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Markov sequence problem
(X, S, u) probability space
Selfadjoint Markov operator
T:L*p) — L*(n)
linear, positivity preserving, T'1 = 1. selfadjoint

{fn}zo:() ) fO =1

unit orthonormal basis

The selfadjoint Markov operators that have {f,}>°, as
eigenfunctions form a convex set.

Problem: Find the extreme points.
Equivalently, find the extreme points
of M, the set of all Markov sequences
that are the eigenvalues of a selfadjoint
Markov operator that have {f,}>°, as

eigenfunctions.
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0.1 THEOREM (Bakry—Huet (2006)). Let X be
a closed interval in R, and let p be a reqular Borel
probability measure whose support is X . Let {f,}n>0
be a unit orthonormal basis for L*(u) consisting of real

valued functions. Suppose there exists some rg € X
such that for each v € X,

An(x) = 7 (@0)
is a Markov sequence for {fn,}tnso0. Then {\,}n>0 €

M, the set of all Markov sequences for {f,}tn>0, if
and only if there exists a Borel probability measure v

so that f()
)\n:/an(xO)dy(aj) . (0.1)

Finally, if {f.}n>0 is a sequence of bounded contin-

uous functions whose finite linear combinations are
dense in Cy(X), then the probability measure v in
(0.1) is unique, so that M is a simplex and the

{fo(x)/ fo(xo) }nso are its extreme points.



The elements of (0.1) are the eigenvalues of

K::/ K.dv(z)
X
where

Conversely if K is Markov and selfadjoint then

/ Fo(2) (e / fula [ZAnfn ) fulzo)d ]
_ nz% [ /X fi(x) fn(a:)dM] Anfu(20)

= Mefr(wo)
02)

where

dv = K(x, z¢)du

is a probability measure.



Note the ‘Hyper group property’

— ful2) ful2) fuly)

Set
HMM=ZM%£&@
_ Julz)
Fo(x) = o)
Then

F@F) = [ File)hodz)

A, v measures. Define the convolution

Nk = / 1, o (d2)\ (dz)(dy)

Commutative Banach Algebra.

/Fn)\/FnV:/Fn)\*V



The ultraspherical polynomials {pq(ﬂ)}nzo are the or-
thonormal polynomials on |[—1, 1], for the measure ,LL(V)

dp I (t) = ¢, (1 — 3712t

where
1 T'(y+1)

Vvrl(y+1/2)

For each v > 0, and a € (—1,1), define an operator K,
on L*(p")) by

Kaf(t):/ (at+8\/1—a2\/1 t2>du —12)

0.2 THEOREM. (Bochner (1956)) For any v >
0, the sequence {\,}n>0 s a Markov sequence for

Cy =

{pfﬁ)}nzo iof and only if there is a probability measure
v on |—1,1] such that

1, ()
)\n:/ p?><t>du(t).

-1 pn” (1)
For each such Markov sequence {\,}n>0, the mea-

sure v 1S uUnique. In other words, for each
t {p§3)(t)/p§3)(1)}n20 is a Markov sequence for
{pg)}nzo, and these are the extreme points of the set
M of all such Markov sequences.



o K,1 =1, K, is selfadjoint, with respect to du!?(t) in
fact

<ngL2 —

1—a —u? — 2 4 2atu)]
CCry 1/2// 1= a2y 17 dudt

e K, preserves polynomials, hence the ultraspherical

polynomials are eigenfunctions.

1
A\ (t) = / pl (a,t 1+ sv/1—a2\/1— t2) dy-1/2)

1

e Evaluation formula: Take ¢ — 1 and obtain

A (1) = p(a)

or

(7) (7) 1
n mn t _
p <(CL>)p < ) _ / pgg) (CLt + S\/l . az\/l _ t2) d’u(W 1/2)

pn7 <1) 1
the Gegenbauer product formula (1875) and Bochner’s

starting point.

Thus according to Bakry—Huet K|, are the extremal self-
adjoint Markov operators the eigenvalues of a selfadjoint
Markov operator whose eigenfunctions are the Ultras-
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pherical polynomials are given as convex combination of

py(a)

py(1)

AS a consequence
p(@p Op () (1= a?) = (u? + 12 — 2atu))T"

T N e T

As a corollary we have Laplace’s formula for the ultras-
pherical polynomials

(7) 1
n (T
p( )< ) / (t +isy/1 —2)"dp—1/2

pn7 <1> 1

Where does the K, come from?

Kac’ collision model

Qo(7) - (;V ) S5 [ ot

exp(N(Q — I)t)

Gap Ay satisfies the recursion relation

Any > INAn_1
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(Carlen-Carvalho-Loss (2000)) where dy is the gap of the
operator defined by the bilinear form

fx1)g(w2)doy

SN—l
doy is the uniform normalized surface measure of S¥ 1.

(Kot 9) 2u(v-272) = fx -an)g(z - Up)doy .

gN—1

@1 . ag = a
Clearly, K, is selfadjoint and a simple calculation leads to
the previous explicit formula for K, for the special value

v =(N—-2)/2.

Likewise the Kac model with three dimensional collisions
(CCL(2003), Carlen-Geronimo-Loss (2008)) has a gap
Ay that satisfies the same recursive inequality, i.e.,

Ay > An_10n
where this time 9,, is the gap of another operator /C,. We
replace 3 by m in what follows.
z] = |x1,...,xN], x; € R™
2] RY = R™ | u — [z]u

usual matrix product. If (z1,---zy) € S™! then
[z]u € B™, the unit ball in R™.
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For any N > 2 and m > 1, and any —1 < a < 1,
define

K)o = [ Salig(al@)dony

gmN—1
ﬂl . ag =a.

A straightforward calculation yields

where
|Sm(N_1)_1‘
dvy N (v) = [ SmN-1|

(1 o ‘U‘2>(m(N_1)_2)/2dU

Jacobi Polynomials p%aﬂ ) on |—1, 1], orthogonal with re-

spect to the measure
p9(dr) = cop(l — 2)*(1 + 2) da
IC, commutes with rotations.
(Kooh)@lol=1) == (Ko f)(v)  where (o) = h(2Jo]—~1).
a=(m(N—-2)—2)/2 and (= (m—2)/2
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K, oh)(t // dme, g(r, 0)

h[( 21 4 4) — 1) + 521 — t)r2 + 2abr(1 — )42 cos 6

20+ 1)
ﬁﬂﬁ”r L/2)l (e = 0)

x (1 —r?)* 120t 6in27 9drde

dmg 5(r, 0) =

Fora > 0> —1/2

o K, is selfadjoint on LQ(NO&ﬁ)
This is fairly obvious for the special values of a and S3.

e Preserves the space of polynomials of fixed degree

o limt_>1 Ka,Oh(t> — h(2a2 — 1)

As a consequence we have
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0.3 THEOREM (Gasper (1971/1972)). For a > (3
with 8 > —1/2 or a > § with B = —1/2 the sequence
{Antnz0 s a Markov sequence for {pgf’ﬁ)}nzo, if and
only if there is a probability measure v on [—1, 1] such

that | (@p
A\, = / p?& ﬁ)@)dy(az) .
—1py (1)
For each such Markov sequence {\,}n>0, the mea-

sure v 1S uUnique. In other words, for each

t {p%a’ﬁ)(t)/pga’m(l)}nzo is a Markov sequence for
{pg)}nzo, and these are the extreme points of the set
M of all such Markov sequences.

Selfadjointness follows from

a0h17 h2

b‘QO‘/ / / hn(25> — Dhy(20° — 1)
x (b? — s* — p? + 2aps cos )T pP0t!
s sin® pdp dpds |

Define

(Kach)(2lv'=1)H (v) = (Ko f)(v) where f(v) := h(2[v["~1)H (v)
H (v) harmonic polynomial of degree /.
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0.4 THEOREM. For alla > 6 > —1/2, and all non
negative integers £,

o,0+0
oo
o 14
p7(1 B+ )<1>

1 T
://pg’mg([ (1+t)+62(1—t +2ab\/1—t2r0086}
0o Jo
¢ /2
4 (—j WO (B)
X Hbory [ —— P, 0) | dmgs(r,0) ,
Z<]> o (157) Peost) | st )

py 7020 = 1)

where b = v/1 — a? and Pg(ﬁ ) is the ultraspherical poly-
nomaial with the normalization Pg(ﬁ )(1) = 1.

0.5 COROLLARY. Consider any o« > ( > —1/2
and any integer £ > 0. Then for all t € [—1,1],

:W - [ s

2

-l N /2
X Z (/i) (%) (ir)kpéﬁ)(cosﬁ)]

| k=0
xdmg (1, 0) .

n

where dm,, 5 1s given as before.

Due to Koornwinder for ¢ = 0.
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The product formula for ¢ # 0 has appeared in different
form in a paper by Koornwinder and Schwartz. It has
as a consequence the product formula for the orthogonal
polynomials on the parabolic biangle.

B={(z,29): 0< 2 <1,0< 25 < 1y}
dv™’ = Oy 5(1 — 21)%(zy — 23) dx1dx,

The polynomials, orthogonal in this inner product, are
denoted by
Rz:lg (33 1 x2>

Ry (wy,0) = BT 22y — 12y P P (27 )

where P%’(z) as well as P?(x) are normalized, Jacobi,
resp. Ultraspherical polynomials P*”(1) = 1, PY(1) = 1.

0.6 THEOREM. (Koornwinder and Schwartz
(1997))Let « > B+ 1/2 > 0. Then

Ry (@, 2a) R (7, )
:/ 3sz£(E2>EG>dVa’6(T1»¢17¢27¢3) (0.3)
IxJ
Here

dVa’ﬁ(rla wla ¢27 ¢3)
_ dmo"mm(rl, %)dmﬁ_m(%)dmﬂ_m(%)

dmﬁ(w) = cp(sin w)%“dw
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dm®9(r, ) = Cap(l — TQ)O‘_B_lrQﬁHdrdmﬁ_l/Q(¢)

and

E = E(x1,y1;7,9)
= (27yi + (1 — 2D (1 — y)r’
+ 2zy1(1 — )21 — y])?r cos

and

G = G(£U1,J?2,yl y277417¢17¢27¢3>>

- <CD(%%1¢2>7 7w3>7

1
D(%» Y1, 71, ¢1>

C =
E(xla Y1, 71, %)

where generally

D(x,y;r,¢) = zy + (1 — %) (1 = y)Prcos g .

Define
(Tybyzf) (CElv $2) = ; f<E27 EG)dVOéﬁOnlv ¢1, ¢27 ¢3)
IxJ
o T, ,, is selfadjoint on L?(dv*"), T, ,,1 =1

e T, 4, Dreserves polynomials of a given degree.

¢ hm$2—>1(Ty1,y2f>(x1> 552) — f<1> 1)



