IPAM May 09

The Markov Sequence Problem for Jacobi Polynomials

Michael Loss School of Mathematics Georgia Tech Atlanta GA, 30332–0160, USA

Joint work with Eric Carlen and Jeff Geronimo Markov sequence problem

 (X, \mathcal{S}, μ) probability space

Selfadjoint Markov operator

$$T: L^2(\mu) \to L^2(\mu)$$

linear, positivity preserving, T1 = 1. selfadjoint

$${f_n}_{n=0}^{\infty}, f_0 = 1$$

unit orthonormal basis

The selfadjoint Markov operators that have $\{f_n\}_{n=0}^{\infty}$ as eigenfunctions form a convex set.

Problem: Find the extreme points. Equivalently, find the extreme points of \mathcal{M} , the set of all Markov sequences that are the eigenvalues of a selfadjoint Markov operator that have $\{f_n\}_{n=0}^{\infty}$ as eigenfunctions. **0.1 THEOREM** (Bakry–Huet (2006)). Let X be a closed interval in \mathbb{R} , and let μ be a regular Borel probability measure whose support is X. Let $\{f_n\}_{n\geq 0}$ be a unit orthonormal basis for $L^2(\mu)$ consisting of real valued functions. Suppose there exists some $x_0 \in X$ such that for each $x \in X$,

$$\lambda_n(x) := \frac{f_n(x)}{f_n(x_0)}$$

is a Markov sequence for $\{f_n\}_{n\geq 0}$. Then $\{\lambda_n\}_{n\geq 0} \in \mathcal{M}$, the set of all Markov sequences for $\{f_n\}_{n\geq 0}$, if and only if there exists a Borel probability measure ν so that

$$\lambda_n = \int_X \frac{f_n(x)}{f_n(x_0)} \mathrm{d}\nu(x) \ . \tag{0.1}$$

Finally, if $\{f_n\}_{n\geq 0}$ is a sequence of bounded continuous functions whose finite linear combinations are dense in $\mathcal{C}_b(X)$, then the probability measure ν in (0.1) is unique, so that \mathcal{M} is a simplex and the $\{f_n(x)/f_n(x_0)\}_{n\geq 0}$ are its extreme points. The elements of (0.1) are the eigenvalues of

$$K := \int_X K_z \mathrm{d}\nu(z)$$

where

$$K_z(x,y) = \sum_{n=0}^{\infty} \lambda_n(z) f_n(x) f_n(y) \;.$$

Conversely if K is Markov and selfadjoint then

$$K(x,y) := \sum_{n=0}^{\infty} \lambda_n f_n(x) f_n(y)$$

and

$$\int_{X} f_{k}(x) d\nu(x) = \int_{X} f_{k}(x) \left[\sum_{n=0}^{\infty} \lambda_{n} f_{n}(x) f_{n}(x_{0}) d\mu \right]$$
$$= \sum_{n=0}^{\infty} \left[\int_{X} f_{k}(x) f_{n}(x) d\mu \right] \lambda_{n} f_{n}(x_{0})$$
$$= \lambda_{k} f_{k}(x_{0}) , \qquad (0.2)$$

where

$$\mathrm{d}\nu = K(x, x_0)\mathrm{d}\mu$$

is a probability measure.

Note the 'Hyper group property'

$$\sum_{n=0}^{\infty} \frac{f_n(z)f_n(x)f_n(y)}{f_n(x_0)} \ge 0$$

Set

$$\mu_{x,y}(dz) = \sum_{n=0}^{\infty} \frac{f_n(z)f_n(x)f_n(y)}{f_n(x_0)}$$
$$F_n(x) = \frac{f_n(x)}{f_n(x_0)}$$

Then

$$F_n(x)F_n(y) = \int F_n(z)\mu_{x,y}(dz)$$

 λ,ν measures. Define the convolution

$$\lambda \star
u := \int \mu_{x,y}(dz) \lambda(dx)
u(dy)$$

Commutative Banach Algebra.

$$\int F_n \lambda \int F_n \nu = \int F_n \lambda \star \nu$$

The ultraspherical polynomials $\{p_n^{(\gamma)}\}_{n\geq 0}$ are the *or*thonormal polynomials on [-1, 1], for the measure $\mu^{(\gamma)}$

$$d\mu^{(\gamma)}(t) = c_{\gamma}(1-t^2)^{\gamma-1/2} dt$$

where

$$c_{\gamma} = \frac{1}{\sqrt{\pi}} \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1/2)}$$

For each $\gamma > 0$, and $a \in (-1, 1)$, define an operator K_a on $L^2(\mu^{(\gamma)})$ by

$$K_a f(t) = \int_{-1}^{1} f\left(at + s\sqrt{1 - a^2}\sqrt{1 - t^2}\right) d\mu^{(\gamma - 1/2)} .$$

0.2 THEOREM. (Bochner (1956)) For any $\gamma > 0$, the sequence $\{\lambda_n\}_{n\geq 0}$ is a Markov sequence for $\{p_n^{(\gamma)}\}_{n\geq 0}$ if and only if there is a probability measure ν on [-1, 1] such that

$$\lambda_n = \int_{-1}^1 \frac{p_n^{(\gamma)}(t)}{p_n^{(\gamma)}(1)} \mathrm{d}\nu(t) \ .$$

For each such Markov sequence $\{\lambda_n\}_{n\geq 0}$, the measure ν is unique. In other words, for each t, $\{p_n^{(\gamma)}(t)/p_n^{(\gamma)}(1)\}_{n\geq 0}$ is a Markov sequence for $\{p_n^{(\gamma)}\}_{n\geq 0}$, and these are the extreme points of the set \mathcal{M} of all such Markov sequences.

• $K_a 1 = 1$, K_a is selfadjoint, with respect to $d\mu^{(\gamma)}(t)$ in fact

$$\langle K_a f, g \rangle_{L^2(\mu^{(\gamma)})} = c_{\gamma} c_{\gamma-1/2} \int_{-1}^{1} \int_{-1}^{1} g(t) f(u) \frac{(1 - a^2 - u^2 - t^2 + 2atu)_{+}^{\gamma-1}}{(1 - a^2)^{\gamma-1/2}} du dt$$

• K_a preserves polynomials, hence the ultraspherical polynomials are eigenfunctions.

$$\lambda_n p_n^{(\gamma)}(t) = \int_{-1}^1 p_n^{(\gamma)} \left(at + s\sqrt{1 - a^2}\sqrt{1 - t^2} \right) \mathrm{d}\mu^{(\gamma - 1/2)}$$

• Evaluation formula: Take $t \to 1$ and obtain

$$\lambda_n p_n^{(\gamma)}(1) = p_n^{(\gamma)}(a)$$

or

$$\frac{p_n^{(\gamma)}(a)p_n^{(\gamma)}(t)}{p_n^{(\gamma)}(1)} = \int_{-1}^1 p_n^{(\gamma)} \left(at + s\sqrt{1-a^2}\sqrt{1-t^2}\right) \mathrm{d}\mu^{(\gamma-1/2)}$$

the Gegenbauer product formula (1875) and Bochner's starting point.

Thus according to Bakry–Huet K_a are the extremal selfadjoint Markov operators the eigenvalues of a selfadjoint Markov operator whose eigenfunctions are the Ultraspherical polynomials are given as convex combination of

$$\frac{p_n^{(\gamma)}(a)}{p_n^{(\gamma)}(1)}$$

As a consequence

$$\sum_{n} \frac{p_n^{(\gamma)}(a) p_n^{(\gamma)}(t) p_n^{(\gamma)}(u)}{p_n^{(\gamma)}(1)} = \frac{((1-a^2) - (u^2 + t^2 - 2atu))_+^{\gamma-1}}{(1-a^2)^{\gamma-1/2}}$$

As a corollary we have Laplace's formula for the ultraspherical polynomials

$$\frac{p_n^{(\gamma)}(t)}{p_n^{(\gamma)}(1)} = \int_{-1}^1 (t + is\sqrt{1 - t^2})^n \mathrm{d}\mu^{(\gamma - 1/2)}$$

Where does the K_a come from?

Kac' collision model

$$Q\phi(\vec{v}) = \binom{N}{2}^{-1} \sum_{i < j} \frac{1}{2\pi} \int_0^{2\pi} \phi(R_{i,j,\theta}(\vec{v})) d\theta.$$

$$\exp(N(Q-I)t)$$

Gap Δ_N satisfies the recursion relation

$$\Delta_N \ge \delta_N \Delta_{N-1}$$

(Carlen-Carvalho-Loss (2000)) where δ_N is the gap of the operator defined by the bilinear form

$$\int_{S^{N-1}} f(x_1) g(x_2) \mathrm{d}\sigma_N$$

 $\mathrm{d}\sigma_N$ is the uniform normalized surface measure of \mathbb{S}^{N-1} .

$$\langle K_a f, g \rangle_{L^2(\mu^{((N-2)/2)})} = \int_{\mathbb{S}^{N-1}} f(x \cdot \widehat{u}_1) g(x \cdot \widehat{u}_2) \mathrm{d}\sigma_N \ .$$
$$\widehat{u}_1 \cdot \widehat{u}_2 = a$$

Clearly, K_a is selfadjoint and a simple calculation leads to the previous explicit formula for K_a for the special value $\gamma = (N-2)/2$.

Likewise the Kac model with three dimensional collisions (CCL(2003), Carlen-Geronimo-Loss (2008)) has a gap Δ_N that satisfies the same recursive inequality, i.e.,

$$\Delta_N \ge \Delta_{N-1} \delta_N$$

where this time δ_n is the gap of another operator \mathcal{K}_a . We replace 3 by m in what follows.

$$[x] = [x_1, \dots, x_N] , \ x_i \in \mathbb{R}^m$$
$$[x] : \mathbb{R}^N \to \mathbb{R}^m , \ u \to [x]u$$

usual matrix product. If $(x_1, \dots x_N) \in \mathbb{S}^{mN-1}$ then $[x]u \in B^m$, the unit ball in \mathbb{R}^m .

For any N > 2 and m > 1, and any -1 < a < 1, define

$$\langle f, \mathcal{K}_a g \rangle_{L^2(B^m, \nu_{m,N})} = \int_{\mathbb{S}^{mN-1}} f([x]\widehat{u}_1)g([x]\widehat{u}_2) \mathrm{d}\sigma_{mN} ,$$
$$\widehat{u}_1 \cdot \widehat{u}_2 = a .$$

A straightforward calculation yields

$$\mathcal{K}_a f(v) = \int_B f\left(av + \sqrt{1 - a^2}\sqrt{1 - |v|^2}y\right) \mathrm{d}\nu_{m,N-1}(y)$$

where

$$d\nu_{m,N}(v) = \frac{|S^{m(N-1)-1}|}{|S^{mN-1}|} (1 - |v|^2)^{(m(N-1)-2)/2} dv$$

Jacobi Polynomials $p_n^{(\alpha,\beta)}$ on [-1,1], orthogonal with respect to the measure

$$\mu^{\alpha,\beta}(\mathrm{d}x) = c_{\alpha,\beta}(1-x)^{\alpha}(1+x)^{\beta}\mathrm{d}x$$

 \mathcal{K}_a commutes with rotations.

$$(K_{a,0}h)(2|v|^2-1) := (\mathcal{K}_a f)(v)$$
 where $f(v) := h(2|v|^2-1)$.
 $\alpha = (m(N-2)-2)/2$ and $\beta = (m-2)/2$

$$(K_{a,0}h)(t) = \int_0^1 \int_0^\pi dm_{\alpha,\beta}(r,\theta)$$

$$h\left[(a^2(1+t) - 1) + b^2(1-t)r^2 + 2abr(1-t^2)^{1/2}\cos\theta \right]$$

$$dm_{\alpha,\beta}(r,\theta) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\beta+1/2)\Gamma(\alpha-\beta)} \times (1-r^2)^{\alpha-\beta-1}r^{2\beta+1}\sin^{2\beta}\theta drd\theta$$

For $\alpha > \beta > -1/2$

• $K_{a,0}$ is selfadjoint on $L^2(\mu^{\alpha,\beta})$ This is fairly obvious for the special values of α and β .

• Preserves the space of polynomials of fixed degree

•
$$\lim_{t \to 1} K_{a,0}h(t) = h(2a^2 - 1)$$

As a consequence we have

0.3 THEOREM (Gasper (1971/1972)). For $\alpha \geq \beta$ with $\beta > -1/2$ or $\alpha > \beta$ with $\beta = -1/2$ the sequence $\{\lambda_n\}_{n\geq 0}$ is a Markov sequence for $\{p_n^{(\alpha,\beta)}\}_{n\geq 0}$, if and only if there is a probability measure ν on [-1,1] such that

$$\lambda_n = \int_{-1}^1 \frac{p_n^{(\alpha,\beta)}(x)}{p_n^{(\alpha,\beta)}(1)} \mathrm{d}\nu(x) \ .$$

For each such Markov sequence $\{\lambda_n\}_{n\geq 0}$, the measure ν is unique. In other words, for each t, $\{p_n^{(\alpha,\beta)}(t)/p_n^{(\alpha,\beta)}(1)\}_{n\geq 0}$ is a Markov sequence for $\{p_n^{(\gamma)}\}_{n\geq 0}$, and these are the extreme points of the set \mathcal{M} of all such Markov sequences.

Selfadjointness follows from

$$(K_{a,0}h_1, h_2) = b^{-2\alpha} \int_0^1 \int_0^1 \int_0^\pi h_1 (2s^2 - 1)h_2 (2\rho^2 - 1) \times (b^2 - s^2 - \rho^2 + 2a\rho s \cos \phi)_+^{\alpha - \beta - 1} \rho^{2\beta + 1} s^{2\beta + 1} \sin^{2\beta} \phi d\phi d\rho ds,$$

Define

 $(K_{a,\ell}h)(2|v|^2-1)H(v) = (\mathcal{K}_af)(v)$ where $f(v) := h(2|v|^2-1)H(v)$ H(v) harmonic polynomial of degree ℓ .

0.4 THEOREM. For all $\alpha > \beta > -1/2$, and all non negative integers ℓ ,

$$a^{\ell} \frac{p_{n}^{(\alpha,\beta+\ell)}(t)}{p_{n}^{(\alpha,\beta+\ell)}(1)} p_{n}^{(\alpha,\beta+\ell)}(2a^{2}-1)$$

$$= \int_{0}^{1} \int_{0}^{\pi} p_{n}^{\alpha,\beta+\ell} \left(\left[a^{2}(1+t) + b^{2}(1-t)r^{2} + 2ab\sqrt{1-t^{2}}r\cos\theta \right] \right]$$

$$\times \left[\sum_{j=0}^{\ell} \binom{\ell}{j} a^{\ell-j}(br)^{j} \left(\frac{1-t}{1+t} \right)^{j/2} P_{j}^{(\beta)}(\cos\theta) \right] dm_{\alpha,\beta}(r,\theta) ,$$

where $b = \sqrt{1 - a^2}$ and $P_{\ell}^{(\beta)}$ is the ultraspherical polynomial with the normalization $P_{\ell}^{(\beta)}(1) = 1$.

0.5 COROLLARY. Consider any $\alpha > \beta > -1/2$ and any integer $\ell \ge 0$. Then for all $t \in [-1, 1]$,

$$\frac{p_n^{(\alpha,\beta+\ell)}(t)}{p_n^{(\alpha,\beta+\ell)}(1)} = \int_0^1 \int_0^\pi \left[\frac{(1+t) - (1-t)r^2}{2} + i\sqrt{1-t^2}r\cos\theta \right]^n \\ \times \left[\sum_{k=0}^\ell \binom{\ell}{k} \left(\frac{\ell}{k}\right) \left(\frac{1-t}{1+t}\right)^{k/2} (ir)^k P_k^{(\beta)}(\cos\theta) \right] \\ \times \mathrm{d}m_{\alpha,\beta}(r,\theta) \;.$$

where $dm_{\alpha,\beta}$ is given as before. Due to Koornwinder for $\ell = 0$. The product formula for $\ell \neq 0$ has appeared in different form in a paper by Koornwinder and Schwartz. It has as a consequence the product formula for the orthogonal polynomials on the parabolic biangle.

$$B = \{ (x_1, x_2) : 0 \le x_1 \le 1, 0 \le x_2^2 \le x_1 \}$$
$$d\nu^{\alpha, \beta} = C_{\alpha, \beta} (1 - x_1)^{\alpha} (x_1 - x_2^2)^{\beta} dx_1 dx_2$$

The polynomials, orthogonal in this inner product, are denoted by

$$R_{n,k}^{\alpha,\beta}(x_1, x_2)$$

$$R_{n,k}^{\alpha,\beta}(x_1, x_2) = P_{n-k}^{(\alpha,\beta+k+1/2)}(2x_1 - 1)x_1^{k/2}P_k^{(\beta)}(x_1^{-1/2}x_2)$$
where $P_n^{\alpha,\beta}(x)$ as well as $P_n^{\beta}(x)$ are normalized, Jacobi, resp. Ultraspherical polynomials $P_n^{\alpha,\beta}(1) = 1, P_n^{\beta}(1) = 1.$
0.6 THEOREM. (Koornwinder and Schwartz (1997))Let $\alpha \ge \beta + 1/2 \ge 0.$ Then
$$R_{n,k}^{\alpha,\beta}(x_1^2, x_2)R_{n,k}^{\alpha,\beta}(y_1^2, y_2)$$

$$= \int_{I \times J^3} R_{n,k}^{\alpha,\beta}(E^2, EG) d\nu^{\alpha,\beta}(r_1, \psi_1, \psi_2, \psi_3) \quad (0.3)$$

Here

$$d\nu^{\alpha,\beta}(r_1,\psi_1,\psi_2,\psi_3) = dm^{\alpha,\beta+1/2}(r_1,\psi_1)dm^{\beta-1/2}(\psi_2)dm^{\beta-1/2}(\psi_3) \\ dm^{\beta}(\psi) = c_{\beta}(\sin\psi)^{2\beta+1}d\psi$$

$$dm^{\alpha,\beta}(r,\psi) = c_{\alpha,\beta}(1-r^2)^{\alpha-\beta-1}r^{2\beta+1}drdm^{\beta-1/2}(\psi)$$

and

$$E = E(x_1, y_1; r, \psi)^2$$

= $(x_1^2 y_1^2 + (1 - x_1^2)(1 - y_1^2)r^2$
+ $2x_1 y_1(1 - x_1^2)^{1/2}(1 - y_1^2)^{1/2}r\cos\psi$

and

$$G = G(x_1, x_2, y_1, y_2; r_1, \psi_1, \psi_2, \psi_3))$$

= $D(C, D(\frac{x_2}{x_1}, \frac{y_2}{y_1}; 1, \psi_2); 1, \psi_3)$,
 $C = \frac{D(x_1, y_1; r_1, \psi_1)}{E(x_1, y_1; r_1, \psi_1)}$

where generally

$$D(x, y; r, \psi) = xy + (1 - x^2)^{1/2} (1 - y^2)^{1/2} r \cos \psi .$$

Define

$$(T_{y_1,y_2}f)(x_1,x_2) := \int_{I \times J^3} f(E^2, EG) d\nu^{\alpha,\beta}(r_1,\psi_1,\psi_2,\psi_3)$$

- T_{y_1,y_2} is selfadjoint on $L^2(d\nu^{\alpha,\beta}), T_{y_1,y_2}1 = 1$
- T_{y_1,y_2} preserves polynomials of a given degree.
- $\lim_{x_2 \to 1} (T_{y_1, y_2} f)(x_1, x_2) = f(1, 1)$