

ρf (x) :=
∫

dvf(x, v).

If βŪ is not small, possibility ofphase transition.
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Phase transition

U ≤ 0 (attractive interaction):

the model is not suited because ofcollapse.

The stationary states forU large do not exist with finite density.

To avoid it some cut-off at short distance: difficult to implement

in a kinetic model.

Add repulsive interactions to stabilize the system:

4 body repulsiveLebowitz, Mazel, Presutti(1998)

Vapor-liquid transition. Oscillating interface
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Vlasov-Fokker-Plank

U ≥ 0 (repulsive),

If the Fourier transform̂U has a strictly negative minimum , then

periodic stationary states are expected

cristallization transition

Gates-Penrose(1969)

If Û(k) < 0 for somek0, then, there isk close tok0 such that the

free energy functional computed onρε = n+ ε sin(kx), for ε

small enough, is strictly lower than the value on the

homogeneousρ = n.

Very little is known even for systems on the lattice.
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Vlasov-Fokker-Plank
Kinetic model for binary fluids

Vlasov-Fokker-Plank equationsfor a system of two species of

particlesf1(x, v, t), f2(x, v, t)

∂τfi + v · ∇xfi + Fi · ∇vfi = Lfi

Interaction between the two species repulsive.

Fi = −∇x

∫

dyU(|x− y|)

∫

dvfj(y, v, t), i 6= j

U ≥ 0 smooth, compact support.

Conservation of masses. First orderphase transitionwith

coexistence of two states:segregation.

Kinetic models for phase transition – p. 8/45



Particle models

Mean-field limit N → ∞, γdN = 1

Two species of Ornstein-Uhlenbeck processes red and blue,

N = Nr +Nb interacting by a Kac potentialUγ(r) = γdU(γr)

qr
i (t) = vr

i (t)dt

vr
i (t) = −

Nb
∑

j=1

∇Uγ(qb
j(t) − qr

i (t))dt− βvr
i + dwr

i

qr
i (t) = vr

i (t)dt

vb
i (t) = −

Nr
∑

j=1

∇Uγ(qr
j (t) − qb

i (t))dt− βvb
i + dwb

i
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Large deviation functional

Large deviation functionalfor observing a mesoscopic density

Free energy functionalF(ρ1, ρ2) determines the probabilityPΛγ

of configurations onΛγ = (γ−1L)d whose mesoscopic densities

ρ
γ
i = ρi(γ

−1x) are close toni:

P (ργ
1 , ρ

γ
2) ≈ exp{−γ−d

(

F(ρ1, ρ2) − fL(n)
)

} .

Theonly configurations that we are at all likely to seeare those

that minimizeF under the constraint on the total masses

fL(n) = inf
ρ1,ρ2

{

F(ρ1, ρ2) :
1

Ld

∫

TL

ρi(x)dx = ni

}
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Equilibrium

LiapunovfunctionalG(f1, f2):
∫

dxdv(f1 ln f1 + f2 ln f2) +
β

2

∫

dxdv(f1 + f2)v
2

+β

∫

dxdyU(|x− y|)

∫

dvf1(x, v)

∫

dvf2(y, v)

Decreasing in time

d

dt
G(f1, f2) = −

∑

i=1,2

∫

Ω×R3

dxdv
M 2

fi

[∇v
fi

M
]2 ≤ 0
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Equilibrium

Equilibrium distributions:fi(x, v) = ρi(x)
e−v2/2T

(2πT )3/2

T log ρi(x) +

∫

dyU(|x− y|)ρj(y) = Ci, i 6= j

Spatialfree energy functional

F(ρ1, ρ2) =
2

∑

i=1

∫

Λ

ρi log ρi+β

∫

dxdyU(|x−y|)ρ1(x)ρ2(y)

Variationalcharacterization of“stable” equilibria
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Non convex functional

∫

Λ

dxf(ρ1, ρ2)+
β

2

∫

Λ×Λ

dxdyU(|x−y|)[ρ1(x)−ρ1(y)][ρ2(y)−ρ2(x)]

f(ρ1, ρ2) = ρ1 log ρ1 + ρ2 log ρ2 + βρ1ρ2

f(ρ1, ρ2) is thethermodynamic free energy, entropy+ internal

energy, it isnot convexat lowT , with two symmetric minimizers

(under exchange1 → 2): (ρ±, ρ∓)

Non local term positive (Rearrangement inequalities ). If the

total masses1
Λ

∫

Λ
ρi(x)dx = ni are minimizers, homogenous

profiles. In between, expectnon homogeneous
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Double well.
ρ = ρ1 + ρ2,m = ρ1−ρ2

ρ
; f(ρ1, ρ2) = ρ log ρ+ ρ2β

4
+ ρ2f(m)

f(m) = −
β

2

m2

2
+

1 −m

2
log

1 −m

2
+

1 +m

2
log

1 +m

2
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Segregation
If the total densityn = n1 + n2: nβ > 2

Coexistence of two phases, one richer in species1 and the other

richer in species2.

Phase diagram

In the two phases:

Same densityn = n1 + n2

Concentrationm =
n1 − n2

n
changes sign
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Variational approach

1) Finite volume

Minimize thefree-energyin Λ under the mass constraint
1
Λ

∫

Λ
ρi(x)dx = ni

Fix ni so to rule out the absolute minima corresponding to the

pure phases

2) Infinite line. (Interface stability).

Minimize theexcessfree-energy

F̂(ρ1, ρ2) = F(ρ1, ρ2) −F(ρ+, ρ−)

with fixed asymptotic values lim
x→±∞

ρ1(x) = ρ±, lim
x→±∞

ρ2 = ρ∓
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Large volume

RegionA such thatm(x) ≈ mβ in A, andm(x) ≈ −mβ outside.

Interpolation across the boundary, in a region∆, of width

proportional to the range of the interaction

droplet of + phase (at A) in a sea of − phase.

Profile across the interface is given by the solution of problem 2)
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Competing interactions
Attractive+ long range repulsive interaction

Giuliani-Lebowitz-Lieb : Cahn-Hilliard+ repulsive non local

Potential kernel: Laplace transform of a positive measure

Reflection positivity: existence of periodic minimizers

Lebowitz-Penrose: system of particles

Short range + Kac repulsive potential of rangeγ−1

In the infinite volume limit, forγ → 0, the repulsive term

destroysthe coexistence of phases

the surface tension is lowered by the repulsive interaction

Forγ finite one expects the formation of a"froth", on an

intermediate scaleγ−α
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Competing interactions

Kinetic model with competing interactions for a binary mixture

Add arepulsive interaction between the same species

∫

dxdv(f1 ln f1 + f2 ln f2) +
β

2

∫

dxdv(f1 + f2)v
2

+β

∫

dxdyU(|x− y|)

∫

dvf1(x, v)

∫

dvf2(y, v)

+β
∑

i=1,2

∫

dxdyUλ(|x− y|)

∫

dvfi(x, v)

∫

dvfi(y, v)

Uλ(r) = λdU(λr), froth for 1 << λ?
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Applications

Lattice Boltzmann algorithms with self consistent potentials.

Phase transition

Nanotubes. Liquid-vapour coexistence.

Gas layer close to the surface change the behaviour in the bulk.

Competing interactions

Binary mixture with self consistent attractive and repulsive

potentials

Models ofemulsions, many interesting behaviours: ageing,

long-time relaxation...

Benzi- Succi Phys. Rev. Lett. 2009
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Results
Existence and characterization of the minimizers on the

infinite line and on ad-dimensional finite large volume

R. M., E. Carlen, M. Carvalho, R. Esposito, J.L.Lebowitz, 2003, 2008

Infinite line: R. M., L. Esposito, Y. Guo 2009

Asymptotic stabilityof the non homogeneous minimizer

(front solution) in the phase transition region.

Rateof convergence.

Asymptotic stabilityof the constant minimizer out of the

phase transition region

Instability of the constant solution ?
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Finite domain

Minimization of free energyfunctional in a torusΛ under the

constraints on the total masses

ni =
1

Λ

∫

dxρi(x)

Results forΛ large:Carvalho, Carlen, R.M.,Esposito, Lebowitz, ( 2003)

U(x) is even non negative anddecreasing

Homogeneous solution unique forβn ≤ 2.

Otherwise,non homogeneous minimizers. Regularity.

They aresymmetric monotone.
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Drop

Symmetric monotone minimizer in 1d
Density profilew1 on the interval[−L,L] centered
with the minimum in0
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1d. Infinite line

Results for the excess free-energy

Theorem. (Existence and uniqueness)

If U(x) is even non negative anddecreasing, then the minimizer

of F̂(ρ1, ρ2) is unique (up to translations) and monotone in the

sense thatρ1 is increasing andρ2 is decreasing.

Proof: Rearrangement inequality + displacement convexity

C.Carvalho, E.Carlen, R.Esposito, J.L.Lebowitz, R.M. 2007
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Front

Frontw = (w1, w2): centeredw1(0) = w2(0),

positive and symmetric in the sense thatw2(x) = w1(−x)

Theorem

The front is inC∞(R) and converges to its asymptotic values

exponentially fast, in the sense that there isα > 0 such that

(w1(x) − ρ∓)eα|x| → 0 asx→ ∓∞,

(w2(x) − ρ±)eα|x| → 0 asx→ ∓∞.
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Dynamical stability

Result: the front is asymptotically stable for the Vlasov-

Fokker-Plank dynamics under small symmetric initial

perturbation.

R. Esposito, Y. Guo, R.M., Arc. Rat. Mec. 2008,

Perturbation fi = wiM + hi

Assume forh = (h1, h2) at time zero the symmetry property

h1(z, vx, vy, vz, 0) = h2(−z, vx, vy,−vz, 0)
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Theorem

Inner product andL2-norms|| · ||0

(f, g)0 =
∑

i=1,2

∫

R×R3

dzdv
1

wiM
figi,

‖g‖2
D = ‖(I − P )g‖2

0 + ‖∇v(I − P )g‖2
0,

P is theL2-projection on the null space ofL: {cM, c ∈ R
2}

In an infinite domain the problem is to control thetails, one

needs decay at infinite.

Weighted norm: ||g||γ = ||{1 + z2}γg||0
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Theorem

Theorem. Global Existence

If for δ0 small enough,

‖h(0)‖0 + ‖∂th(0)‖0 + ‖∂zh(0)‖0 ≤ δ0

then there is a unique global solution of VFP such that for some

K > 0

d

dt

(

K
(

‖h(t)‖2
0 + ‖∂th(t)‖

2
0

)

+ ‖∂zh(t)‖
2
0

)

+Kν0

(

‖h(t)‖2
D + ‖∂th(t)‖

2
D) + ν0‖∂zh(t)‖

2
D ≤ 0
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Theorem

Theorem. Asymptotic stability and Decay rate

If for δ0 andγ small enough,

||h(0)||γ + ||∂th(0)|| 1
2
+γ + ||∂zh(0)|| 1

2
+γ ≤ δ0,

then

sup
0≤t≤∞

||h(t)||γ + ||∂th(t)|| 1
2
+γ + ||∂zh(t)|| 1

2
+γ ≤ Cδ0

Moreover,

||h(t)||0 + ||∂th(t)||0 + ||∂zh(t)||0 < Cδ0[1 +
t

2γ
]−2γ
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Proof

Energy estimates. Norms based on the free energy functional.

spectral gapfor the Fokker-Planck operatorL to control

(I − P )h, the part ofh orthogonal to the null space ofL,

Equations forPh, the component ofh in the null space ofL.

They are not close, depend on(I − P )h

spectral gapfor an operatorA, related to the spatial free

energy, to controlPh, in terms of(I − P )h.
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Operator A

Norm involving theoperatorA, the second variation of the

spatialfree energyF̂ at the frontw, given by

(g,Ag) :=

2
∑

i=1

∫

R

dzgi(z)(Ag)i(z) =
d2

ds2
F(w + sg)

∣

∣

s=0

(Ag)1 =
g1

w1

+ βU ∗ g2, (Ag)2 =
g2

w2

+ βU ∗ g1

Sincew is a minimizer ofF̂ the quadratic form on the left hand

side is nonnegative
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Operator A

The first variation gives the Euler-Lagrange equations

δF̂

δρi

(w) = logwi + βU ∗ wj − Ci = 0, i 6= j ,

Differentiating with respect toz

(Aw′)i =
w′

1

w1

+ βU ∗ w′
j = 0, i 6= j ,

w′ spans the null space ofA and (spectral gap)

(g,Ag) ≥ λ

2
∑

i=1

∫

R

dz
1

wi

|(I − P)gi|
2 = λ((I −P)g, (I −P)g)

whereP is the projector on the null space ofA.

Kinetic models for phase transition – p. 32/45



Operator A

Non trivial null space forA. Degeneracy of the stationary state.

Invariance by translation.

The spectral gap forA controls the component ofPh on the

orthogonal to the null space ofA, but not the component on the

null space ofA. Ph = M(v)a(z, t) anda = αw′ + (I −P)a.

α(t) =

∫

R×R3

dzdvPh(z, v, t)w′(z)

The Liapunov functional forces the system to relax to one of the

stationary points for the functional, which are of the formMwx,

with wx any translate byx of the symmetric frontw0.
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Operator A

Theconservation law, in the form
∫

R×R3

dzdv[f(z, v, t) −M(v)w0] = 0

selects the front the solution has to converge to.

But this is a condition on theL1 norm of the solution while the

energy estimates control someL2 norm. Our weighted norms are

not enough to control theL1 norm.

E. Carlen- C. Carvalho-E. Orlandi (2000) (dissipation onz)
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Symmetry

We assume thath is symmetric at initial time.

This property is conserved by the dynamics so thath is

symmetric at any later time.

AlsowM is symmetric whilew′ is antisymmetric in thez

variable. (w′
1(z) = w′

2(−z))

This implies thevanishing of

α(t) =

2
∑

i=1

∫

R×R3

dzdvhi(z, v, t)M(v)w′
i(z)
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Perturbation

Equation for the perturbationhi = aiM + (I − P )hi

M [∂tai + vzwi∂z(Aa)i] = B((I − P )h) − F (hi)∂vzhi + L(I − P )hi.

Mvzwi∂z(Aa)i = vzMwi∂zai−F (wiM)∂vz(aiM)+F (aiM)∂vz(wiM)

Force term not small

We need a control of the||∂z(Aa)||0

‖(Au)′‖2
0 ≥ k‖Qu′‖2

0

whereQ is the projection on the orthogonal complement ofw′′.
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Decay

In an infinite domain the problem is to control thetails, one

needs decay at infinite.

We consider weightedL2-norms

||{1 + z2}γg||M =

∫

R×R3

dxdv(1 + z2)2γ|g|2M(v)

0 < γ ≤ 1
8
.

Enough to get polynomial decay (in space and time)

Not enough for the control of theL1 norm
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Work in progress

finite volume,1d torus(with Esposito and Guo)

Stability of the non constant minimizer ("double front")

OperatorA onTL, the 1-d torus of sizeL. Derivative of the

front is in the null.Null space? Spectral gap?
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Spectral gap

A has anegative eigenvalue. Vectorw̃ = (|w′
1|,−|w′

2|)

(w̃, Aw̃)w =

∫

TL

|w′
1|(

|w′
1|

w1

− U ∗ |w′
2|) + |w′

2|(
|w′

2|

w2

− U ∗ |w′
1|)

= −2

∫ L

0

w′
1U ∗ (|w′

2| + w′
2) − 2

∫ 0

−L

w′
2U ∗ (|w′

1| + w′
1) < 0

We have used the EL equations

w′
1

w1
= −U ∗ w′

2, x ≥ 0;
w′

2

w2
= −U ∗ w′

1, x ≤ 0

Show that themass constraintkills the negative eigenvalue.
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Neumann b.c.

Spectral gap true foranti symmetric(by reflection) functions.

Problem on the torus forsymmetricfunctions reduced to the case

of Neumann boundary conditions on[0, L]

(Âg)1 =
g1

w1

+ βÛ ∗ g2, (Âg)2 =
g2

w2

+ βÛ ∗ g1

Û(z, z′) = U(z, z′) + U(z,R0z
′) + U(z,RLz

′)

R0 reflection around zero andRL reflection aroundL.

λ < 0 minimum eigenvalue and̂e its eigenfunction
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Spectral gap

We need spectral gap for functions in the hyperplane

H = (h :
∫ L

0
h = 0).

We have spectral gap for functions in the orthogonal toê

(u, Âu) ≥ δ(u, u), (u, ê) = 0

If the angleα between̂e andH is too small we are in trouble
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Spectral gap

Decomposeh asaê+ bû with û orthogonal tôe

(h, Âh) = a2λL + b2(û, Âû)

a = cos α, b2 = sin2 α. sin α = 1√
L

∫ L

0
ê.

If ê decays fast enoughb2 ≈ 1
L

. λL is negative

Competition (h, Âh) ≥ −|λL| +
c
L
δ

If λL decays faster than1
L

we can prove spectral gap forL large

(h, Âh) > d(h, h)

G. Manzi (2007)
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Spectrum

Analysis of the spectrum usingMarkov chains. Generalize

method by De Masi, Olivieri, Presutti (1998), Ising case.

bound on the minimum eigenvalueλL

−c1e
−γL ≤ λL ≤ c2e

−γL

exponential bound on the minimum eigenfunctionê

−ce−γ|L−x| ≤ ê < 0

spectral gapin a suitable weightedL∞ for functionsu in the

orthogonal tôe. Implies spectral gap inL2.
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Spectral gap

OperatorS (Su)i = wiÛ ∗ uj, i 6= j, i = 1, 2

(u, Âu)w =
∑

i

∫

dxwiui(Âu)i = (u, u) + (u, Su)

(u, S2u) =
∑

i

∫

uiwiÛ ∗ (wjÛ ∗ ui) = (u, Tu)

Negative eigenvalue for̂A means eigenvalue forS greater than1

We will study the operators

T1h = w1Û ∗ (w2Û ∗ h), T2h = w2Û ∗ (w1Û ∗ h)
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Markov chain

Ĵ(x, x′) =

∫

dzÛ(x− z)
w2(z)

w2(x)

∫

dyÛ(z − x′)

M(x, x′) = p(x)Ĵ(x, x′); p(x) = w1(x)w2(x)

Forλ0 > 0 andψ(x) positive define the Markov chain

K(x, y) =
M(x, y)ψ(y)

λ0ψ(x)
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