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Markov sequence problem

(X,S, µ) probability space

Selfadjoint Markov operator

T : L2(µ)→ L2(µ)

linear, positivity preserving, T1 = 1. selfadjoint

{fn}∞n=0 , f0 = 1

unit orthonormal basis

The selfadjoint Markov operators that have {fn}∞n=0 as

eigenfunctions form a convex set.

Problem: Find the extreme points.
Equivalently, find the extreme points
of M, the set of all Markov sequences
that are the eigenvalues of a selfadjoint
Markov operator that have {fn}∞n=0 as
eigenfunctions.
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0.1 THEOREM (Bakry–Huet (2006)). Let X be

a closed interval in R, and let µ be a regular Borel

probability measure whose support is X. Let {fn}n≥0

be a unit orthonormal basis for L2(µ) consisting of real

valued functions. Suppose there exists some x0 ∈ X

such that for each x ∈ X,

λn(x) :=
fn(x)

fn(x0)

is a Markov sequence for {fn}n≥0. Then {λn}n≥0 ∈
M, the set of all Markov sequences for {fn}n≥0, if

and only if there exists a Borel probability measure ν

so that

λn =

∫
X

fn(x)

fn(x0)
dν(x) . (0.1)

Finally, if {fn}n≥0 is a sequence of bounded contin-

uous functions whose finite linear combinations are

dense in Cb(X), then the probability measure ν in

(0.1) is unique, so that M is a simplex and the

{fn(x)/fn(x0)}n≥0 are its extreme points.
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The elements of (0.1) are the eigenvalues of

K :=

∫
X

Kzdν(z)

where

Kz(x, y) =

∞∑
n=0

λn(z)fn(x)fn(y) .

Conversely if K is Markov and selfadjoint then

K(x, y) :=

∞∑
n=0

λnfn(x)fn(y)

and∫
X

fk(x)dν(x) =

∫
X

fk(x)

[ ∞∑
n=0

λnfn(x)fn(x0)dµ

]

=

∞∑
n=0

[∫
X

fk(x)fn(x)dµ

]
λnfn(x0)

= λkfk(x0) ,

(0.2)

where

dν = K(x, x0)dµ

is a probability measure.
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Note the ‘Hyper group property’
∞∑
n=0

fn(z)fn(x)fn(y)

fn(x0)
≥ 0

Set

µx,y(dz) =

∞∑
n=0

fn(z)fn(x)fn(y)

fn(x0)

Fn(x) =
fn(x)

fn(x0)

Then

Fn(x)Fn(y) =

∫
Fn(z)µx,y(dz)

λ, ν measures. Define the convolution

λ ? ν :=

∫
µx,y(dz)λ(dx)ν(dy)

Commutative Banach Algebra.∫
Fnλ

∫
Fnν =

∫
Fnλ ? ν
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The ultraspherical polynomials {p(γ)
n }n≥0 are the or-

thonormal polynomials on [−1, 1], for the measure µ(γ)

dµ(γ)(t) = cγ(1− t2)γ−1/2dt

where

cγ =
1√
π

Γ(γ + 1)

Γ(γ + 1/2)

For each γ > 0, and a ∈ (−1, 1), define an operator Ka

on L2(µ(γ)) by

Kaf (t) =

∫ 1

−1

f
(
at + s

√
1− a2

√
1− t2

)
dµ(γ−1/2) .

0.2 THEOREM. (Bochner (1956)) For any γ >

0, the sequence {λn}n≥0 is a Markov sequence for

{p(γ)
n }n≥0 if and only if there is a probability measure

ν on [−1, 1] such that

λn =

∫ 1

−1

p
(γ)
n (t)

p
(γ)
n (1)

dν(t) .

For each such Markov sequence {λn}n≥0, the mea-

sure ν is unique. In other words, for each

t, {p(γ)
n (t)/p

(γ)
n (1)}n≥0 is a Markov sequence for

{p(γ)
n }n≥0, and these are the extreme points of the set

M of all such Markov sequences.
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• Ka1 = 1, Ka is selfadjoint, with respect to dµ(γ)(t) in

fact

〈Kaf, g〉L2(µ(γ)) =

cγcγ−1/2

∫ 1

−1

∫ 1

−1

g(t)f (u)
(1− a2 − u2 − t2 + 2atu)γ−1

+

(1− a2)γ−1/2
dudt

• Ka preserves polynomials, hence the ultraspherical

polynomials are eigenfunctions.

λnp
(γ)
n (t) =

∫ 1

−1

p(γ)
n

(
at + s

√
1− a2

√
1− t2

)
dµ(γ−1/2)

• Evaluation formula: Take t→ 1 and obtain

λnp
(γ)
n (1) = p(γ)

n (a)

or

p
(γ)
n (a)p

(γ)
n (t)

p
(γ)
n (1)

=

∫ 1

−1

p(γ)
n

(
at + s

√
1− a2

√
1− t2

)
dµ(γ−1/2)

the Gegenbauer product formula (1875) and Bochner’s

starting point.

Thus according to Bakry–Huet Ka are the extremal self-

adjoint Markov operators the eigenvalues of a selfadjoint

Markov operator whose eigenfunctions are the Ultras-
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pherical polynomials are given as convex combination of

p
(γ)
n (a)

p
(γ)
n (1)

As a consequence∑
n

p
(γ)
n (a)p

(γ)
n (t)p

(γ)
n (u)

p
(γ)
n (1)

=
((1− a2)− (u2 + t2 − 2atu))γ−1

+

(1− a2)γ−1/2

As a corollary we have Laplace’s formula for the ultras-

pherical polynomials

p
(γ)
n (t)

p
(γ)
n (1)

=

∫ 1

−1

(t + is
√

1− t2)ndµ(γ−1/2)

Where does the Ka come from?

Kac’ collision model

Qφ(~v) =

(
N

2

)−1∑
i<j

1

2π

∫ 2π

0

φ(Ri,j,θ(~v))dθ.

exp(N(Q− I)t)

Gap ∆N satisfies the recursion relation

∆N ≥ δN∆N−1
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(Carlen-Carvalho-Loss (2000)) where δN is the gap of the

operator defined by the bilinear form∫
SN−1

f (x1)g(x2)dσN

dσN is the uniform normalized surface measure of SN−1.

〈Kaf, g〉L2(µ((N−2)/2)) =

∫
SN−1

f (x · û1)g(x · û2)dσN .

û1 · û2 = a

Clearly, Ka is selfadjoint and a simple calculation leads to

the previous explicit formula for Ka for the special value

γ = (N − 2)/2.

Likewise the Kac model with three dimensional collisions

(CCL(2003), Carlen-Geronimo-Loss (2008)) has a gap

∆N that satisfies the same recursive inequality, i.e.,

∆N ≥ ∆N−1δN

where this time δn is the gap of another operator Ka. We

replace 3 by m in what follows.

[x] = [x1, . . . , xN ] , xi ∈ Rm

[x] : RN → Rm , u→ [x]u

usual matrix product. If (x1, · · · xN) ∈ SmN−1 then

[x]u ∈ Bm, the unit ball in Rm.
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For any N > 2 and m > 1, and any −1 < a < 1,

define

〈f,Kag〉L2(Bm,νm,N ) =

∫
SmN−1

f ([x]û1)g([x]û2)dσmN ,

û1 · û2 = a .

A straightforward calculation yields

Kaf (v) =

∫
B

f
(
av +

√
1− a2

√
1− |v|2y

)
dνm,N−1(y)

where

dνm,N(v) =
|Sm(N−1)−1|
|SmN−1|

(1− |v|2)(m(N−1)−2)/2dv

Jacobi Polynomials p
(α.β)
n on [−1, 1], orthogonal with re-

spect to the measure

µα,β(dx) = cα,β(1− x)α(1 + x)βdx

Ka commutes with rotations.

(Ka,0h)(2|v|2−1) := (Kaf )(v) where f (v) := h(2|v|2−1) .

α = (m(N − 2)− 2)/2 and β = (m− 2)/2
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(Ka,0h)(t) =

∫ 1

0

∫ π

0

dmα,β(r, θ)

h
[
(a2(1 + t)− 1) + b2(1− t)r2 + 2abr(1− t2)1/2 cos θ

]

dmα,β(r, θ) =
2Γ(α + 1)√

πΓ(β + 1/2)Γ(α− β)

× (1− r2)α−β−1r2β+1 sin2β θdrdθ

For α > β > −1/2

• Ka,0 is selfadjoint on L2(µα,β)

This is fairly obvious for the special values of α and β.

• Preserves the space of polynomials of fixed degree

• limt→1Ka,0h(t) = h(2a2 − 1)

As a consequence we have



12

0.3 THEOREM (Gasper (1971/1972)). For α ≥ β

with β > −1/2 or α > β with β = −1/2 the sequence

{λn}n≥0 is a Markov sequence for {p(α,β)
n }n≥0, if and

only if there is a probability measure ν on [−1, 1] such

that

λn =

∫ 1

−1

p
(α,β)
n (x)

p
(α,β)
n (1)

dν(x) .

For each such Markov sequence {λn}n≥0, the mea-

sure ν is unique. In other words, for each

t, {p(α,β)
n (t)/p

(α,β)
n (1)}n≥0 is a Markov sequence for

{p(γ)
n }n≥0, and these are the extreme points of the set

M of all such Markov sequences.

Selfadjointness follows from

(Ka,0h1, h2) =

b−2α

∫ 1

0

∫ 1

0

∫ π

0

h1(2s
2 − 1)h2(2ρ

2 − 1)

× (b2 − s2 − ρ2 + 2aρs cosφ)α−β−1
+ ρ2β+1

s2β+1 sin2β φdφ dρ ds ,

Define

(Ka,`h)(2|v|2−1)H(v) = (Kaf )(v) where f (v) := h(2|v|2−1)H(v) .

H(v) harmonic polynomial of degree `.
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0.4 THEOREM. For all α > β > −1/2, and all non

negative integers `,

a`
p

(α,β+`)
n (t)

p
(α,β+`)
n (1)

p(α,β+`)
n (2a2 − 1)

=

∫ 1

0

∫ π

0

pα,β+`
n

([
a2(1 + t) + b2(1− t)r2 + 2ab

√
1− t2r cos θ

]
− 1
)

×

∑̀
j=0

(
`

j

)
a`−j(br)j

(
1− t
1 + t

)j/2
P

(β)
j (cos θ)

 dmα,β(r, θ) ,

where b =
√

1− a2 and P
(β)
` is the ultraspherical poly-

nomial with the normalization P
(β)
` (1) = 1.

0.5 COROLLARY. Consider any α > β > −1/2

and any integer ` ≥ 0. Then for all t ∈ [−1, 1],

p
(α,β+`)
n (t)

p
(α,β+`)
n (1)

=

∫ 1

0

∫ π

0

[
(1 + t)− (1− t)r2

2
+ i
√

1− t2r cos θ

]n
×

[∑̀
k=0

(
`

k

)(
1− t
1 + t

)k/2
(ir)kP

(β)
k (cos θ)

]
×dmα,β(r, θ) .

where dmα,β is given as before.

Due to Koornwinder for ` = 0.
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The product formula for ` 6= 0 has appeared in different

form in a paper by Koornwinder and Schwartz. It has

as a consequence the product formula for the orthogonal

polynomials on the parabolic biangle.

B = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2
2 ≤ x1}

dνα,β = Cα,β(1− x1)
α(x1 − x2

2)
βdx1dx2

The polynomials, orthogonal in this inner product, are

denoted by

Rα,β
n,k (x1, x2)

Rα,β
n,k (x1, x2) = P

(α,β+k+1/2)
n−k (2x1 − 1)x

k/2
1 P

(β)
k (x

−1/2
1 x2)

where P α,β
n (x) as well as P β

n (x) are normalized, Jacobi,

resp. Ultraspherical polynomials P α,β
n (1) = 1, P β

n (1) = 1.

0.6 THEOREM. (Koornwinder and Schwartz

(1997))Let α ≥ β + 1/2 ≥ 0. Then

Rα,β
n,k (x2

1, x2)R
α,β
n,k (y2

1, y2)

=

∫
I×J3

Rα,β
n,k (E2, EG)dνα,β(r1, ψ1, ψ2, ψ3) (0.3)

Here

dνα,β(r1, ψ1, ψ2, ψ3)

= dmα,β+1/2(r1, ψ1)dm
β−1/2(ψ2)dm

β−1/2(ψ3)

dmβ(ψ) = cβ(sinψ)2β+1dψ
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dmα,β(r, ψ) = cα,β(1− r2)α−β−1r2β+1drdmβ−1/2(ψ)

and

E = E(x1, y1; r, ψ)2

= (x2
1y

2
1 + (1− x2

1)(1− y2
1)r2

+ 2x1y1(1− x2
1)

1/2(1− y2
1)1/2r cosψ

and

G = G(x1, x2, y1, y2; r1, ψ1, ψ2, ψ3))

= D(C,D(
x2

x1
,
y2

y1
; 1, ψ2); 1, ψ3) ,

C =
D(x1, y1; r1, ψ1)

E(x1, y1; r1, ψ1)

where generally

D(x, y; r, ψ) = xy + (1− x2)1/2(1− y2)1/2r cosψ .

Define

(Ty1,y2f ) (x1, x2) :=

∫
I×J3

f (E2, EG)dνα,β(r1, ψ1, ψ2, ψ3)

• Ty1,y2 is selfadjoint on L2(dνα,β), Ty1,y21 = 1

• Ty1,y2 preserves polynomials of a given degree.

• limx2→1(Ty1,y2f )(x1, x2) = f (1, 1)


