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@ The constant kernel: a(x, x.) = 1

© The sumkernel a(x, x,) = x* + x, 0 < A < 1

e The multiplicative kernel: a(x, x,) = xx.
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The OHS coagulation equation

Mean-field model for the aggregation of stellar objects in
astrophysics [Oort & van de Hulst (1946), Safronov (1972)].
Size distribution function: f(t,x) >0
(t > O=time, x € (0, c0)=size).

"X

of(t,x) = —0x (f(t,x) / X a(x, x.) f(t, xy) dx*>
0
— f(t, x) / a(x, x.) f(t, x.) dx.,
JX

where a(x, x.) = a(x«, x) > 0 denotes the coagulation kernel.
Example: a(x, x,) = x*x + xx>, 0 < a < B < 1.
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Links OHS/Smoluchowski coagulation equation

The growth rate of the size distribution function of particles of
size x >0

"X
/ X a(x, x.) f(x.) dx,
0

depends on the whole distribution of particles of size smaller
than x through a weighted average and not on the details of the
sizes of the particles coalescing to produce particles of size x
as in the Smoluchowski coagulation equation.

There are connections between the OHS and Smoluchowski
coagulation equations, either via discrete models [Dubovski
(1999)] or continuous models [Lachowicz, L. & Wrzosek (2003)].
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Weak solutions [Lachowicz, L. & Wrzosek (2003)]

Assume that ais locally Lipschitz continuous with
oxa(x,x.) > —ap, ap > 0.

Given fy € L'(0, 00, (1 4+ x)dx), fy > 0, there is a weak solution f
to the OHS equation with f(0) = f; if

@ either sup{a(x, x.)/x. : x € (0,R)} — 0 as x, — oo for
each R > 0 and then

M1(t)::/ x f(t,x) dx < M;(0), t>0,
0
@ ora(x,x,) <K (1+ x+ x.) and then

My (t) = M;(0), t>0.
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Mass conservation/gelation [Lachowicz, L. & Wrzosek (2003)]

The inequality M;(t) < M;(0) cannot in general be improved to
an equality when the assumption a(x, x,.) < K (1 + x + x,) is
not fulfilled. Define the gelation time

Tgel = inf{t >0 : My(t) < My(0)} € [0, 0]

o If a(x, x.) < K (1+ X+ x,) then Tge = oc.
o If a(x,x.) > K (xx.)»2 for A € (1,2] then Tyq < ox.

Smoluchowski’s equation: [Escobedo, Mischler & Perthame (2002)]
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Finite speed of propagation

Assume that supp fy C [0, Ro]. There are T, € (0, cc] and
R e C'([0, T,)) such that supp f(t) C [0, R(1)] for t € [0, T,)
with the alternative

T.=00 OR T,<o0 and lim R(t) =o0.

t— T,

More precisely, R(0) = Ry and R solves the ODE
dR >
E(t) = / x a(R(t),x) f(t,x)dx, tel0,T,).
Jo

Clearly, M;(t) = M;(0) for t € [0, T) and thus T, < Tgg.
[Dubovski (1999), Lachowicz, L. & Wrzosek (2003)]
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Improved criterion for mass conservation

Assume that supp f C [0, Rp] and there is a positive and
increasing function A such that

a(x,x.) < A(x) + A(x.) and /100 A(13) ds = o

Then T, = Tge = oc.
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Finite speed of propagation: estimates

e If a(x, x.) = x* + x, A € [0,1), then

ct/U-N<Rt)y<Ct/ON  t>1,

e If a(x, x.) = x + x., then

Ry et < R(t) < Ry MOt > 0.
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Finite speed of propagation: estimates

o If a(x, x.) = (xx.)M?, A € [0, 1), then

R(t)y<Ct/O-N  t>1.

’

e If a(x, x.) = (xx.)"/2, then

R(t) < Ry et t>0.
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Dynamical scaling assumption

For homogeneous coagulation kernels

aléx, éx,) =& a(x,x.), €>0,x>0,x >0,

it is expected that

1 X
f(t, x) ~ s(1)° (0 <s(t)> as t— Tgel,

where w, the mean size s (s(t) — oo as t — Tge) and the
scaling profile ¢) are to be determined.

Mass Conservation — Tge| = oo and
[van Dongen & Ernst (1986), Leyvraz (2003)]
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Mass-conserving self-similar solutions

For o > 0, define

2
wg(X) :261[0791()()’ x>0.

Then

(tx) — 5 v (3)

is a self-similar solution to the OHS equation with first moment
equal to p forall t > 0.
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Convergence and decay estimates

Define the cumulative distribution function
F(t, ) ;:/ f(t,x) dx., (1 x) € [0,00) x (0,00).
X

Then,
@ forevery p € [1,00),

im £~/ || F(t) — Fiy,0)(t) 1o = 0.

t—o0
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Convergence and decay estimates

Define the cumulative distribution function
F(t, ) ;:/ f(t,x) dx., (1 x) € [0,00) x (0,00).
X

Then,
@ forevery p € [1,00),

t“jgcf(p”p\\’:() Fy o) (8)lle = 0.
@ In addition, if f, € L'(0, 0o, x?dx) and p <€ [1,2], then
IF(t) = Fuyo)(B)lle < C P2, t>0.
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Liapunov functionals in self-similar variables

Self-similar variables: define ¢ by

F(t,x) = 11+t ® <|n(1 + 1), 1"+t) . (t,x) € ]0,00) % (0, 00)

and &, by ®,(y) :=(2/0) (¢ — ¥)+, ¥ = 0. Then
@ [+ [|®(t) — Dy, (0)l11 is @ non-increasing function.
°

4 »00
t— 1900~ u0)+ 7 55 /0 (x— M (0))., (t, x) dx

decays exponentially.
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“Linearization”

Consider again the cumulative distribution function
F(t,x) ;:/ f(1, %) dx.,  (£x) € [0,00) x (0,00).
X

and let P be its inverse function (so that F(t, P(t,y)) =y
formally). Then

2 9]

OP(t,y) = YE oyP(t,y)+ / P(t,y.) dy. .
Jy

Linear transport equation with a nonlocal reaction term.
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Self-similar solutions with “fat tails”

We look for self-similar solutions of the form

LY . — (o — D@D
s (5) - 0= (o=,

Settingm= (2 —w)/(w—1) forw e (1,2),

At B % y \* ,
PuY) = A=) i S (scl7) - relae-
k .
Py(2(w—1)) = P,(2(w-1)) =0, a:= (k—m) (H/’;’B’)
j=1

Smoluchowski’s eq. [Bertoin (2002), Menon & Pego (2004)]
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Mass-conserving self-similar solutions

In that case, s(f) = t7 with v :=1/(1 — X\) and 1 solves
7[00 (600~ x ¢ 0) e
/ / ©(X:)) a(x, X«) ¥(x) ¥(x) dx.dx =0.

Problem: for any xo > 0, xo‘A dx, is @ (measure-valued) weak
solution to this equation.
We expect that there is also a “smooth” solution.



The sum kernel a(x, x.) = x> +x},0 < A < 1

Existence [Bagland & L. (2007)]

There exists a non-negative function v € L'(0, oo; (x + x*) dx),
Xp > 0 and g > 0 such that

/Ooxw(x)dx:1, MA::/ooxAzp(x)dxe(Lfy),
0 0
Y € C((0,0)\{x}) with supp (¢) =[0,%x] and (x—)>0,

lim x™ ¢(x) =q with T::2—%€(1,1+/\)7
x—0 Y

(’Y X — /OX (XA + xj) X, (X:) dx*> P(X)

_ (fy 7w dy*> | vty o,

(t, x) — t=279(xt~7) self-similar solution to the OHS equation.
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Proof

Existence proof by a dynamical approach: construction of a
compact and convex invariant subset for an evolution equation
+ Tychonov-Schauder fixed point theorem — existence of a
steady state. [Gamba, Panferov & Villani (2004), Escobedo, Mischler &
Rodriguez Ricard (2005), Fournier & L. (2005)]

Change of unknown functions:

@ self-similar variables: f — g,

@ Indefinite integral of g vanishing at infinity: g — G,
@ Pseudo-inverse of G: G — P,

@ Modification of the kernel: a — a + 26.
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Self-similar solutions with infinite mass

We look for self-similar solutions of the form

09— g (505)

where w, the mean size s and the scaling profile ¢) are to be
determined with s(t) - ccast— T.

s()=(B—w)(T—1)""C)  tel0,T).

Smoluchowski’s equation: w € [5/2, 3) [Menon & Pego (2004)]
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Self-similar solutions with infinite mass

Let we (we ~ 2.255) be the unique real number in (2, 3) such

that 1
(we—1) In <°"C‘ >:2.

we — 2

For w € [w¢, 3) the function g,, defined by

9.(2) =2z—(w—1) In <1+wi2>, z>0,

has a unique positive zero r(w) € ((3 —w)/2, 1] with r(we) = 1.
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Self-similar solutions with infinite mass

Given w € [wg, 3), there is a self-similar solution to the OHS
equation and the profile ¥ enjoys the following properties:

o ¥ € C'((0,X.)) with X, < oo and ¥/(X,,—) > 0 while
X, = oo forw € (wg, 3),

@ Y(x) ~ Cy(w) x “as x — 0,

0 ifw € (we,3), then ¥(x) ~ Co(w) x P« as x — oo with

flw) = £ 1)

k) € (3,00).

Remark: the second moment of ¢ is finite but its first moment is
not.
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Behaviour as x — o~
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Proof

Change of unknown functions:

@ Indefinite integral of y — yw(y) vanishing at infinity:
v —V,
@ Pseudo-inverse of V: W — P,
@ Indefinite integral of P vanishing at co: P — P.
Then

y ‘(’]y’(y) — 0. (P(y)). P(0) = r(v).

with the constraints: P is decreasing, non-negative, and
convex.
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