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The OHS coagulation equation

Mean-field model for the aggregation of stellar objects in
astrophysics [Oort & van de Hulst (1946), Safronov (1972)].
Size distribution function: f (t , x) ≥ 0
(t > 0=time, x ∈ (0,∞)=size).

∂t f (t , x) = −∂x

(
f (t , x)

∫ x

0
x∗ a(x , x∗) f (t , x∗) dx∗

)
− f (t , x)

∫ ∞
x

a(x , x∗) f (t , x∗) dx∗ ,

where a(x , x∗) = a(x∗, x) ≥ 0 denotes the coagulation kernel.
Example: a(x , x∗) = xαxβ∗ + xβxα∗ , 0 ≤ α ≤ β ≤ 1.
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Links OHS/Smoluchowski coagulation equation

The growth rate of the size distribution function of particles of
size x > 0 ∫ x

0
x∗ a(x , x∗) f (x∗) dx∗

depends on the whole distribution of particles of size smaller
than x through a weighted average and not on the details of the
sizes of the particles coalescing to produce particles of size x
as in the Smoluchowski coagulation equation.
There are connections between the OHS and Smoluchowski
coagulation equations, either via discrete models [Dubovski
(1999)] or continuous models [Lachowicz, L. & Wrzosek (2003)].
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Weak solutions [Lachowicz, L. & Wrzosek (2003)]

Assume that a is locally Lipschitz continuous with

∂xa(x , x∗) ≥ −a0 , a0 ≥ 0.

Given f0 ∈ L1(0,∞, (1 + x)dx), f0 ≥ 0, there is a weak solution f
to the OHS equation with f (0) = f0 if

either sup {a(x , x∗)/x∗ : x ∈ (0,R)} −→ 0 as x∗ →∞ for
each R > 0 and then

M1(t) :=

∫ ∞
0

x f (t , x) dx ≤ M1(0) , t ≥ 0 ,

or a(x , x∗) ≤ K (1 + x + x∗) and then

M1(t) = M1(0) , t ≥ 0 .
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Mass conservation/gelation [Lachowicz, L. & Wrzosek (2003)]

The inequality M1(t) ≤ M1(0) cannot in general be improved to
an equality when the assumption a(x , x∗) ≤ K (1 + x + x∗) is
not fulfilled. Define the gelation time

Tgel := inf {t ≥ 0 : M1(t) < M1(0)} ∈ [0,∞] .

.

If a(x , x∗) ≤ K (1 + x + x∗) then Tgel =∞.

If a(x , x∗) ≥ K (xx∗)λ/2 for λ ∈ (1,2] then Tgel <∞.

Smoluchowski’s equation: [Escobedo, Mischler & Perthame (2002)]
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Finite speed of propagation

Assume that supp f0 ⊂ [0,R0]. There are T? ∈ (0,∞] and
R ∈ C1([0,T?)) such that supp f (t) ⊂ [0,R(t)] for t ∈ [0,T?)
with the alternative

T? =∞ OR T? <∞ and lim
t→T?

R(t) =∞ .

More precisely, R(0) = R0 and R solves the ODE

dR
dt

(t) =

∫ ∞
0

x a(R(t), x) f (t , x) dx , t ∈ [0,T?) .

Clearly, M1(t) = M1(0) for t ∈ [0,T?) and thus T? ≤ Tgel.
[Dubovski (1999), Lachowicz, L. & Wrzosek (2003)]
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Improved criterion for mass conservation

Assume that supp f0 ⊂ [0,R0] and there is a positive and
increasing function A such that

a(x , x∗) ≤ A(x) + A(x∗) and
∫ ∞

1

1
A(s)

ds =∞ .

Then T? = Tgel =∞.
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Finite speed of propagation: estimates

If a(x , x∗) = xλ + xλ∗ , λ ∈ [0,1), then

c t1/(1−λ) ≤ R(t) ≤ C t1/(1−λ) , t ≥ 1 .

If a(x , x∗) = x + x∗, then

R0 eM1(0)t ≤ R(t) ≤ R0 e2M1(0)t , t ≥ 0 .
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Finite speed of propagation: estimates

If a(x , x∗) = (xx∗)λ/2, λ ∈ [0,1), then

R(t) ≤ C t1/(1−λ) , t ≥ 1 .

If a(x , x∗) = (xx∗)1/2, then

R(t) ≤ R0 eM1(0)t , t ≥ 0 .
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Dynamical scaling assumption

For homogeneous coagulation kernels

a(ξx , ξx∗) = ξλ a(x , x∗) , ξ > 0 , x > 0 , x∗ > 0 ,

it is expected that

f (t , x) ∼ 1
s(t)ω

ψ

(
x

s(t)

)
as t → Tgel ,

where ω, the mean size s (s(t)→∞ as t → Tgel) and the
scaling profile ψ are to be determined.
Mass Conservation −→ Tgel =∞ and ω = 2
[van Dongen & Ernst (1986), Leyvraz (2003)]
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Mass-conserving self-similar solutions

For % > 0, define

ψ%(x) :=
2
%

1[0,%](x) , x > 0 .

Then
(t , x) 7−→ 1

t2 ψ%

(x
t

)
is a self-similar solution to the OHS equation with first moment

equal to % for all t ≥ 0.
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Convergence and decay estimates

Define the cumulative distribution function

F (t , x) :=

∫ ∞
x

f (t , x∗) dx∗ , (t , x) ∈ [0,∞)× (0,∞) .

Then,
for every p ∈ [1,∞),

lim
t→∞

t(p−1)/p ‖F (t)− FM1(0)(t)‖Lp = 0 .

In addition, if f0 ∈ L1(0,∞, x2dx) and p ∈ [1,2], then

‖F (t)− FM1(0)(t)‖Lp ≤ C t−p/2 , t ≥ 0 .
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Liapunov functionals in self-similar variables

Self-similar variables: define Φ by

F (t , x) =
1

1 + t
Φ

(
ln (1 + t),

x
1 + t

)
, (t , x) ∈ [0,∞)× (0,∞) ,

and Φ% by Φ%(y) := (2/%) (%− y)+, y ≥ 0. Then
t 7−→ ‖Φ(t)− ΦM1(0)‖L1 is a non-increasing function.

t 7−→ ‖Φ(t)−ΦM1(0)‖2L2 +
4

M1(0)

∫ ∞
0

(x−M1(0))+ Φ(t , x) dx

decays exponentially.
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“Linearization”

Consider again the cumulative distribution function

F (t , x) :=

∫ ∞
x

f (t , x∗) dx∗ , (t , x) ∈ [0,∞)× (0,∞) .

and let P be its inverse function (so that F (t ,P(t , y)) = y
formally). Then

∂tP(t , y) =
y2

2
∂yP(t , y) +

∫ ∞
y

P(t , y∗) dy∗ .

Linear transport equation with a nonlocal reaction term.



The Oort-Hulst-Safronov (OHS) coagulation equation
The constant kernel: a(x, x∗) = 1

The sum kernel a(x, x∗) = xλ + xλ
∗ , 0 < λ < 1

The multiplicative kernel: a(x, x∗) = xx∗

Self-similar solutions with “fat tails”

We look for self-similar solutions of the form

1
s(t)ω

ψ

(
x

s(t)

)
, s(t) := ((ω − 1)t)1/(ω−1) .

Setting m = (2− ω)/(ω − 1) for ω ∈ (1,2),

Pψ(y) = A (y−ω)+
B

ym+1

∞∑
k=0

ak

(
y

2(ω − 1)

)k

, y ∈ [0,2(ω−1)] ,

Pψ(2(ω−1)) = P ′ψ(2(ω−1)) = 0 , ak := (k−m)

 k∏
j=1

j −m − 3
j


Smoluchowski’s eq. [Bertoin (2002), Menon & Pego (2004)]
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Mass-conserving self-similar solutions

In that case, s(t) = tγ with γ := 1/(1− λ) and ψ solves

γ

∫ ∞
0

ψ(x) (ϕ(x)− x ϕ′(x)) dx

+

∫ ∞
0

∫ x

0
(x∗ ϕ′(x)− ϕ(x∗)) a(x , x∗) ψ(x∗) ψ(x) dx∗dx = 0 .

Problem: for any x0 > 0, γ x−λ0 δx0 is a (measure-valued) weak
solution to this equation.
We expect that there is also a “smooth” solution.
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Existence [Bagland & L. (2007)]

There exists a non-negative function ψ ∈ L1(0,∞; (x + xλ) dx),
x0 > 0 and q > 0 such that∫ ∞

0
x ψ(x) dx = 1 , Mλ :=

∫ ∞
0

xλ ψ(x) dx ∈ (1, γ) ,

ψ ∈ C((0,∞)\{x0}) with supp (ψ) = [0, x0] and ψ(x0−) > 0 ,

lim
x→0

xτ ψ(x) = q with τ := 2− Mλ

γ
∈ (1,1 + λ) ,

(
γ x −

∫ x

0

(
xλ + xλ∗

)
x∗ ψ(x∗) dx∗

)
ψ(x)

=

(
γ −

∫ ∞
x

xλ∗ ψ(x∗) dy∗

) ∫ ∞
x

ψ(x∗) dx∗ ,

(t , x) 7−→ t−2γψ(xt−γ) self-similar solution to the OHS equation.
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Proof

Existence proof by a dynamical approach: construction of a
compact and convex invariant subset for an evolution equation
+ Tychonov-Schauder fixed point theorem =⇒ existence of a
steady state. [Gamba, Panferov & Villani (2004), Escobedo, Mischler &
Rodriguez Ricard (2005), Fournier & L. (2005)]
Change of unknown functions:

self-similar variables: f −→ g,
Indefinite integral of g vanishing at infinity: g −→ G,
Pseudo-inverse of G: G −→ P,
Modification of the kernel: a −→ a + 2δ.
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Self-similar solutions with infinite mass

We look for self-similar solutions of the form

(t , x) 7−→ 1
s(t)ω

ψ

(
x

s(t)

)
,

where ω, the mean size s and the scaling profile ψ are to be
determined with s(t)→∞ as t → T .

s(t) = ((3− ω)(T − t))−1/(3−ω) , t ∈ [0,T ) .

Smoluchowski’s equation: ω ∈ [5/2,3) [Menon & Pego (2004)]
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Self-similar solutions with infinite mass

Let ωc (ωc ∼ 2.255) be the unique real number in (2,3) such
that

(ωc − 1) ln
(
ωc − 1
ωc − 2

)
= 2 .

For ω ∈ [ωc ,3) the function gω defined by

gω(z) := 2z − (ω − 1) ln
(

1 +
z

ω − 2

)
, z ≥ 0 ,

has a unique positive zero r(ω) ∈ ((3− ω)/2,1] with r(ωc) = 1.
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Self-similar solutions with infinite mass

Given ω ∈ [ωc ,3), there is a self-similar solution to the OHS
equation and the profile ψ enjoys the following properties:

ψ ∈ C1((0,Xω)) with Xωc <∞ and ψ(Xωc−) > 0 while
Xω =∞ for ω ∈ (ωc ,3),
ψ(x) ∼ C0(ω) x−ω as x → 0,
if ω ∈ (ωc ,3), then ψ(x) ∼ C∞(ω) x−β(ω) as x →∞ with

β(ω) :=
ω − r(ω)

1− r(ω)
∈ (3,∞) .

Remark: the second moment of ψ is finite but its first moment is
not.
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Proof

Change of unknown functions:
Indefinite integral of y 7→ yψ(y) vanishing at infinity:
ψ −→ Ψ,
Pseudo-inverse of Ψ: Ψ −→ P,
Indefinite integral of P vanishing at∞: P −→ P.

Then
y

dP
dy

(y) = gω(P(y)) , P(0) = r(ω) ,

with the constraints: P is decreasing, non-negative, and
convex.
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