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What it’s all about
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Real observations
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Macroscopic, 2nd order

Idea ( long ago): avoid use of FD ( in continuity equation) by
treating u as a second dependent variable, in the continuity
equation

ρt + (ρu)x = 0

and a 2nd equation for u.

A reasonable model of this type was introduced by Aw- Rascle
(SIAM J. Appl. Math.) and independently by Zhang:

ut + uux + ρ∂ρp(ρ)ux = 0.

transport equation! =⇒ u ≥ 0. p has dimension of speed (not

pressure) .
The term ρ∂ρp(ρ)ux addresses the nonlocality inherent to traffic
flow (more later).
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Kinetic models of Fokker-Planck type (for, say, two-lane
highways)
Uses kinetic density fi = fi (x , v , t), i = 1, 2 (statistical
interpretation)...

There are many examples of type

∂t fi + v∂x fi + ∂v (B[. . .]fi ) = Ci [f ] + Li [f ]

with “collision” (interaction) and lane-changing terms on the right.
Diffusion term can also be included.

Critique: Ansatz assumes that interactions are instantaneous. This
is NOT realistic: we will set Ci = 0.
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From FP models to macroscopic models of “Aw-Rascle”
type

(recent work with C. Kirchner and R. Pinnau; and with M. Herty
(Kinetic and Related Models, 2008))

We have investigated two approaches-
A. moments

...omitted (appeared recently in Quart. Appl. Math.)
B. Assuming denser traffic, the ansatz
f (x , v , t) = ρ(x , t)δ(v − u(x , t))
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In dense traffic

B. Consider kinetic model without diffusion
(higher density... recall B. Kerner’s observations)

∂t f + v∂x f + ∂v (B(ρ, v − uX )f ) = 0

where uX = u(x + H + Tv , t).

This is a Vlasov-type equation. f = ρδ(v − u) is a weak solution if
and only if

ρt + (ρu)x = 0

ut + uux − B(ρ, u − uX ) = 0.

(where here uX = u(x + H + Tu(x , t), t)).
Later we will define a more general and more realistic uX !
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Consider the example

B(ρ,w) =

{
−c1ρw , w > 0, i.e., v − uX > 0, “braking”
−c2(ρmax − ρ)w , w < 0, “acceleration scenario”

B jumps at w = 0, but Bw (ρ, 0+) = −c1ρ etc. exist.

The example is reasonable... discuss!

It is tempting to expand

u − uX = −ux(H + Tu)− 1

2
uxx(H + Tu)2 + . . .

and consider the resulting equations...
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To do so we have to replace the (nonlocal) condition u − uX > 0
by a local condition:
To first order ( rough approximation): replace u − uX > 0 by
ux < 0.

Result:

ut − uux − gi (ρ)[(H + Tu)ux +
1

2
(H + Tu)2uxx ] = 0,

where
i = 1 for ux < 0 and g1(ρ) = −c1ρ,

i = 2 for ux > 0 and g2(ρ) = −c2(ρmax − ρ)

(connected by regimes where u is constant).
This “equation” is a diffusive Hamilton-Jacobi type generalization
of “Aw-Rascle”.
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Traveling waves

Let V > 0 and let s := x + Vt. We seek traveling wave solutions
(“moving jams”) of the type ρ(s) = ρ(x + Vt), u(s).

Continuity
equation becomes

d

ds
(ρ(u + V )) = 0 =⇒

ρ(s) =
ρmaxV

u(s) + V
,

(assuming that u = 0⇐⇒ ρ = ρmax . Reasonable from a “common
sense” point of view; we could use other integration constants)
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What is left of the momentum equation...

For ux = u′ < 0 (the braking case) we get

u′′ = Fb(u)u′,

where

Fb(u) = 2
(u + V )2 − c1ρmaxV (H + Tu))

c1ρmaxV (H + Tu)2

and for ux = u′ > 0 (the acceleration case)

u′′ = Fa(u)u′,

Fa(u) = 2
(u + V )2 − c2ρmaxu(H + Tu))

c2ρmaxu(H + Tu)2

These equations are easily (and best) analysed in phase space
(u, u′), with standard ODE methods:
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If we assume 1) c2ρmaxT > 1, and 2) 0 < V < c1ρmaxH, we assert

THEOREM. If u0 > 0 is small enough (in terms of V ,H,T , . . .)
then ∃ u−∞ > 0 and a solution of the “ braking equation” so that
u(∞) = u0, u

′(s) < 0 and lims→−∞ u(s) = u−∞. There is a
corresponding “acceleration wave” with u(∞) = u0, u′(s) > 0 for
all s, and lims→∞ = u∞.

Such a traveling wave deserves being called “moving jam.”
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V = .5,H = 1,T = 2,
c1ρmax = 1.6 , c2ρmax = 1
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5. Novelties: Refinements, Analysis, Simulations

Include individual reaction time τ > 0 :

ρt + (ρu)x = 0

ρ
(
ut + uxu − B(ρ, u − uX )

)
= 0

where the function uX (x , t) is now defined by

uX (x , t) := u(x + H + Tu(x , t), t − τ).
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A “Jam” equation and braking waves

Focus on a braking regime: ux < 0. Model equations:

ρt + (ρu)x = 0

ut + uxu + c1ρ(u − uX ) = 0

with uX (x , t) = u(x + H + Tu(x , t), t − τ).

Traveling wave ansatz (as before)
ρ(x , t) = ρ(x + Vt), u(x , t) = u(x + Vt) and the shorthand
s := x + Vt produces ODE

(V + u)u′(s) + c1ρ(s) (u(s)− u(s + (H − τV ) + Tu(s))) = 0.
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Assuming u = 0 if ρ = ρmax , the continuity equation is solved for ρ
in terms of u by

ρ =
ρmaxV

u + V
,

Exactly as before!

Substitution into momentum eqn. gives

(u + V )2u′(s) = −c1ρmaxV [u(s)− u(s + (H − τV ) + Tu(s))]

“the jam equation.” Numerical experiments (later) suggest that
it describes how braking waves triggered in dense traffic will
propagate through traffic.

In dense traffic V will be positive and of the order of magnitude of
10-20 km/h.
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Again it is natural (but questionable) to reduce complexity by
removing the nonlocality via a Taylor expansion.

For, say, H = 8m, T = 2sec and u = 15m/sec we find
H + Tu = 38m.

=⇒

in a braking scenario there should be a distance of 38 metres from
the front of your car to the front of the lead car if traffic moves at
54 km/h. 38 metres are not a small quantity! Truncation error in a
Taylor approximation could be significant.
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After expanding u to second order

u(s + (H − τV ) + Tu(s)) = u(s) + u′(s)(H − τV + Tu(s))

+(1/2)(H − τV + Tu(s))2 + . . .)

the jam equation becomes

u′′ = 2
(u + V )2 − c1ρmaxV (H − τV + Tu)

(H − τV + Tu)2
u′.

For τ = 0 identical to the braking equation we studied earlier:
small change of parameter (H → H − τV ). Braking waves ending
at a small (positive) residual speed u0 will exist if the wave speed
V satifies

0 < V <
c1ρmaxH

1 + c1ρmaxτ
< H/τ.

These braking waves are best depicted in phase space {(u, u′)}.
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Maximum Principles

Assume that traffic flows according to the equations

ρt + (ρu)x = 0

ut + uxu + c1ρ(u − uX ) = 0 while u − uX ≥ 0

ut + uxu + c2(ρmax − ρ)(u − uX ) = 0 while u − uX < 0

Assume that we have a (smooth) solution ρ(x , t), u(x , t) such that
u(x0, t) = supx ,s≤tu(x , s). A driver at x0 at time t will be in a
braking situation, and: ut(x0, t) ≤ 0.

A driver at x0 − δ at time t

may be in an acceleration situation; the acceleration law will not
allow him(her) to accelerate past the maximal value of u. Similar
considerations apply to minimal speed values.
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u(x0, t) = supx ,s≤tu(x , s). A driver at x0 at time t will be in a
braking situation, and: ut(x0, t) ≤ 0. A driver at x0 − δ at time t

may be in an acceleration situation; the acceleration law will not
allow him(her) to accelerate past the maximal value of u. Similar
considerations apply to minimal speed values.
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=⇒ the model satisfies a maximum principle:
Proposition. Suppose that for all x ∈ <, s ∈ [0, τ ] we have

0 ≤ a ≤ u(x , s) ≤ b.

Then for any smooth solution

0 ≤ a ≤ u(x , t) ≤ b

for all x and all t ≥ 0.

This is not realistic! Traffic jams occur and disappear in steady
dense traffic for (sometimes) no apparent reason; such jams usually
lead to standing traffic, etc. Our models need refinement in order
to account for such effects.
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More Refinements- needed in “non-monotone” domains

Need better modeling of the braking/ acceleration forces in
regimes where speed profile is not monotone.

This arises, for
example, in a neighborhood of local speed maxima or minima, or
where the speed profile is rather oscillatory.
For example, assume that there is a 0 < σ < H + Tu(x , t) such
that

u(x , t) > u(x + σ, t) but u(x , t) < u(x + H + Tu(x , t)).

Reference driver at x , t will act as if he/she is in acceleration
scenario, although there are slower vehicles immediately in front of
him/her! The nonlocality scale in this case exceeds the
monotonicity domain.
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Remedies

Redefine

ρX = sup
σ∈(0,H+Tu(x ,t))

ρ(x + σ, t − τ),

uX = inf
σ∈(0,H+Tu(x ,t))

u(x + σ, t − τ),

ūX = u(x + H + Tu(x , t), t − τ)

and

B(ρ, u, uX ) =

{
−c1ρ

X (u − uX ) u − uX > 0.
−c2(ρmax − ρX )(u − ūX ) u − uX ≤ 0.

New braking law uses maximal observed density and minimal
observed speed in the relevant window; only if u − uX ≤ 0 is the
braking case rejected, and then we accelerate according to the old
rule.
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Triggers
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I Speed limit: Reset B(...) = −c1ρ
X (u − ulim)

I High concentration: Reset B(...) = −c1ρ
Xu if

u − uX ≥ 0, ρX (H + Tu) ≥ c3.

(new parameter).

I ...others! Suggestions?
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6. Simulations

a) Traveling waves obtained for an initial velocity profile as depicted in

bold blue in the picture to the right. Density is initially constant.

Solution is depicted at time T = 20s :
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Speed limit

b) Density (T = 30s) for different initial values. ulim = 15m/s. on
a strip of 200m centered at x = 1000m.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000 1200 1400 1600 1800 2000
15

16

17

18

19

20

21

22

23

24

Reinhard Illner, Victoria, and Michael Herty, Aachen Traffic Flow on Freeways: Models, Analysis, Simulations



That’s it. Have a nice day.

Drive safely
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