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Motivations

Discussion on models

Model for a binary mixture
Free-energy functional
Characterization of minimizers, finite and infinite volume

Dynamics on the infinite line. Stability properties

Dynamics on the 1d torus.



B Kinetic theory- phase transition.
Non trivial andnon unigueequilibrium states.

B Complex pattern dynamic&tability-instability

B To generate such situations in kinetic theolfpice termis
needed.

B The simplest model is a Vlasov-Fokker-Plank dynamics,
modeling a system of particles interacting trough a posénti
U and with a reservoir at given temperatuie'




f solution of theVlasov-Fokker-Plank equation

0
af—FU-Vf—F-VUf:Lf

L Fokker-Plank operator

Lf = VU(Mﬂvaiﬁ)

F = —/dx’dvf(x’,v,t)VU(x — ')

Mg standard Maxwellian, with temperatufe= 5!



If BU (U = [ dzU(|x])) is small there is only one stationary
solution, the homogeneous equilibrium of the form

2
[v=]

foolv) = pame=, p=e"07

Villani proved the convergence and the rate to equilibriton,
the system on the torus.

fs IS the unique minimizer of th&ee-energy functional

/d:z:dv[f In f + Bfv?] + ﬁ/d:cdyU(kB —y|)ps()ps(y),
pr(x) = [dvf(z,v).

If U is not smal) possibility ofphase transitian



U < 0 (attractive interaction
the model is not suited becausecoflapse

The stationary states féf large do not exist with finite density.
To avoid it some cut-off at short distance: difficult to imiplent
In a kinetic model.

Add repulsive interactions to stabilize the system:
4 body repulsiveLebowitz, Mazel, Presut{l1998)
Vapor-liguid transition. Oscillating interface



U > 0 (repulsive,
If the Fourier transforni/ has a strictly negative minimum , then
periodic stationary states are expected

cristallization transition
Gates-Penrosd 969)

If U(k) < 0 for somek,, then, there i close tok, such that the
free energy functional computed pp= n + esin(kx), fore
small enough, is strictly lower than the value on the
homogeneous = n.

Very little is known even for systems on the lattice.



Kinetic model for binary fluids
Vlasov-Fokker-Plank equationfer a system of two species of
partiCIeSfl (337 v, t)a f2 (337 v, t)

O-fi+v-Vofi + F,-V,fi=Lf,

Interaction between the two species repulsive.

Fz-:—vx/dyvax—y|>/dvfj(y,v,t), »y

U > 0 smooth, compact support.
Conservation of masseBirst ordemphase transitiomwith
coexistence of two statesegregation



Mean-field limit N — oo, v¢N =1
Two species of Ornstein-Uhlenbeck processes red and blue,
N = N, + N, interacting by a Kac potentidl” (r) = v4U (vyr)

g (t) = v (t)dt
Np

vi(t) = =Y VU ((t) — ¢/ (t))dt — Bv] + duw]
j=1

g; (t) = v;i(t)dt
N,

= VU(g () — gb(t))dt — Bl + duw!
j=1



Large deviation functiondbr observing a mesoscopic density

Free energy functionak(p,, p,) determines the probabilit§,
of configurations on\., = (y~'L)% whose mesoscopic densities
pl = pi(v tx) are close toy;:

P(p], p3) ~ exp{—y* (f (1, p2) — fL(n))} -

Theonly configurations that we are at all likely to saee those
that minimizeZ under the constraint on the total masses

fr(n) = inf {7:(,01702) 3 %/IL pi(x)dz = n, }

P1,pP2




B LiapunovfunctionalG(f1, f2):

/dxdv(fl In fi + foln fo) + g /dxdv(fl + fo)0?

+9 [ stz =) [ dosif0) [ dofafyo)

B Decreasing in time

_g (f1, f2) = Z /QXR3 dxdv ]{2] <0

1=1,2 7’




e—v2 /2T

(27T)3/2

m Equilibrium distributions:f;(z,v) = p;(x)

T log pi(z) + / Ayl (|2 — yl)p; (y) = Ci, i # 5

B Spatialfree energy functional

F(p1,p2) = Z/qu; logpﬂrﬂ/dxdyU(Ix—yl)pl(:ﬂ)pz(y)

Variationalcharacterization ofstable” equilibria



e f (1. po) - / dadyU (|z—y) o1 () —pr ()] [p2(y)—pa()

AxA

/
f(p1,p2) = prlog p1 + p2log pa + Bp1ps

f(p1, p2) is thethermodynamic free energyentropy+ internal
energy, it isnot convexat lowT’, with two symmetric minimizers
(under exchange — 2): (p*, pT)

Non local term positive (Rearrangement inequalities )hdf t
total masseg [, pi(x)dz = n; are minimizers, homogenous
profiles. In between, expeabn homogeneous



_ 2
p=p1+pa,m=2=2 f(py,pa) = plog p+ &2 + p f(m)

Bm?* 1—m Il—-m 1+ m 14+m

__gm 1 1
flm) = =55+ —5—log—F—+ ——log—;

L)
AV




If the total densityn = ny + ny: nG > 2
Coexistence of two phases, one richer in spetiasd the other
richer in species.

Phase diagram

In the two phases:

Same density, = nq + ns

. n1 — N9
Concentrationmn =

_ n
changes sign




1) Finite volume
Minimize thefree-energyin A under the mass constraint

L ypie)de =n,

FiX n; so to rule out the absolute minima corresponding to the
pure phases

2) Infinite line. (Interface stability).

Minimize theexcesdree-energy

Flp1,p2) = Flpi, p2) — Fpt, p7)

with fixed asymptotic values lim pi(z) = p=, lim py = pT

r—+00 r—+o0



RegionA such thatn(x) ~ mgin A, andm(z) ~ —mg outside.
Interpolation across the boundary, in a regidnof width
proportional to the range of the interaction

droplet of + phase (at A) in a sea of — phase.
Profile across the interface is given by the solution of probR)



Attractive+ long range repulsive interaction
Giuliani-Lebowitz-Lieb : Cahn-Hilliard+ repulsive nondal
Potential kernel: Laplace transform of a positive measure
Reflection positivity existence of periodic minimizers

Lebowitz-Penrose: system of particles

Short range + Kac repulsive potential of range

In the infinite volume limit, fory — 0, the repulsive term
destroyghe coexistence of phases

the surface tension is lowered by the repulsive interaction
For~ finite one expects the formation of'&oth", on an
Intermediate scale™



Kinetic model with competing interactions for a binary noipe
Add arepulsive interaction between the same species

/dxdv(fl In fi + foln fo) + g /d:cdv(fl + fo)v?
+ﬁ/dwdyU(Iw—yl)/dvfl(w,v)/dvfz(y,v)
+9 3" [ dsdytN(ia — ) [ dofiae) [ dufiyo)

i=1,2

Urr) = MU (\r), frothforl << \?



Lattice Boltzmann algorithms with self consistent potaisti

Phase transition
NanotubesLiquid-vapour coexistence.
Gas layer close to the surface change the behaviour in tke bul

Competing interactions
Binary mixture with self consistent attractive and repuési
potentials

Models ofemulsiong many interesting behaviours: ageing,
long-time relaxation...

Benzi- Succi Phys. Rev. Lett. 2009



B Existence and characterization of the minimizers on the
Infinite line and on ad-dimensional finite large volume

R. M., E. Carlen, M. Carvalho, R. Esposito, J.L.Lebowitz)202008

B [nfinite line: r. M., L. Esposito, Y. Guo 2009
Asymptotic stabilityof the non homogeneous minimizer
(front solution) in the phase transition region.
Rateof convergence.

B Asymptotic stabilityof the constant minimizer out of the
phase transition region
Instability of the constant solution ?



Minimization of free energyunctional in a torus\ under the
constraints on the total masses

n; = %/dajpz(x)

Results forA Iarge: Carvalho, Carlen, R.M.,Esposito, Lebowitz, ( 2003)
U(x) IS even non negative artecreasing
Homogeneous solution unique fén < 2.
Otherwisehon homogeneous minimizerRegularity.

They aresymmetric monotone.



Symmetric monotone minimizer in 1d

Density profilew; on the interval—L, L] centered
with the minimum in0




Results for the excess free-energy
Theorem. (Existence and unigueness)

If U(z) is even non negative amtkcreasingthen the minimizer
of ﬁ(pl, p2) Is unique (up to translations) and monotone in the
sense thap, is increasing ang, is decreasing.

Proof. Rearrangement inequality + displacement convexity
C.Carvalho, E.Carlen, R.Esposito, J.L.Lebowitz, R.M.200



Frontw = (wq, ws): centeredov;(0) = wy(0),
positive and symmetric in the sense thatx) = w;(—x)

Theorem
The front is inC'*°(R) and converges to its asymptotic values
exponentially fast, in the sense that there is 0 such that

alz|

(w1(x) — pg)e™* — 0 asx — Foo,

(wo(z) — py)e® — 0 asz — Foo.



Result the front is asymptotically stable for the Vlasov-
Fokker-Plank dynamics under small symmetric initial
perturbation.

R. Esposito, Y. Guo, R.M., Arc. Rat. Mec. 2008,
Perturbation f; = w;M + h;
Assume forh = (hq, ho) at time zero the symmetry property

hi(2, Vg, vy, U, 0) = ho(—2, Uy, Uy, =0, 0)



Inner product and.?-normsl| - ||o

1
— dzd 1Y
(f,9)o E /Rst z vwiMfg

i=1,2

lgllp = (I = P)gllo + [IVo(I = P)glli,
P is the L*-projection on the null space @f. {cM,c € R?}

In an infinite domain the problem is to control tteels, one
needs decay at infinite.

Weighted norm: ||g||, = |[{1 + 22}7¢||o



Theorem. Global Existence

If for 6, small enough,
[7(0)][o + [|0:h(0) o + [|0:2(0)lo < do

then there is a unique global solution of VFP such that foresom

K >0
d

E(K(Hh(t)ug + 10 ()|12) + H(?zh(t)\l%)

+Evo (1) + 10 b) + voll0:h () < 0



Theorem. Asymptotic stability and Decay rate

M |f for 9y and~ small enough,
1ROy, + (|00, + 118:R(0)]]1 4, < b,
then
sup. [|A(t)]]5 + [10h(#)][1 4, + [[0:h(B)]] 1, < CBy

0<t<oo

B Moreover,

t
h(E) o + [0k (t)|]o + [|O-h(E)||o < Cdo|l + ﬂ]_%




Energy estimates. Norms based on the free energy functional

B spectral gajfor the Fokker-Planck operatdrto control
(I — P)h, the part ofh orthogonal to the null space &f,

B Equations forPh, the component ot in the null space of..
They are not close, depend oh— P)h

B spectral gafor an operatoid, related to the spatial free
energy, to controPh, in terms of(1 — P)h.



Norm involving theoperatorA, the second variation of the
spatialfree energyF at the frontw, given by

(9.49) = 3 [ deaie)(Agz) = T3 F(w +s9)|

(Ag)1 = I + BU * g2, (Ag)e = 92 + 0U * ¢

w1 (0%
Sincew is a minimizer of F the quadratic form on the left hand
side is nonnegative



The first variation gives the Euler-Lagrange equations
5F
0p;
Differentiating with respect to

(w) =logw; + U xw; —C; =0, 1# 7,

/
(Aw'); = =L+ U« w, =0, i+#j,

w1

w’ spans the null space df and Epectral gap

(9.49) 2 XY [ de |1 = P)gif = X = Pg. (I = Plo)

whereP is the projector on the null space af



Non trivial null space ford. Degeneracy of the stationary state.
Invariance by translation.

The spectral gap fad controls the component dth on the
orthogonal to the null space df, but not the component on the
null space ofA. Ph = M (v)a(z,t) anda = aw’ + (I — P)a.

oz(t):/R N dzdvPh(z,v,t)w'(2)

The Liapunov functional forces the system to relax to ondef t
stationary points for the functional, which are of the fokinu?®,
with w® any translate by of the symmetric frontu®.



Theconservation layin the form

/RXR?) dzdv[f(z,v,t) — M(v)w’] =0

selects the front the solution has to converge to.

But this is a condition on thé; norm of the solution while the
energy estimates control some norm. Our weighted norms are
not enough to control thé; norm.

E. Carlen- C. Carvalho-E. Orlandi (2000) (dissipationzgn



We assume thdt is symmetric at initial time.
This property is conserved by the dynamics so thest
symmetric at any later time.

Also wM is symmetric whilew’ is antisymmetric in the
variable. (v} (z) = wi(—2))
This implies thevanishing of

2

a(t) = Z /RXIR?’ dzdvh;(z,v,t) M (v)w;(z)



Equation for the perturbatioly, = a; M + (I — P)h,;

Muv,w;0,(Aa); = v, Mw;0,a;—F(w;M)0,, (a; M)+ F(a; M)0,, (w; M)

Force term not small
We need a control of thgd., (Aa)||o

| (Au)'llg > &l Qu'lls

whereQ is the projection on the orthogonal complementdf



In an infinite domain the problem is to control ttsels, one
needs decay at infinite.

We consider weighted,-norms

{1+ 2°} gl m :/ dzdv(1 + 2°)*|g|* M (v)
RxR3

0<vy<s.
Enough to get polynomial decay (in space and time)
Not enough for the control of thB; norm



B finite volume,ld torus(with Esposito and Guo)
Stability of the non constant minimizer ("double front")

B Operatord onT7, the 1-d torus of sizé.. Derivative of the
front is in the null.Null space? Spectral gap?



A has anegative eigenvalud/ectorw = (|w}|, —

wy

(0, Aw)w = | |wil(

Ty, wq W9

L 0
_ —z/ WU * (|us] + wh) —2/ wbU * (|| + ) < 0
0

—L
We have used the EL equations

Show that thenass constrairKills the negative eigenvalue.



Spectral gap true faanti symmetriqby reflection) functions.

Problem on the torus faymmetricfunctions reduced to the case
of Neumann boundary conditions ¢h L

(Ag)l =N +5U*g2, (Ag) P2 +5U*g1

w1 (0%
U(z,2") =Ul(z,2)+U(z,Ryz') + U(z, R
R, reflection around zero andl;, reflection around..

A < 0 minimum eigenvalue anélits eigenfunction



We need spectral gap for functions in the hyperplane
H = (h:fOLh:O).

We have spectral gap for functions in the orthogonal to

(u, Au) > 6(u,u), (u,é) =0

If the anglea betweere and H is too small we are in trouble

€




Decomposeé asaé + bu with u orthogonal tce
(h, Ah) = a®Xp, + b%(4, AQ)

2

L 2_ . . _L A
a = cos «, b> = sin oz.sma—\/zfo é.

If ¢ decays fast enoughi ~ % Az IS nhegative
Competition (b, AR) > — || + €5

If A\, decays faster tha% we can prove spectral gap farlarge
(h, Ah) > d(h, h)

G. Manzi (2007)



Analysis of the spectrum usingarkov chains Generalize
method by De Masi, Olivieri, Presutti (1998), Ising case.

B bound on the minimum eigenvalug
—cre <\ < et
B exponential bound on the minimum eigenfunction
—ce Tl < <0

B spectral gapn a suitable weighted. ., for functionsu in the
orthogonal tee. Implies spectral gap .



OperatorS  (Su); = w;U *u;, i #j,i=1,2

— Z/dazwzuz(z‘iu)z — (u7 u) - (uv Su)

(u, S*u) Z/uzsz* (w;U % u;) = (u, T)

Negative eigenvalue foi means eigenvalue fdt greater thar
We will study the operators

A A AN

Tih = w, U * (woU x h), Toh = wU * (w U % h)



J(z,z') = /dzU(:z: — 2) wa(2) /dyU(z — ')

wa ()

M(z,2') = p(z)J(z,2);  p(z) = wi(z)ws(z)

For Ay > 0 and«(x) positive define the Markov chain

M (2, ) (y)

Klz,y) = Aot(z)
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