#### **Material Flows in Production Networks**

#### Simone Göttlich TU Kaiserslautern

Joint work with:

A. Fügenschuh (ZIB Berlin), A. Martin (TU Darmstadt)
M. Herty (RWTH Aachen), C. Kirchner, A. Klar (TU Kaiserslautern)

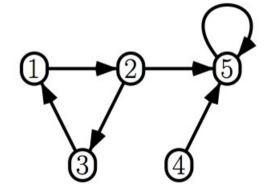
**IPAM, Los Angeles, May 2009** 

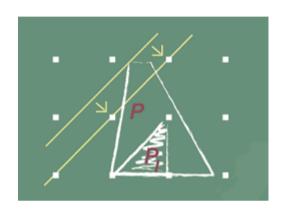
## Continuous and Discrete models

#### **Motivation and Application:**

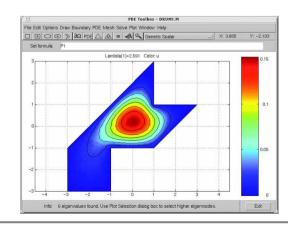
- Water Networks
- Gas Networks
- Traffic Flow Networks
- Supply Chains

**-** ...





#### MIP meets PDE





May 2009

Simone Göttlich

### **Traffic Flow Networks**

See Fügenschuh, Herty, Klar, Martin (2006): Combinatorial and Continuous Models for the Optimization of Traffic Flows on Networks



#### Minimize driving time subject to

$$\partial_t \rho_j(x,t) + \partial_x f_j(\rho_j(x,t)) = 0$$

$$f_j(\rho) = \rho u^e(\rho)$$

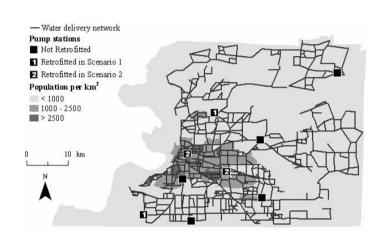
$$\sum_{j=1}^n f(\rho_j(b_j,t)) = \sum_{j=n+1}^{n+m} f(\rho_j(a_j,t))$$



# Protection of Drinking Water Systems

See Fügenschuh, Göttlich, Herty (2007): Water Contamination Detection





#### **Objective**

Try to identify sources such that the time evolved concentrations coincide with given measurements

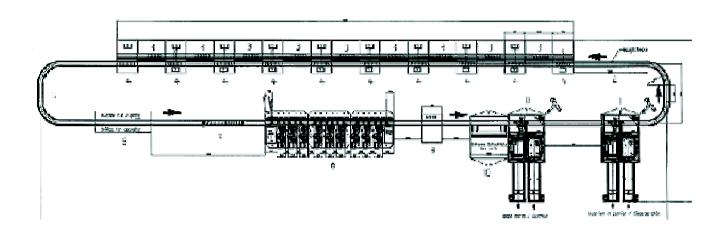
$$\sum_{j \in \mathcal{A}_{meas}} \max_{t \in (0,T)} (c^{j}(\bar{x}^{j},t) - \bar{c}^{j}(\bar{x}^{j},t)) + \rho \sum_{v \in \mathcal{V}} \max_{t \in (0,T)} q^{v}(t).$$

#### Subject to

Water network model (advection, decay, coupling)

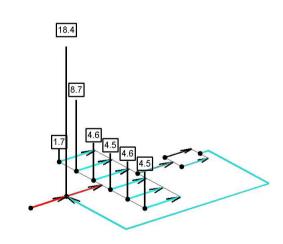


## **Production Systems**



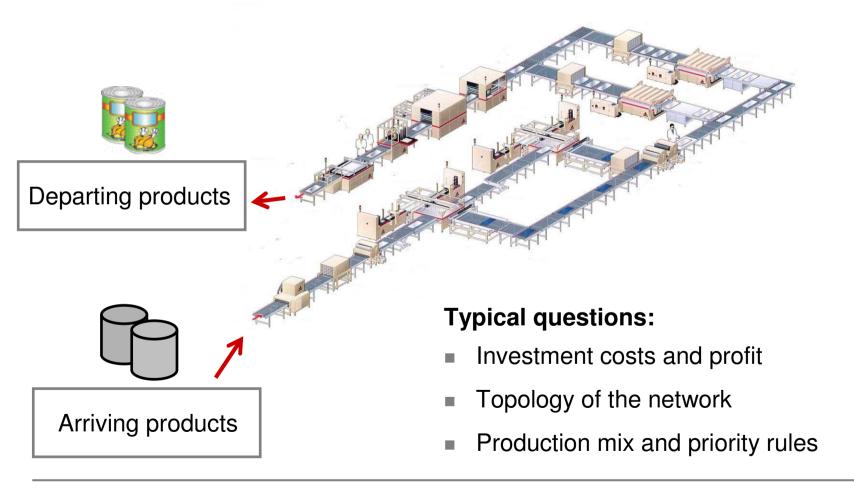
#### Maximize output subject to

$$\begin{aligned} \partial_t \rho^e(x,t) + \partial_x f^e(\rho^e(x,t)) &= 0 \\ \partial_t q^e(t) &= \alpha_v^e(t) \sum_{\bar{e} \in \delta_v^-} f^{\bar{e}}(\rho^{\bar{e}}(b^{\bar{e}},t)) - f^e(\rho^e(a^e,t)) \\ f^e(\rho^e(a^e,t)) &= \min\{\mu^e, \frac{q^e(t)}{\epsilon}\} \end{aligned}$$



## Motivation

#### **Planning of a Production Network**





May 2009 Simone Göttlich

### Literature

System Dynamics

Forrester (1961): Industrial Dynamics

■ Baumol (1970): Economic Dynamics

Discrete Event Simulation

■ Banks et al. (1996): Discrete-Event System Simulation

■ Fishman (2001): Discrete-Event Simulation

Discrete
Optimization

■ Voß, Woodruff (2003): Introduction to Computational Optimization Models for Production Planning in a SC

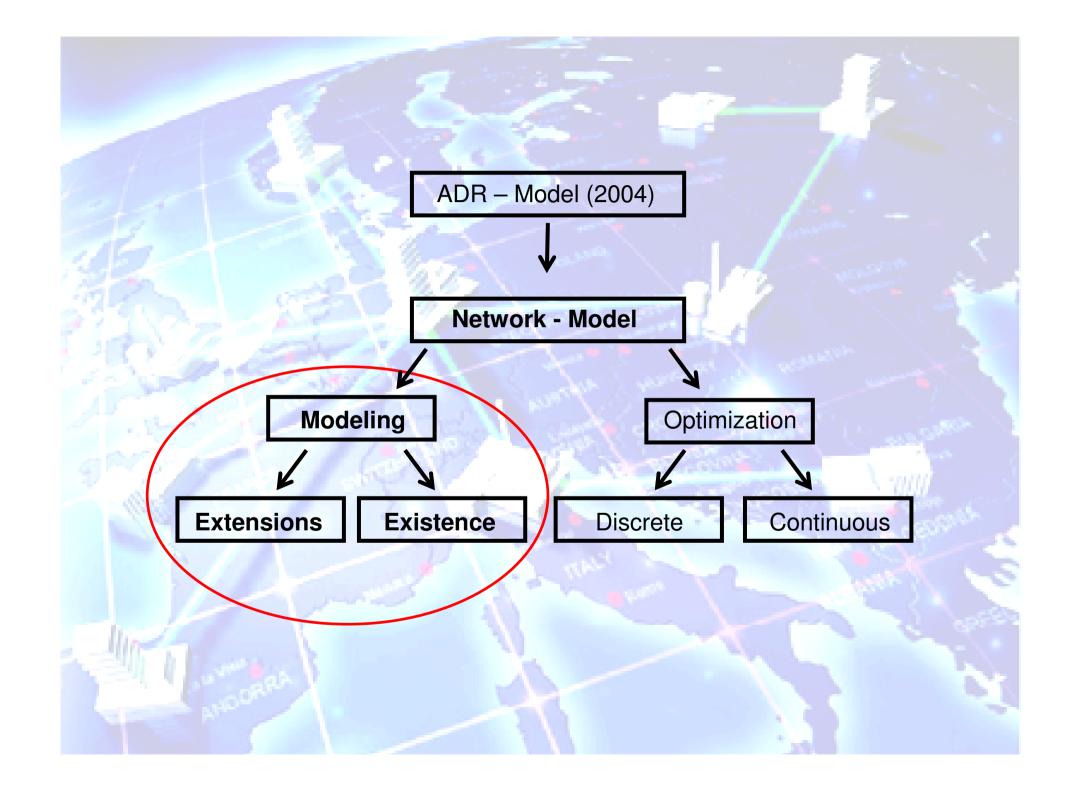
■ Wolsey, Pochet (2006): Production Planning by Mixed Integer Programming

Queueing Theory ■ Bolch et al. (1998): Queueing Networks and Markov Chains

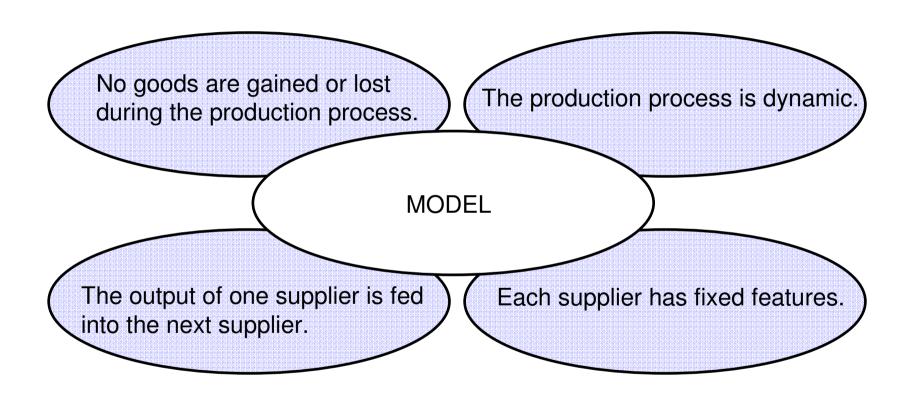
■ Chen, Yao (2001): Fundamentals of Queueing Networks



May 2009 Simone Göttlich



## Assumptions

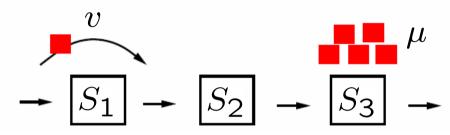


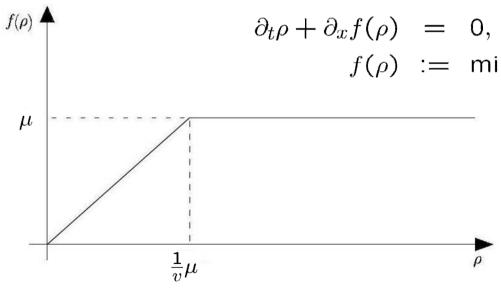
Continuous models are valid for large quantity production!



## ADR - Model

See Armbruster, Degond and Ringhofer (2004): A model for the dynamics of large queuing networks and supply chains





 $\partial_t \rho + \partial_x f(\rho) = 0, \quad \forall x \in [a, b], \ t \ge 0$  $f(\rho) := \min \{v\rho, \mu\}$ 

 $\rho$ : density of parts

maximum capacity

processing velocity

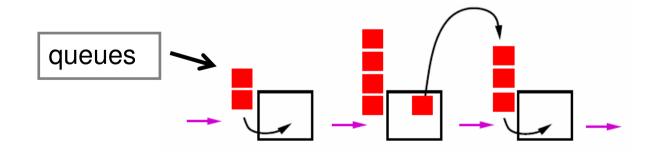
#### **Network Model**

#### Idea:

- Each processor is described by one arc
- Use ADR Model for dynamics inside the processor
- Add equations for queues in front of the processor

#### Advantage:

- Standard treatment of equations
- Straightforward definitions for complex networks





#### **Network Model**

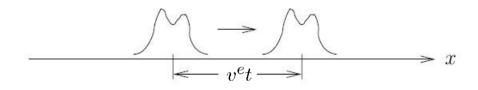
See Göttlich, Herty, Klar (2005): Network models for supply chains

#### **Definition**

A production network is a finite directed graph  $(\mathcal{A}, \mathcal{V})$  where each arc  $e \in \mathcal{A}$  corresponds to a processor on the intervall  $[a^e, b^e]$ . Each processor e has an associated queue  $q^e$  in front.

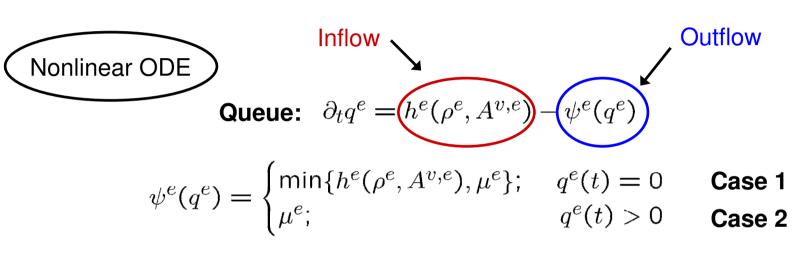
PDE: Linear transport equation

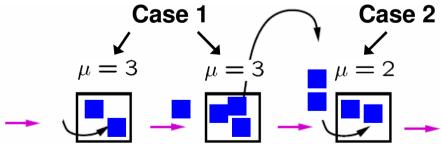
Processor:  $\partial_t \rho^e(x,t) + v^e \partial_x \rho^e(x,t) = 0, \quad \forall x \in [a^e, b^e]$ 



#### **Network Model**

See Göttlich, Herty, Klar (2006): Modeling and optimization of supply chains on complex networks

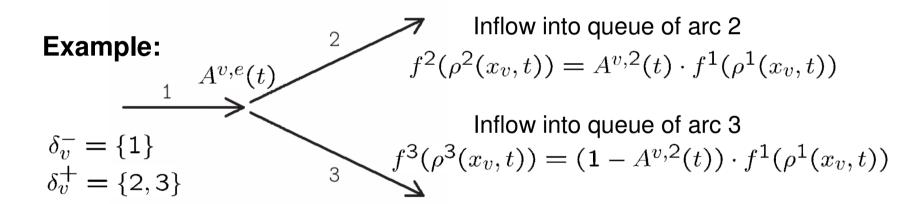




# **Network Coupling**

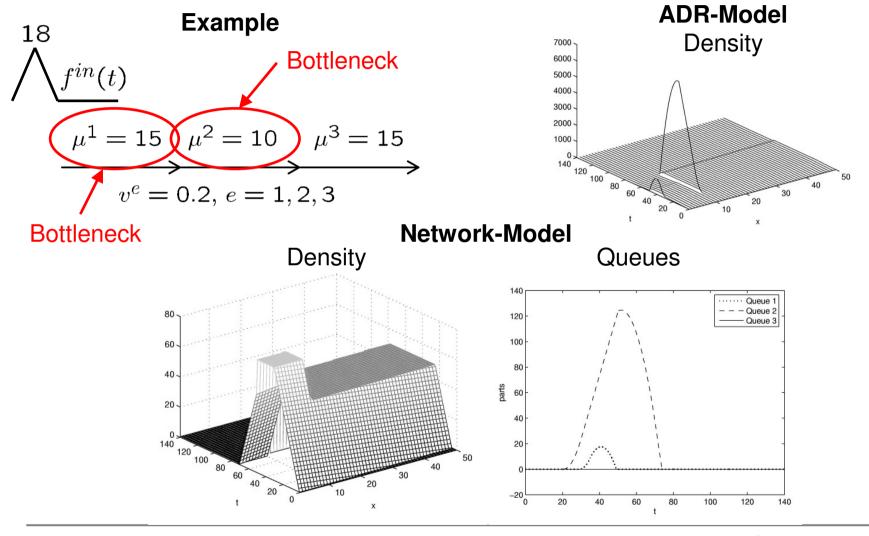
#### **Definition**

We define time-dependent distribution rates  $A^{v,e}(t)$  for each vertex with multiple outgoing arcs. The functions  $A^{v,e}(t)$  are required to satisfy  $\sum_{e \in \delta_v^+} A^{v,e}(t) = 1$  and  $A^{v,e}(t) \in [0,1]$ .



 $A^{v,e}(t)$  will be obtained as solutions of the optimization problem

## **Numerical Results**

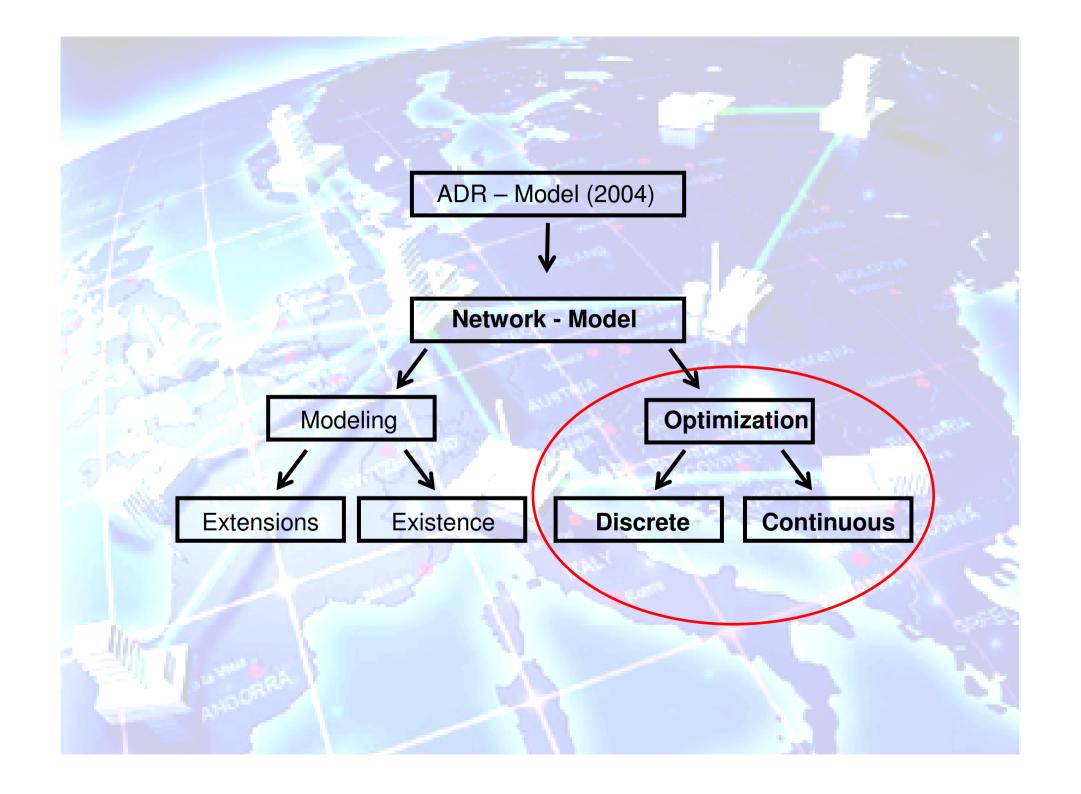




## Continuous Production Models

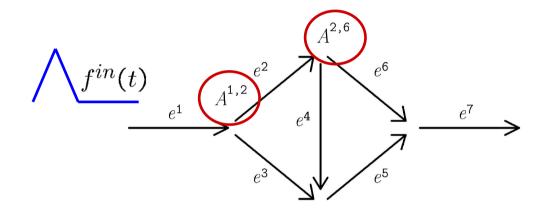
| Pros                                                                  | Cons                                                        |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------|--|
| <ul> <li>Accurate description of<br/>supply chain behavior</li> </ul> | <ul> <li>Difficult to include discrete decisions</li> </ul> |  |
| Fast computing times                                                  | <ul><li>PDE-constrained optimization problems</li></ul>     |  |
| <ul> <li>Opportunity to<br/>introduce non-linearities</li> </ul>      |                                                             |  |





## **Optimization Problem**

Consider network with entry/exit suppliers



- Given are time-dependent inflow profiles
- Controls are the distribution rates at vertices

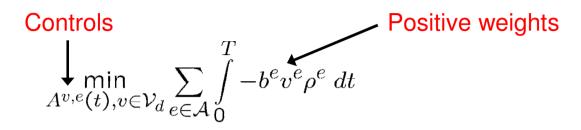
What is the optimal distribution of parts among the network?

TECHNISCHE UNIVERSITÄT

KAISERSLAUTERN

## **Optimization Problem**

Cost functional



**Constraints** 

subject to 
$$e \in \mathcal{A}, v \in \mathcal{V}, t \in (0,T), x \in [a^e, b^e]$$

Processor 
$$\longrightarrow \partial_t \rho^e + v^e \partial_x \rho^e = 0$$
,

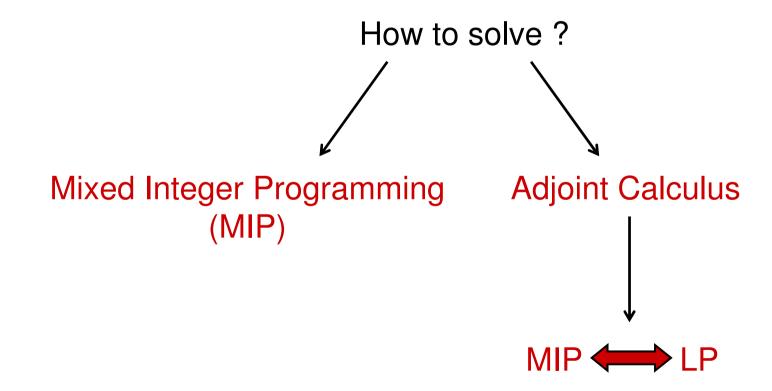
Outline 
$$\partial_t q^e = h^e(\rho^e, A^{v,e}) - \psi^e(q^e)$$

$$\psi^e(q^e) = \begin{cases} \min\{h^e(\rho^e, A^{v,e}), \mu^e\}; & q^e(t) = 0\\ \mu^e; & q^e(t) > 0 \end{cases}$$

Initial conditions 
$$\longrightarrow \rho^e(x,0) = 0, q^e(0) = 0$$

# Solution Techniques

Optimal control problem with PDE/ODE as constraints!





# Mixed Integer Program (MIP)

See Fügenschuh, Göttlich, Herty, Klar, Martin (2006): A Discrete Optimization Approach to Large Scale Networks based on PDEs

A mixed-integer program is the minimization/maximization of a **linear** function subject to linear constraints.

**Problem:** Modeling of the queue-outflow in a discete framework

$$\psi^{e}(q^{e}) = \begin{cases} \min\{h^{e}(\rho^{e}, A^{v, e}), \mu^{e}\}; & q^{e}(t) = 0\\ \mu^{e}; & q^{e}(t) > 0 \end{cases}$$

**Solution:** Reduce complexity (as less as possible binary variables)

Relaxed queue-outflow 
$$\psi^e(q^e) = \min\left\{\frac{q^e(t)}{\epsilon}, \mu^e\right\}$$

<sup>1</sup>See **Armbruster et al. (2006)**: Autonomous Control of Production Networks using a Pheromone Approach



### **Derivation MIP**

**Problem:** Suitable discretization of the min-nonlinearity

$$\psi(q^e(t)) = \min\left\{\frac{q^e(t)}{\epsilon}, \mu^e\right\}$$

**Idea:** Introduce binary variables (decision variables)  $\xi_t^e$ 

$$\psi(q_t^e) = \min\left\{\frac{q_t^e}{\epsilon}, \mu^e\right\} \qquad \longleftrightarrow \qquad \xi_t^e \in \{0,1\}, M >> 1$$
 
$$\mu^e \xi_t^e \leq \psi(q_t^e) \leq \mu^e$$
 Outflow of the queue 
$$= \text{Inflow to a processor} \qquad \frac{q_t^e}{\epsilon} - M \xi_t^e \leq \psi(q_t^e) \leq \frac{q_t^e}{\epsilon}$$



**Example:**  $\mu^e \leq \frac{q_t^e}{\epsilon}$  implies  $\xi_t^e = 1$  and  $\psi(q_t^e) = \mu^e$ 

The problem has  $|\#Arcs| \cdot |\#Timesteps|$  binary variables!

# Mixed Integer Program

Two-point Upwind discretization (PDE) and explicit Euler discretization (ODE) leads to

maximize outflux

$$\longrightarrow \min_{A_t^{v,e}, v \in \mathcal{V}_d} \sum_{e} \sum_{t} -\Delta t \, b_t \, v^e \rho_t^{e,b}$$
 subject to

processor

$$\longrightarrow \rho_{t+1}^{e,b} = \rho_t^{e,b} + \frac{\Delta t}{\Delta x} \left( \psi(q_t^e) - v^e \rho_t^{e,b} \right)$$

queue

$$q_{t+1}^e = q_t^e + \Delta t \left( h_t^e - \psi(q_t^e) \right)$$

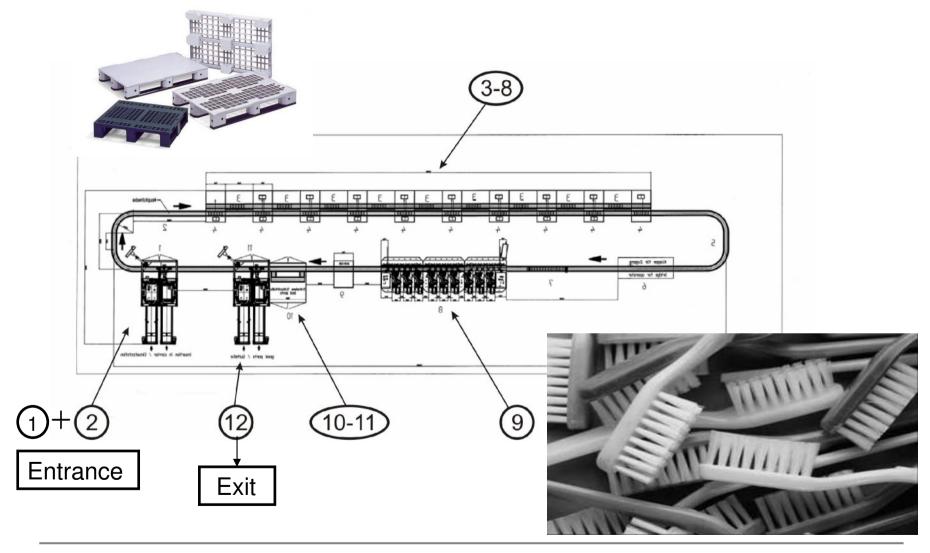
queue outflow

$$\frac{\mu^e \xi_t^e \le \psi(q_t^e) \le \mu^e}{\frac{q_t^e}{\epsilon} - M \xi_t^e \le \psi(q_t^e) \le \frac{q_t^e}{\epsilon}}, \qquad \xi_t^e \{0, 1\}$$

initial conditions

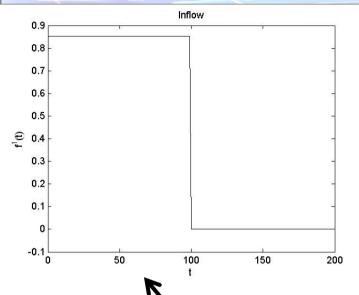
$$q_0^e = 0, \ \rho_0^{e,b} = 0, \ \psi(q_0^e) = 0$$

# Toothbrush Manufacturing



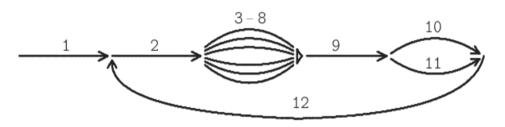


# Example



#### Solved by ILOG CPLEX 10.0

- Solution time = 11.16 sec
- # Variables = 9600



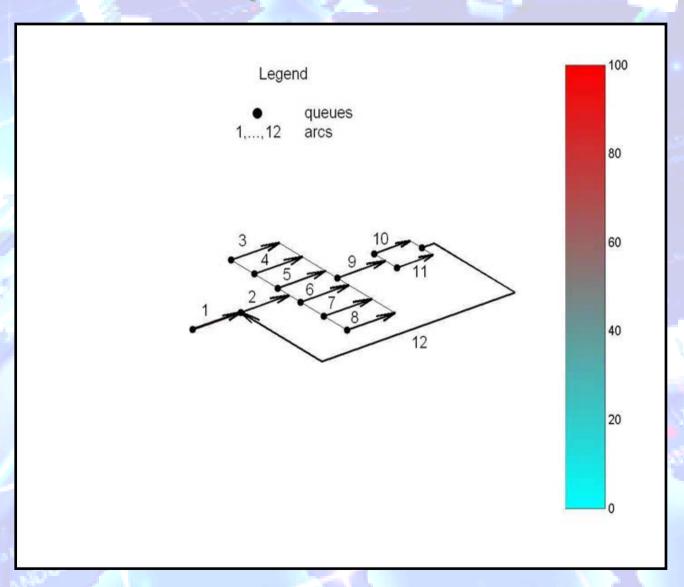
Constant inflow until  $t \le 100$ 

Maximization of outflow, i.e. optimizing the amount of parts passing processor 12

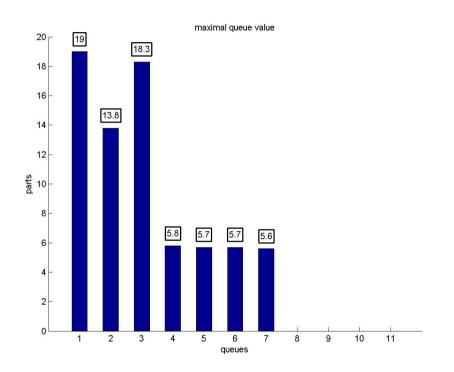
$$\min - \sum_{t} \frac{1}{t+1} g_t^{12}$$

| e       | $\mu^e$ | $v^e$ |
|---------|---------|-------|
| 1       | 100     | 0.01  |
| 2       | 0.71    | 0.35  |
| 3 - 8   | 0.07    | 0.01  |
| 9       | 0.71    | 0.05  |
| 10 - 11 | 0.24    | 0.12  |
| 12      | 0.71    | 0.35  |

# Optimization



## Results



18
16
14
12
10
10
10
10
10
10
100
150
200

Maximal load of queues

**Evolution of queues** 



# Advantage MIP

Constraints can be easily added to the MIP model:

Bounded queues:

$$q_t^e \leq \text{const} \quad \forall e, t$$

Optimal inflow profile:

$$\max \sum_{e=1,t} \mathsf{f}_t^e \qquad \qquad \boxed{ \qquad \qquad } \mathsf{Optimal~\ref{pt}}$$

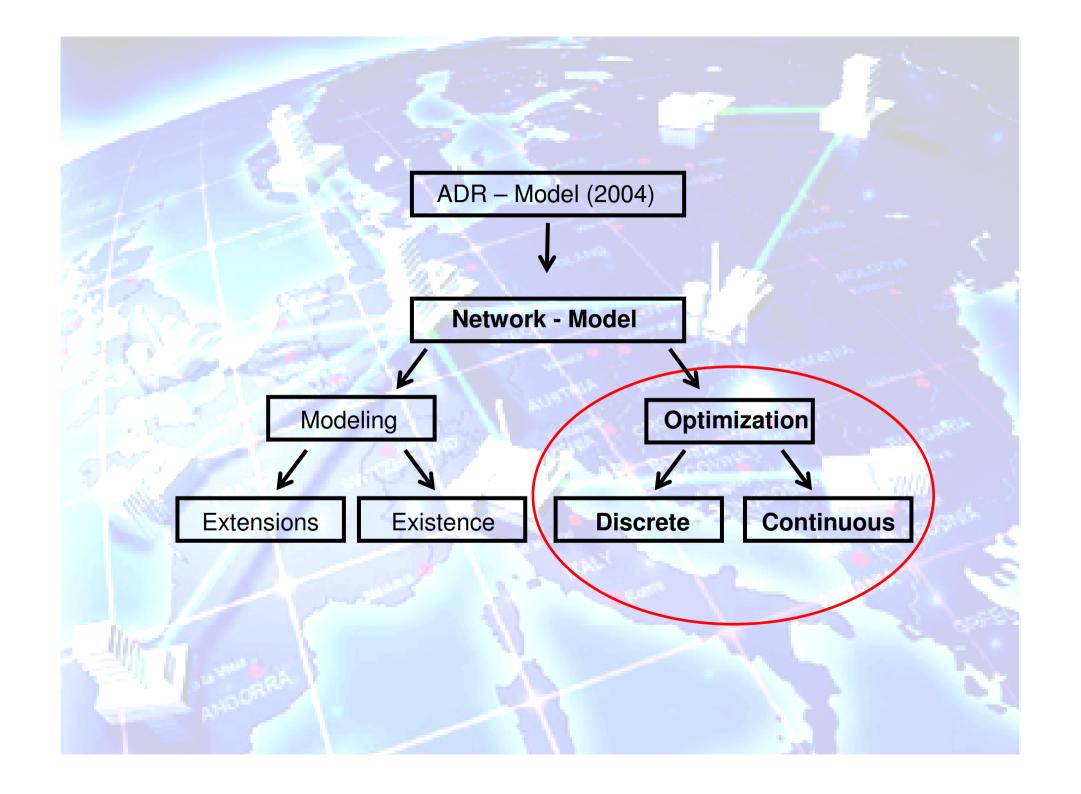
In other words: Find a maximum possible inflow to the network such that the queue-limits are not exceeded.

# Advantage MIP

Maintenance shut-down:

$$\begin{split} \phi_t^{\tilde{e}} &\in \{0,1\}, \, \forall t, \, \forall l = 0, \dots, N-1 \\ \mathbf{h}_{t+l}^{\tilde{e}} &\leq \max\{\mu^e : e \in E\} |E| \cdot (1-\phi_t^{\tilde{e}}) \\ &\sum_{t=1}^{N_T} \phi_t^{\tilde{e}} = N \end{split}$$

■ Processor  $\tilde{e}$  has to be switched off for N consecutive time intervals during the total run time  $N_T$  .



## **Adjoint Calculus**

See Göttlich, Herty, Kirchner, Klar (2006): Optimal Control for Continuous Supply Network Models

Adjoint calculus is used to solve PDE and ODE **constrained** optimization problems. Following steps have to be performed:

1. Define the **Lagrange** – functional:

$$L(\rho^e, A^v, q^e, \Lambda^e, P^e) = \sum_{e \in \mathcal{A}} \int_0^T \int_{a^e}^{b^e} -b^e v^e \rho^e dx dt \quad \text{Cost functional}$$
 
$$-\sum_{e \in \mathcal{A}} \int_0^T \int_{a^e}^{b^e} \Lambda^e \left[ \partial_t \rho^e + v^e \partial_x \rho^e \right] dx dt \quad \text{PDE processor}$$
 
$$-\sum_{e \in \mathcal{A}} \int_0^T P^e \left[ \partial_t q^e - h^e (\rho^e, A^v) + \psi^e (q^e) \right] dt \quad \text{ODE queue}$$

with Lagrange multipliers  $\Lambda^e$  and  $P^e$ .



## **Adjoint Calculus**

2. Derive the first order optimality system (**KKT-system**):

#### Forward (state) equations:

$$\partial_t \rho^e + v^e \partial_x \rho^e = 0, \ \rho^e(x, 0) = 0, \ v^e \rho^e(a, t) = \psi^e(q^e),$$
$$\partial_t q^e = h^e(\rho^e, A^v) - \psi^e(q^e), \ q^e(0) = 0,$$

#### Backward (adjoint) equations:

$$-\partial_t \Lambda^e - v^e \partial_x \Lambda^e = v^e, \ \Lambda^e(x, T) = 0,$$

$$v^e \Lambda^e(b, t) = \sum_{\bar{e} \in \delta_v^+ \text{ s.t. } e \in \delta_v^-} P^{\bar{e}}(t) \frac{\partial}{\partial \rho^{\bar{e}}} h^{\bar{e}}(\rho^e, A^v),$$

$$-\partial_t P^e = 1 - (P^e - \Lambda^e(a, t)) (\psi^e)'(q^e), \ P^e(T) = 0,$$

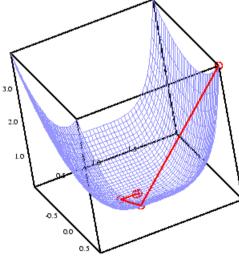
#### Gradient equation:

$$\sum_{e \in \delta_v^+} P^e \frac{\partial}{\partial A^{v,\overline{e}}} h^e(\rho^e, A^v) = 0.$$

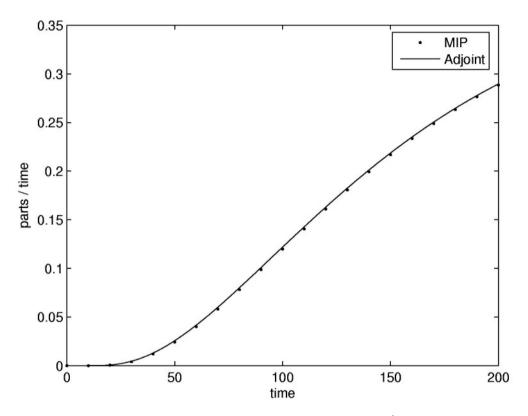
# Optimization Algorithm

Projected steepest descent method:

- 1. Choose initial control vector  $A_0$
- 2. Compute for  $A_0$  the solution of state and adjoint equations
- 3. Compute the gradient. If it is zero, then STOP.
- 4. Update the control vector.
- 5. Go to 2.

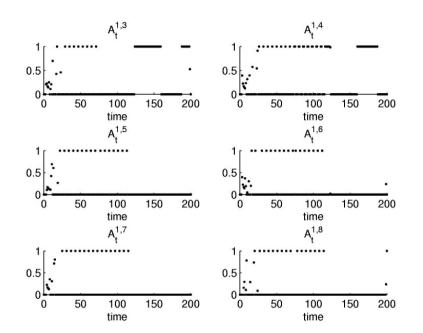


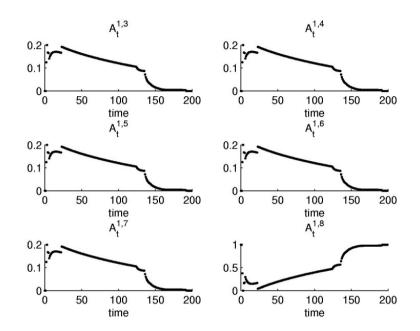
# Optimal outflow profile



Optimal functional value:  $J^*(\vec{A}^v) = -0.19$ 

# Optimal control





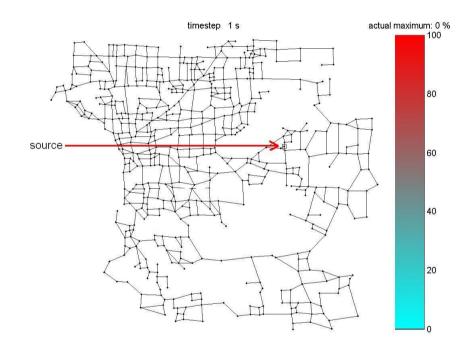
Distribution rates  $A_t^e$ , e = 3, ..., 8 computed by the MIP (left) and the adjoint approach (right)

→ No uniqueness!



## Motivation

Optimizing large-scale networks with hundreds of arcs and vertices

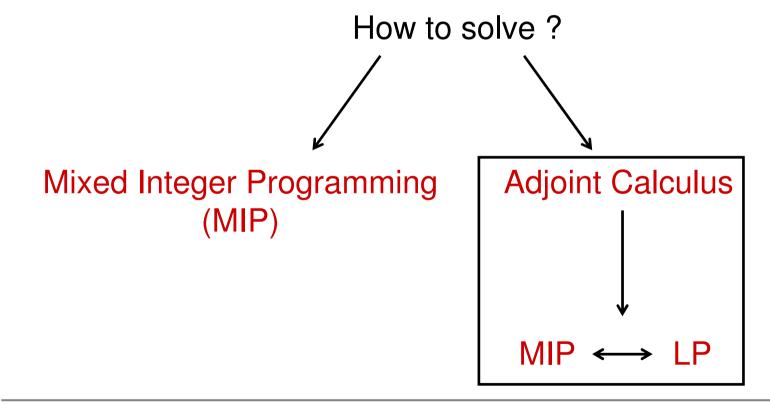


Solving the adjoint system or the MIP is computationally expensive!



# Solution Techniques

Optimal control problem with PDE/ODE as constraints!





# Linear Program (LP)

Idea: Use adjoint equations to prove the reformulation of the MIP as a LP



$$\psi(q_t^e) = \min\left\{rac{q_t^e}{\epsilon}, \mu^e
ight\}$$



Outflow of the queue



$$u_t^{e\pm} \ge 0$$

$$\psi(q_t^e) = \frac{1}{2}(\mu^e + \frac{q_t^e}{\epsilon}) - \frac{1}{2}(u_t^{e+} + u_t^{e-})$$

$$\mu^e - \frac{q_t^e}{\epsilon} = u_t^{e+} - u_t^{e-}$$

$$u_t^{e+} \cdot u_t^{e-} = 0$$

Remove the complementarity condition!

**Remark:** The remaining equations remain unchanged!

### From MIP to LP

#### **Theorem**

Assume the inflow at a fixed vertex is non-zero and  $b_{N_T}^e < 0$ . Let either the costs  $b_t^e$  be monotone increasing in time or  $\epsilon > \Delta t$ . Then, every optimal solution to the LP automatically satisfies the complementarity condition  $u_t^{e-} \cdot u_t^{e+} = 0$ .

#### In other words:

We can solve the LP model and obtain the same solution as for the complementary problem!



May 2009 Simone Göttlich

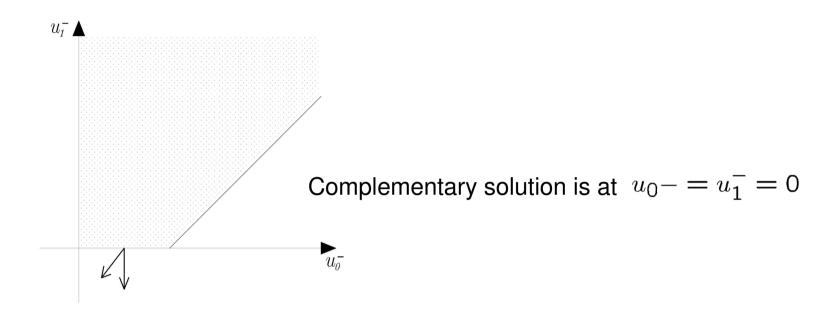
### Idea of the Proof: Part I

Constraints can be reformulated as follows:

$$\begin{aligned} & \min_{A^{v,e}} \sum_{e} \sum_{t} -\Delta t b_{t}^{e} v^{e} \rho_{t}^{e,b} = \sum_{e} \sum_{t} -\Delta t b_{t}^{e} x_{t}^{e} + \dots \\ & q_{t+1}^{e} = \dots, \ \rho_{t+1}^{e,b} = \dots \\ & x_{t}^{e} + u_{t}^{e-} = \frac{q_{t}^{e}}{\epsilon} \\ & x_{t}^{e} + u_{t}^{e+} = \mu^{e} \\ & u_{t}^{\pm} \geq 0 \end{aligned}$$

- Complementary condition is satisfied whenever the inflow to the arc is maximized
- $\hbox{\bf Monotone increasing costs $b^e_t$ imply maximizing $x^e_t$ }$
- Maximizing  $x_t^e$  is minimizing either  $u_t^{e-}$  or  $u_t^{e+}$   $\longrightarrow$  complementary condition is satisfied

### Idea of the Proof: Part II



- Consider a single supplier with constant costs  $b_t^e = -1$  and time horizon T=2
- Complementary solution is still an optimal solution
- But we obtain another solution if we store all incoming parts in the queue for one time-step and extract later --> complementary condition is not satisfied
- For  $\epsilon = \Delta t$  the cost vector is orthogonal to the boundary

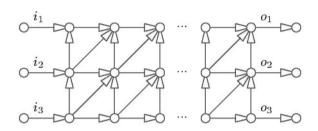


## Numerical Results I

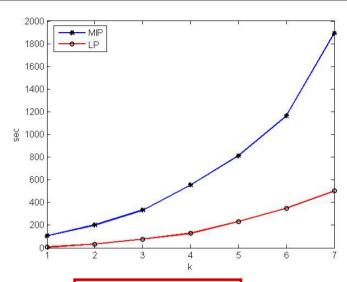
#### **Example**

Solved by ILOG CPLEX 10.0

$$\frac{f_{\{i_1,i_2,i_3\}}^{in}(t)}{\Box}$$



 $k \times 3$  interior network points



| k              | Presolve MIP | Solution MIP          | Presolve LP | Solution LP |
|----------------|--------------|-----------------------|-------------|-------------|
| $\overline{1}$ | 78.87        | 105.33                | 0.11        | 6.26        |
| 2              | 159.09       | 201.64                | 0.32        | 33.54       |
| 3              | 236.59       | 332.78                | 0.54        | 76.91       |
| 4              | 352.08       | 555.11                | 0.75        | 127.24      |
| 5              | 477.50       | 810.44                | 0.99        | 232.68      |
| 6              | 590.09       | 1163.25               | 1.22        | 348.53      |
| 7              | 983.55       | 1891.90               | 1.42        | 502.72      |
| 8              | 907.01       | infeasible infeasible | 1.73        | 768.47      |

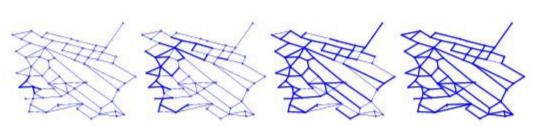
## Numerical Results II

A production network consisting of 418 arcs and 233 vertices.

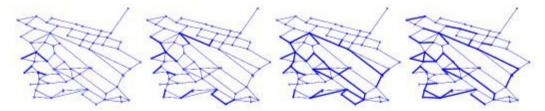


~15 Mio. variables!

Clipping area



Simulation results for t=10,23,36,50



Optimization results for t=10,23,36,50

**MIP**: no result after one day!

LP: ca. 5 hours



May 2009

