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Outline of the Talk

Scope: Boundary Conditions For Hyperbolic Balance Laws on Networks

1 Applications and typical
questions

2 Example based on Gas dynamics
and Burger’s equation

3 Further theoretical and
numerical results

4 Questions of control of
networked systems
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Mathematical Setting

Coupled systems of one–dimensional (systems) of nonlinear hyperbolic
balance or conservation laws

Dynamics of a physical system on
arc j given by a hyperbolic pde

Interest in the coupling of different
dynamics at intersection (x = 0)

A priori prescribed coupling
introduce boundary conditions

Questions on well–posed boundary
conditions for nonlinear pdes

Applications: Traffic flow, gas flow,
supply chains, internet /
communication, water flow in
canals, irrigation channels, blood
flow, . . .
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Applications

Applications: Traffic Flow On Road Networks

Macroscopic description of traffic flow on one–way road j by density
ρj(x , t) and average velocity uj(x , t)

Models based on scalar
conservation laws (LWR)

∂tρ
j + ∂xρ

ju(ρj) = 0

or 1d systems (ARZ, Colombo)

Coupling conditions at traffic
intersections or on– and
off–ramps to highways

Many contributions since
≈ 1995 with results by
Colombo, Holden, Lebacque
Piccoli, Rascle, . . .
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Applications

Applications: Supply Chain Management

Macroscopic description of large–volume production facilities by density of
parts ρj

Example of a one–phase model
for a re–entrant factory

∂tρ
j + ∂x

ρj

1 +
∫
ρjdx

= 0

Coupling conditions at
machine–to–machine
connections by buffers or
storage tracks

Contributions with results since
≈ 2000 by Armbruster, d’Apice,
Degond, Göttlich, Klar,
Ringhofer, . . .
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Applications

Applications: gas networks

Gas flow in pipe networks described by the p−system or Euler’s equation

2× 2 system of hyperbolic
conservation laws with source
term due to pipewall friction

Coupling conditions trhough
compressor stations,
pipe–to–pipe fittings or valves

Contributions with results since
≈ 2006 by Banda, Colombo,
Klar, Garavello, Guerra,
Schleper, . . .
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Applications

Applications: Water Networks

Control of a water level of river’s by St. Venant equation

2× 2 nonlinear hyperbolic
equations with source terms due
to slope of canal

Coupling conditions through
controllable gates

Question of stabilization:
maximal allowed deviation in
height is 3 cm on 200 km

Contributions with results since
≈ 2003 by Bastin, Coron,
Gugat, Li Tatsien, Leugering,
. . .
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Mathematical discussion

Preliminary discussion

Given a system of balance laws on a network define a weak solution as∑
i

∫ ∫
∂t
~φi~ui + ∂x

~φi
~fi (~ui ) + g(~ui )~φidxdt = 0 ∀~φi

Using test functions with ~φi (0−, t) = ~φj(0+, t) obtain
Rankine–Hugenoit conditions at the node as∑

i

±~fi (~ui (0±, t) = 0

For system of m equations one obtains m conditions for a junction
with n connected arcs =⇒ further conditions need to be imposed
System is non–linear, hyperbolic and the number of boundary
conditions depend on the state of the system at most n ×m
conditions can be prescribed
Regularity of the solutions as for 1d hyperbolic systems, i.e., BV in
space ensures fulfillment of coupling conditions at x = 0±
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Mathematical discussion

Example from gas dynamics: Well–posedness?

Gas dynamics in pipe j by p−system

∂t

(
ρj

ρjuj

)
+ ∂x

(
ρjuj

p(ρj) + ρju
2
j

)
=

(
0

f (ρj , uj)

)
coupled through the dynamics on other pipes by

conservation of mass ∑
j

± ρjuj(0±, t) = 0

and additionally equal pressure (engineering community)

p(ρj(0+, t)) = p(ρi (0−, t))∀i , j

or additionally equal momentum

p(ρj(0+, t)) + (ρju
2
j )(0+, t) = p(ρi (0−, t)) + (ρiu

2
i )(0−, t)∀i , j

or . . .
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Mathematical discussion

Discussion of derivation of well-posedness results

∂t

(
ρj

ρjuj

)
+ ∂x

(
ρjuj

p(ρj) + ρju
2
j

)
=

(
0

f (ρj , uj)

)
,∑

j

±(ρjuj)(xj , t) = 0, p(ρj(xj , t)) = p(ρi (xi , t))

1 Notation for solutions: weak solutions C 0(t,BV (x)) and C 1(t, L1(x))

2 Approximate solutions by piecewise constant initial data

3 Piecewise constant data generates a sequence of waves as solutions to
Riemann problems (on each arc)

4 Need to construct solutions to Riemann problems at the junction

5 TV bounds on wave interactions

6 Compactness argument yields existence on weak solution (Helly’s
Theorem)
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Mathematical discussion

Recall: Riemann Problem

∂tU + ∂xF (U) = 0, U(x , 0) =

(
Ul x < 0
Ur x > 0

)
, U(x , t) : R2 → Rn

Theorem for strictly hyperbolic systems: Existence of a self–similar solution
U(x , t) = V (x/t). Solution consists of at most n + 1 constant states
separated by entropy–shocks, rarefaction waves or contact discontinuities.
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Mathematical discussion

Riemann problems at the junction

Consider the situation of piecewise constant initial data in each arc
U j

0 = (ρ0
j , ρ

0
j u0

j ) – coupling conditions are not necessarily satisfied

Introduce unknown, artifical states V j for each arc

Solve a Riemann problem on each arc with an artifical state V j at the
node
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Mathematical discussion

Constraints on Vj

Compute Ωj ∈ R2, such that for
all V ∈ Ωj , the self–similar
solution Uj(x , t) to a Riemann
problem for U j and V j consists
of waves of non–positive speed
(incoming arcs)

A wave tracking solution
satisfies at the node
Uj(0−, t) = Vj ∀t > 0

Reduced problem: Find
Vj ∈ Ωj ⊂ R2, such that the
coupling conditions are fulfilled

Computation of the admissible sets Ωj?
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Mathematical discussion

Admissible sets Ωj for Burger’s equation

∂tuj + ∂x
1

2
u2
j = 0, uj(x , 0) =

(
uj
l x < 0

v j x > 0

)

Setting: Incoming arc j , uj
l is the initial value, v j ∈ Ωj such that

coupling condition is satisfied

If v j < uj
l then the solution u(x , t) is a shock wave of velocity

s =
f (ul)− f (v)

ul − v

If v j > uj
l then the solution is a rarefaction wave with velocity f ′(uj)
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Mathematical discussion

Admissible sets Ωj for Burger’s equation

Burger’s equation ∂tuj + ∂x
1
2 u2

j = 0, uj(x , 0) =

(
uj
l x < 0

v j x > 0

)

Ωj(ul) = {v : −∞ < v ≤ min{−ul , 0}}
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Mathematical discussion

Riemann solver at the junction for Burger’s equation

∂tuj + ∂x
1
2 u2

j = 0,
∑

j ±u2
j (0±, t) = 0

Given constant data uj
0 close to the junction

Compute the admissible set Ωj := Ωj(u0
j )

Obtain states vj ∈ Ωj ⊂ R such that∑
j

±v 2
j = 0, vj ∈ Ωj

(vj not necessarily unique =⇒ additional conditions necessary!)

Solve on each arc a Riemann problem with data u0
j and vj

(yields wave with signed speed, careful estimates on TV–bounds
necessary!)
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Mathematical discussion

Gas & Water Networks: p-system

∂t

(
ρj

ρjuj

)
+ ∂x

(
ρjuj

p(ρj) + ρju
2
j

)
=

(
0

f (ρj , uj)

)

Need: conservation of mass and
either equal pressure or equal
momentum assumption for
uniqueness of Riemann solver

Two characteristic families ρ, q

Each solution might be a
combination of shock and
rarefaction waves

Results so far: subsonic data
only, single junction

Figure: Phase diagram.
dashed=rarefaction waves
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Mathematical discussion Examples

Traffic Networks: LWR based models

∂tρj + ∂xρjuj(ρj) = 0

Coupling condition ~fj = A~fj for
A enjoying certain properties
(distribution matrix with
assumptions on the kernel) and
drivers maximize the flux
through the intersection

or simple distribution matrix A
and a right–of–way matrix B
and maximization of the flux
through the intersection

Interpretation as demand and
supply functions

Existence of weak solutions for a
single junction
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Mathematical discussion Examples

Supply Chains: piecewise linear flux and buffer

∂tρj + ∂x min{µj , vjρj} = 0, ∂tqj = viρi − vjρj

Need: Prescribe a rule how the
machine empties its buffer

No backwards moving
information

Results so far: Existence of
solutions on a circle–free
network and BV data
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Mathematical discussion General result

Notion of a solution

Definition

Fix û ∈ Ωn and T ∈ ]0,+∞]. A weak Ψ-solution to{
∂tul + ∂x f (ul) = 0
u(0, x) = uo(x)

t ∈ R+

x ∈ R+
l ∈ {1, . . . , n}

uo ∈ û + L1(R+; Ωn) .
(1)

on [0,T ] is a map u ∈ C 0 ([0,T ]; û + L1(R+; Ωn)) such that

(W) For all φ ∈ C∞ (]−∞,T [× R+; R) and for l = 1, . . . , n∫ T

0

∫
R+

(ul ∂tφ+ f (ul) ∂xφ) dx dt +

∫
R+

uo,l(x)φ(0, x) dx = 0 .

(Ψ) The condition at the junction is met: for a.e. t ∈ R+,
Ψ (u(t, 0+)) = 0.
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Mathematical discussion General result

Result on 2x2 conservation laws on networks

Theorem

Let n ∈ N, n ≥ 2. Fix the pairwise distinct vectors ν1, . . . , νn in R3 \ {0}. Fix an
n-tuple of states ū ∈ Ωn such that f satisfies (F) at ū and the Riemann Problem
with initial datum ū admits the stationary solution. Let Ψ ∈ C 1(Ωn; Rn) satisfy a
condition on its determinant and let the data be subsonic. Then, there exist
positive δ, L and a map S : [0,+∞[×D → D such that:

1 D ⊇ {u ∈ ū + L1(R+; Ωn) : TV (u) ≤ δ};
2 for u ∈ D, S0u = u and for s, t ≥ 0, SsStu = Ss+tu;

3 for u,w ∈ D and s, t ≥ 0, ‖Stu − Ssw‖L1 ≤ L · (‖u − w‖L1 + ‖t − s‖).

4 If u ∈ D is piecewise constant, then for t > 0 sufficiently small, Stu
coincides with the juxtaposition of the solutions to Riemann Problems
centered at the points of jumps or at the junction.

Moreover, for every u ∈ D, the map t 7→ Stu is a Ψ-solution.
For any Ψ̃ ∈ C 1(Ωn; Rn) with ‖Ψ̃−Ψ‖C 1 < δ, Ψ̃ generates a semigroup of
solutions on D and for u ∈ D

‖S Ψ̃
t ū − SΨ

t ū‖L1 ≤ L · ‖Ψ̃−Ψ‖C 1 · t . (2)
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Mathematical discussion General result

Other Approaches (Theoretical)

Second–order traffic flow model due to Aw-Rascle-Zhang

LWR + information traveling with car and influencing it’s speed (e.g.,
truck/car property)

Junction introduces a mixture of cars on the outgoing road

Instead of solving a Riemann problem solve an initial-value problem
with oscillating initial data.
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Mathematical discussion General result

Numerical approaches: Validation of coupling conditions
by 2d simulations

Node is locally a 2d domain

Prescribe constant initial data

Simulation until nearly a steady–state is obtained

Average to obtain similar values compared with 1–d model
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Mathematical discussion General result

Example: time evolution of the density ρ(x , y , t) for
p-system
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Mathematical discussion General result

Example: Comparison of predicted (1–d) values at
intersection and results of numerical simulation

Pressure in three pipes

u1 = 4 u1 = 5 u1 = 6 u1 = 6.5 u1 = 7.5 u1 = 8.5 u1 = 9

Pipe 1 115.2418 118.3104 120.8469 122.1585 124.8776 127.3623 128.5093

(124.492) (131.586) (139.071) (142.965) (151.065) (159.597) (164.028)

Pipe 2 115.0216 118.2603 120.8546 122.0521 124.4525 126.8142 127.9266

(124.492) (131.586) (139.071) (142.965) (151.065) (159.597) (164.028)

Pipe 3 117.0552 119.1032 121.9611 123.4902 125.6128 128.5010 129.8158

(124.492) (131.586) (139.071) (142.965) (151.065) (159.597) (164.028)

Equal pressure at node is a reasonable assumption for 1→ 2 situation

Absolute values differ up to 30%

Picture different in the 2→ 1 situation
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Control

Control problems at the node is common to many
applications

Control P acts through a
modified coupling conditions,
e.g., compressor in gas networks

P = c qi

((
p(ρi )

p(ρj)

)κ
− 1

)
, qi = qj

use the result on continuous
dependence on the coupling
condition itself to obtain results
on optimal nodal control (weak
solutions)

use linearization and Lyapunov
stability criteria to obtain
controllability (strong solutions)
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Control Optimal Control

Mathematical formulation of the control problem

min

∫ xb

xa

|p (yn
1 (T , x))− p̄|dx subject to

∂ty e + ∂x f (y e) = g (x , y e) , Ψ
(
y 1, . . . , yn

)
= P (t) , y ∈ R2

Theorem on weak solutions: there is a continuous dependence on the
coupling condition

‖E (t, t0, y0,P)−E
(

t, t0, ỹ0, P̃
)
‖ ≤ L·

(
‖y0 − ỹ0‖+

∫ t0+t

t0

‖P(τ)− P̃(τ)‖dτ
)

Used to state existence results for optimal control problems on finite time
horizons

Interest of the industry: Optimal control and controllability or stabilization of

instationary flow patterns
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Control Optimal Control

Applications: Existence and control results – Water I

Cost functional J =
∫ T

0
d |∂xHj |

Equation in each pipe

∂t

(
Hj

Qj

)
+ ∂x

(
Qj

g
2 H2

j + Q2
j /H2

j

)
=

(
0

−χ0,LQj |Qj |/Hj − gHj sinαj(x)

)
Coupling condition Ψ =

(
b1Q1 − b2Q2

Q1/(H1 − H2)− u(t)

)
Hj is the water level, bQ the total water flow, similar to Coron, Bastin et.
al., Automatica, 2003.

Problem is well–posed and existence of an optimal control with TV (u)
small is proven.
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Control Optimal Control

Applications: Existence and control results – Water II

Cost functional J =
∫ T

0

∫ L

0
(Hn − h̄)+dxτ

Equation in each pipe

∂t

(
Hj

Qj

)
+ ∂x

(
Qj

g
2 H2

j + Q2
j /H2

j

)
=

(
0

−χ0,LQj |Qj |/Hj − gHj sinαj(x)

)

Coupling condition Ψ =


bnQn −

∑n
i=1 biQi

Q2 − u1(t)
. . .

bn−1Qn−1 − un−1


Problem is well–posed and existence of an optimal controls ~u with small
TV−norm is proven.
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Control Controllability

Application probem: Controllability for a system with
compressors

Problem: Two connected pipes connected with a compressor at x = 0.
The customer requires certain pressure and flow yB(t) for times t ≥ t∗∗

and we need operator u(ρ, q) to fulfiling the demand.
Assumptions: λ1(yi ) < 0 < λ2(yi ), smooth solutions

∂t

(
ρi

qi

)
+ A(ρi , qi )∂x

(
ρi

qi

)
= G (t, x , ρi , qi ) on Di

D1 = {(t, x) : t ≥ 0,−L ≤ x ≤ 0}
D2 = {(t, x) : t ≥ 0, 0 ≤ x ≤ L}
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Control Controllability

Existing results mainly due Li Ta-Tsien et. al., also Coron
et. al.

Wang (2006)
We assume that all given functions are C1 with respect to their arguments
and that G (t, x , 0) = 0 as well as det (L (y)) 6= 0. Furthermore, the
conditions of C 1 compatibility at the boundary points (0, a) and (0, b) are
fulfilled.
Then, for any given time T0 > 0 and suitably small C 1 norm of the initial
and boundary conditions, the initial boundary value problem has a C 1

solution y(t, x).

Used in an explicit construction of the desired control u
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Control Controllability

Construction of an exact control
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Control Controllability

Construction of an exact control
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Control Controllability

Construction of an exact control
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Control Controllability

Construction of an exact control
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Control Controllability

Construction of an exact control

transposed problem:

∂xy2 + (A(y2))−1 ∂ty2 = (A(y2))−1 G (t, x , y2)
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Control Controllability

Construction of an exact control
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Control Controllability

Construction of an exact control
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Control Controllability

Construction of an exact control
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Control Controllability

Construction of an exact control
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Summary

Well–posedness for 2× 2 systems
on the arc and results in the scalar
case for traffic, supply chain and
communication networks by wave
front tracking

Restrictions on initial data for
coupling conditions in the 2× 2
case, trans–sonic states in the
traffic flow model possible

Existence results for optimal
controls and common coupling
conditions including shock waves

Construction of feedback control
laws based on classical solutions for
controllability and stabilization
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