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Understanding macroscopic stability-bifurcations scesaat

Kinetic level.
Two examples:

# Phase transitions: Multiple equilibrium states of a
Thermodynamic system when the temperature goes below
some critical value. Minimizers of the free energy
correspond to dynamically stable equilibrium solutions
w.r.t. a kinetic evolution.

# Benard experiment: Convective motions of a fluid when

the Rayleigh number crosses some critical value.
Persistence of the stability scenario for small values ef th
Knudsen number.
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® Phase coexistence:
s The model;
» Stability and instability results;
» Sketch the proof.

#® Benard problem:
» Background and Heuristics;
» Results;

» Main difficulties.



Motivations: Marra’s talk.

Model: Binary fluid. Blue and red particles undergoing
color blind elastic collisions and interacting via a repds
self-consistent force between different colors

Results: Stability—instability of the equilibrium solans.

Technigues: Energy-entropy inequalities; growing mode
for the instabillity.
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1 = fredand f? = f°Ue probability distribution functions on
the phase spade x R3, satisfying the evolution equations

Ouf' +v-Vof + F-Vof' = B(f' 1+ B(f f7)
Ouf* +v-Vaof + F2-Vyof? = B(f*, f*) + B(f*. /)
Self-consistent forceB!, F?,

1 _ / ) 201
Fla.t) = vw/dequ w|)/Rgdvf (2 0. 1)

U > 0 smooth, finite range, boundef], U(|z|)dz = 1,
decreasing

BUg) = [ e [ el wllf gt~ Folo(e)
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Ford=T"1>0setug= (%)%‘57.
The equilibrium solutions are:
fH(@,0) = p(x)ps(v), f2(x,0) = p*(2)ps(v),
5 og ! (@) + | dUJe — o/)p(a’) = C°,
Q
5 og () + [ d/U(Jo — o/))p! (@) = C*
Q
Euler-Lagrange equations for thee energy functional

Folp'. p’l= 5" /Q dz[p'log p*" + p*log p°

/ I 1 20,/
+/Qda;/9da:U(|x—$|),0 ()p™ ().




o(p', p*) = B p" log p' + p°log p*] + p' p°,

Falp', 0] = / drp(p (), p2())
Q

+3 [ de [ Ul =2 @) = ' @A) = )
Setp = p!' + p? andmg = tanh(%pﬁmg)

PERF] Unique miminizer ofp: o' = p? (Mixed phase).
: mg > 0; p= = Zp(1 £ mp)

® Minimizers: p! = p*, p? = p—, (red rich phasg 1 « 2;

* Maximizer (local):y' — p*



Se R

For 3 > 1, non spatially homogeneous solutions are possible
regions ofred richandblue richphases separated by interfaces.

Set ) = R . Define

. o, <0 X o, <0
pl(z) = { pP(x) = { ) -

o, x>0 o, >0

Excess free energy

Flo*', p] = lim {f(—f,e) 0", 0] = Fup [/31,/32]}

{—00

Flp', p?] is not finite if lim p' # pT or lixf p° + pt.
- T— T O

T— 00




Theorem [Carlen, Carvalho, R.E., Lebowitz, Marregt G > 1.
There is a unique (up to translations) minimizer to the excess free

energy F. Let p = (p1, p2) be the one such that p1(0) = p2(0).
® pissmooth; p~ < pi(z) < pT;

p1 Is increasing and p9 Is decreasing;

ﬁ_llogﬁl +Uxpp=0C = ﬁ_llogﬁz + U * py;
B0+ mU s py = 0= 37105+ ;iU * ph;

pi(z) = pa(—x), py(x) = —ps(—2);

p1(z) = p*le®! — 0,2 — Foo;

® o o 0 b

oo () — pFled®l — 0,2 — Foo.
|p2(x) — p| ,






Theorem [R. E., Guo, Marra]Assume p = 2.
® [3 < 1: The unique equilibrium ( f1, f2) = (ug, 1) is stable.
o 3>1:

» the homogeneous equilibria (f1, f2) = (p™ g, p~ 1) and
(F12f2) = (o s, " 1) e stable

» the equilibrium (f1, f2) = (p'(z)ug, p*(z)pg) is stable
w.r.t. symmetric perturbations;
» the homogeneous equilibrium ( f1, f2) = (ug, p1g) is
unstable.
Here stability and instability are ih>°(R x R?) and in
H'(R x R?). Symmetric perturbation means
hi(z,v) = ho(—x, Rv), whereRv = (—wv1, v2, v3).



® No convergence to the equilibrium is stated . This has to

be compared with the Vlasov-Fokker-Plank case where
there is an algebraic rate of convergende.instability
result for VFR

o In order to have phase transitiorfforce not small.

Treating the force terms as perturbations does not work.

Strategy based on entropy-energy argumebhtsestimates
promoted tal>° by analysis of the characteristics. Crucial
step:spectral gapor the second derivative of the free

energy. _
#® The instablility is based on the construction of a

perturbation arguments and persistence of the gorwing
mode at non linear level.




Givenp = (p1, p2), define the operatod on L*(R) x L*(R) by

(, Auy = 2L F o+ su)
u, Au) = =5 F(p+su)| g -

Whenevelp is a minimizer for the excess free energyis non
negative. LetP be the projector on the null space 4f
Lemma. [CCELM] There is 9 > 0 such that

(u, Au) > §][(1 — P)u||*.

If p = (p1, P2), then the null space of A is {c(p), py), ¢ € R}.
The null space of the analog dfis trivial if p = (p™, p7) or
p=(p ,pT) (cases > 1) orp = (1,1) (cases < 1).



Given the equilibrium stat@V/y, Ma) = (p1us, p2143), let
= with g; = be the deviation from the

9= (g91,92) with g Navs

equilibrium. Define:M;(g) = [ dz [ps dv/M;gi(x,v),

H(g)—i/Rdx/dv{filogfi—MilogMz},
2
(9) ZZ/Rdx/dvU;gz-\/M
i—1

+ /RXR dxdyU (|z — y|) (Pfl (z)ps,(y) — p1 (95)/02(?}))7

Pfi = fd?)fi(x,?))-




The energy-entropy functional is ,

H(g) = H(g) + BE(g) — (C+1+log (;)3/2) > Milg),

1=1

‘The energy-entropy functional does not increase:
H(g(t)) < H(g(0)) for anyt > 0.
Quadratic approximation. The coefficients have been chtmsen

cancel the linear part. For sonjge

()
Z/ dar:/R3 dv 2fz
w /R o /R U1z — yl) (s, (8, 2) — p1(2)) (78, 9) — pa(w)).




Lemma. Ifu; = pr, — p; sit. _then there are « > 0

and ~ sufficiently small so that

(fi(t) — M;)°
o) dx/ dv Loir (0= Mo 1<k M,
Z/R R { VI, {[fi(t)—M;|<rM;}

i=1,2

+ | fi(t) — Mi|1{fi(t)M,,;>/<:M,,;}} < H(g(0)).

Remark: It is crucial that the initial perturbation is orthogonal to
the null space ofA. This is trivial for the spatially homogeneous

equilibrium, while it is ensured by tHEYIRIMEIVAGORGINOH for

the phase coexisting equilibrium, where an orbital inditghs
possible.



Theorem: Let w(v) = (X + |v]?)7, with ¥ sufficiently large and

v > 3.1 |[wg(0)]|oo + +/H(g(0)) < 4 for § sufficiently small, then
there is 1y > such that

wg(To) e < 3lw(0) ]l + Cr, /Hg(0)).

The stability follows by iteration on the time interval.



Idea: Without collisions there is a growing mode.

The linearization of the equation for the perturbation is:

8tg+£g = 0,

INotation : ;. = 1.; ¢ first component of the velocity,

(Lg)i = £0egi — BF(\/1giv1)E/1h — aLig,

a=1landL;g = % (B(\/ﬁgi, 2p) + B, /(g1 + 92)))—

Seek for a growing mode of the for g; = g2 = e*e*@q(v).



{\ +ilk}q — pEiU (k) { /R 3 q\/ﬁdv} &/t — aLg = 0.

Proposition 1: Let (3 > 1. There exists sufficiently small o > 0 such
that there is an eigenfunction ¢(v) and the eigenvalue A with oA > 0.
Proof. First assumer = 0. A is found by Penrose criterion,

U (k)k*u(v)

dv = 1.
ge A2+ R2EZ

&

Indeed, sinceU (0) > 1, by continuity there igq > 0 such that
ﬁU(ko) > 1 and hence a > 0 so that this is satisfied.

Use Kato perturbation theorem to extenaito- 0 small.



Proposition 2. Let ag be the supremum of the &’s such that
Proposition 1 is true. Then ag = +00.

Proof. Indeed, ifay < oo then,\g = limgy_,q, Ao EXIStS (UP tO
subsequences) and is a purely imaginary eigenvalue. ltean b
shown that the corresponding eigenfunction must be in tlle nu
space ofl, and this implies\ = 0. Moreover, collisions
disappear for such an eigenfunction and we can use again the

Penrose criterion which impliesl/ (ky) = 1. This is in
contradiction with the definition of;.

Remark: It is crucial thatL is a bounded perturbation. It does
not work with the Fokker-Plank operator which is unbounded.

'Non linear analysis. Bootstrap argume Very technical.



Theorem. Assume 3 > 1. There exist constants kg > 0,6 > 0,
C' > 0, ¢ > 0 and a family of initial %—periodic data

£2(0) = p+ \/ﬁgf(O) > 0, with ¢°(0) satisfying

V269" (0)ll2 + lwg” (0 2= < €3,
for & sufficiently small, but the solution ¢°(t) satisfies

sup ||w95(t)||Loo > ¢ sup ||g‘5(t)||Lz > cl > 0.
0<t<T? 0<t<T?

Here the escape time is TO = %

0
lﬂ 5




The physical situation
we want to study is
theBenard experiment
which is about the be-
havior of a viscous heat
conducting fluid under
the action of the gravity
and heated from below.
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for T_ — T, sufficient




. _ e
Macroscopic space-time scale= %, = rzcr-

Microscopic size of the spatial domaihis O(L).

1. f(r,v,7)foranyr € R is a normalized positive
probability density on the phase spa¢ew) € Q) x R?,
Q c RY;

2. F'is a conservative forgdhe mass Is set tb.

3. e > 0the Knudsen number i.e. the mean free aitin

. 4
macroscopic units: = i
4. Q(f, g) the Boltzmann symmetric collision kernel.



Write the solution to the Boltzmann equation as
&= M(pe,ue, Te;v) +€f1 + ...

Assume:

® T=c1t F=cF = —cV,U;

® u. = cuy. (Mach numbeM = O(¢))

® p.=p+ep,T- =T + Ty, T andp positive constants
Incompressible Navier-Stokes-Fourier system (INSF)

Ve u1 =0; V. (pT1+Tp1+pU) =0,
p(Owur +uy - Vyur) + Viep = nArur + 1V, U,
5)

iﬁ(atTl + Uy - VrTl) — rN\,TT.




Notation: Q = {(z,2) |z € |-m, 7],z € R, z mod 2ar }
for somea > 0 to be specified later
Boltzmann equation in non-dimensional variables,

with gravity alongz ( £} = (0,0, —G) ):

Of + = (0aDef +0:0-f) = GOy f = 5QUf. )

/ dv*/ dw|(v — vy) w\{fg*—k —fg*—f*g},
R3 Sg
>|< U*; f/ f(vla f*_f( )7

v, = s +w(w - (v —1y)).




Diffuse reflection incoming data are Maxwellians:
ve >0 f(t,x,—mv) = M_(v)j; (@),

v <0+ [(t,2,47,0) = My (0)jF (@),

_(v) = — ' = exp | —
o O T o — 22 TP\ T 21— 2en) )
T T,
Mi(v)=1, T_ =1, \= Ty =1— 2\
/vz>0 Uz :E(v) ) ) 2€T_ ) + €

]}t(:v) = / dwlw,|f(t,z, £m, w).
{weR3,w,<0}

— / dvv, f(t,x, +m,v) = 0.
R3




The Rayleigh number i| R = 32G\ |

It Is finite Independently of.

As the Rayleigh number increases, convective phenomesea ari
In the hydrodynamic equations.

The simplest case: bifurcation of the stable purely conaeict
solution into stable convective solutions at a criticaluesR . of
R.

Numerical analysis of kinetic equations for fini@and
asymptotic analysis for smallby Kyoto group.




Oberbeck-Boussinesq equatiq@sB): (¢, unit vector in the
direction ofz, P = I Prandtl number; € (-, m), z € R.)

dvu=0, du+u-Vu+Vp=PAu+RPHble.;
g(ate L VO) = A,
u(t,z,£m) =0, O(t,z,—m) =0, 0O(t,x,m)=—-2\

Stationary conductive solution




Theorem 1 (Stability of the Laminar solutionjThere is R, > 0
such that for R < R the stationary conductive solution is
asymptotically stable for the O-B equations.

Theorem 2 (EXxistence and Stability of the Convective solution)
Thereis 0 > 0 such that, if 0 < R — R, < 0, there is . and a
stationary solution (ug, f5), periodic in x of period 2a.7 differing from
(ug, 8y) for O(6). Moreover it is asymptotically stable with respect to
sufficiently small perturbations with the same period.

The critical valueR . is computed by the linear analysis.
Huge literature on the subject.

The first reference on existence and stability the nonlinear
convective solutions we are aware ofYsidovich 1967]



We construct the solution by means of a truncated expansion |
e with a remainder.

The main difficulty is in theestimate of the remainddout also
the construction of the terms of the expansion requires some
care (boundary layer terms).

we ix FEENBRRIEREE., and wite f* = i1 + Ao

(which takes care of the small Mach numbers conditions).

1
0hD + = (v 0p®° + 00,9 — M~'Go,.M)

—M1Go, (M) = &%chs + %J(cbs, o),
Lf =2M~'Q(M,Mf), J(f, f)=M"'Q(Mf, Mf).




The boundary conditions fap© are:

v, >0: & (t,x, —m,v) =

N (z),

]\]\44—25}?1)) ja- ().

v, < 0: ®°(t,x,m,v) =

®° Is expanded as:

k
=Py + R = an—1q>n+R.

n=1



The bulk parts of th@,,’s are computed by using the Hilbert
method.
In particular,®; has to be in the null space af which is

spanned by, v, vy, v, and|v|?. The coefficients are andd
solving theO — B equations:

1
¢1=—G(W+z)+u-v+§9(v2—5).

Forn > 1 the bulk part of®,, is computed by the Hilbert
procedure and thus dependswwandf and their derivatives.
Remark: the bulk parts of the,,’s do not satisfy the diffusive
boundary conditionsBoundary layer correction terms are to be
Included to restore the boundary conditions




The conclusion from the Hilbert+boundary layer expansson i
that thed,,’s are smootlas consequence of the smoothness of
andd and inherit the smallness and decay propertiga.of).

Given (u, 8) sufficiently smooth, we denote by
(I)HJC(U, (9) — (I)H

the Hilbert expansion associated(io #) up to the ordek.



The remaindelR satisfies the equation

9R & %(vx&pR +0.0.R) — M~'G,. (MR) =

1 1 1
— LR+ —J(®g,R) + -J(R,R) + A,
E E E

1
R(taxa _7‘-7'0) — —2];5(:6) ‘Hb—(%v)a Uy > 07
T

Nor
My (v)
M (v)

R(t,x,ﬂ',’l}) — ]E(SIZ’) + w-l—(x?v)? v, < 0.



The inhomogeneous termsandqy 4 are computed in terms of
u, 6 and their derivatives.

Y+ IS exponentially small as — 0

A i1s of orders™, the exponentn depending on the ordérof
truncation of the Hilbert expansion.

The number of terms to be kept in the Hilbert expansign,
depends on the estimates one can obtaidkic R = O(c*).

Estimates not uniform in time for the remainder were given in
[R.E., Lebowitz and Marra (1998)], where the stationary
conductive solution was also constructed under more césti
assumptions on the parametdsgre we need a good control of
the long time behavior to prove the stabil{pAN] for Couette).



Theorem [Arkeryd, R. E., Marra, Nouri]:

#® Conductive case:

» Suppose R < R.. Then there are (Gg and £( such that, if
G < G and € < g there is a positive stationary solution f;
to the Boltzmann equation, corresponding to the conductive
solution (uy, 0y),

» If f; is suitably chosen, there is a unique positive solution to
the initial boundary value problem for the Boltzmann
equations and it convergesto fy ast — 400 in

Lo2(Q x R?, M (v)dzdzdv).



® Convective case:

» Suppose R > R.. Then there are . > 0 and 0 > 0 such
that, for all R < R. + 0 the following happens:

There are Gy and £¢ such that, if G < G and € < g there
is a stationary solution f to the Boltzmann equation,
corresponding to the convective solution in
Q= (—aem, aem) X (—m,7), (us(z, 2),0s(x, 2)), periodic
in x with period 2ma..

» If fpisin a suitably chosen, there is a unique positive solution
to the initial boundary value problem for the Boltzmann
equations, and it converges to fs ast — +00 in

Lo(Q x R, M (v)dzdzdv).



Remark: While there is a restriction on the values@®@fthere is
no limitation on the values of, so that it is possible to reach
values ofR in (R., R. + §). Remind thatR ~ G \. This was
not possible with the results of [ELM 1998].




Estimates for the remainder. lterative procedure: onested
study a linear equation of the type? & R(™)

1 1
OiR + g(vxaﬂgR + v,0,R) — MG, (MR) = LR

+§J(<I>H, R)+B™, (B™ = A+ e (RO, ROD))

vy, > 0,



Main difficulties:
1) The operatoe 2L is non positive onLs(R?, Mdv), but has a
non trivial null space NullZ). One needs control of the
component of? on Null(L).

2) The linear operatar—'J(®, - ) has a smaller factor in
front, but has no sign and it is the main contribution when
R € Null(L).

3) The diffuse reflection boundary conditions require adref
estimates of the solution at the boundary.

4) The control of the nonlinearity requirds,(€2)-estimates,
which are more intricate by the presence of the force.

More in Nouri’s talk.




Nuli(Z) is five-dimensional and is spanned by(v),

7 =0,...,4with ¢;'s obtained by ortho-normalizing;'’s

(xo =1, X1 = Vg, X2 = Vy,» X3 = Uz, X4 = v?) with respect to
the inner product of.2, = L*(R3, M (v)dv).

Let P be the projector on NylL) andP+ =1 — P.

The operatot. is symmetric inL3, and Ranggl) = Null(L)~.
Spectral inequalityThere isc > 0 such that

(f, Lf)m = —c((1 = P)f,v0(1 = P)f)m,
With vo(v) = [ps dvs Jg, dw|(v — vy) - w| M (vs) .



On the other hand, for any € L4,

|(f, (@, Pf))m| < CIPFlaal[(1 = P)fllar-

Using this (and ignoring the boundary) one gets the diffeaén
iInequality

2 2
51 < AR+ [ |8, Pl

with ||| - ||| the norm inL?(Q x R3, Mdxdzdv).
This produces boundgowing exponentially in time

Not good enoug



lStrat

To avoij this we need to get a spectral inequality for the
operator

Ly(f) = Lf +cJ(®y, Pf).
The null space of. 7, Null(L ;) is spanned by

s =1 —eL T J(Pp,vy), j=0,...,4

Note thatL—'.J(f, g) makes sense becausgf, g) € Null(L)*.
Let P; be the projector on NUlL ;). Then we can prove:

Proposition 1 . There are g > 0 and ¢ > 0 such that, for any € < €




Using this inequality we obtain

d 1 1
R + <112 + 5—2|||V1/2(1 — P)R|||* <

/dedz|(B,R)M| + (o412,

|12 - /_acﬁdx/vpovz o) | Fla,—m0) |2 do +
/om t /vz<0 vz | M(v) | f(w,m,0) dv)
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