
Material Flows in Production NetworksMaterial Flows in Production Networks

Simone Simone GGööttlichttlich

TU KaiserslauternTU Kaiserslautern

IPAM, Los Angeles, May 2009IPAM, Los Angeles, May 2009

Joint work with: 

A. Fügenschuh (ZIB Berlin), A. Martin (TU Darmstadt)

M. Herty (RWTH Aachen), C. Kirchner, A. Klar (TU Kaiserslautern)



May 2009 Simone Göttlich 

ContinuousContinuous and and DiscreteDiscrete modelsmodels

Motivation and Application:

� Water Networks

� Gas Networks

� Traffic Flow Networks

� Supply Chains

� …

MIP meets PDE
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TrafficTraffic FlowFlow Networks Networks 

•• MinimizeMinimize drivingdriving time time 

subjectsubject toto

See Fügenschuh, Herty, Klar, Martin (2006): Combinatorial and 

Continuous Models for the Optimization of Traffic Flows on Networks
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Protection of Drinking Water SystemsProtection of Drinking Water Systems

ObjectiveObjective

Try to identify sources such that the time evolved concentrations

coincide with given measurements

SubjectSubject toto

Water network model (advection, decay, coupling)

See Fügenschuh, Göttlich, Herty (2007): Water Contamination Detection
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ProductionProduction Systems Systems 

• MaximizeMaximize outputoutput

subjectsubject toto
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MotivationMotivation

� Investment costs and profit

� Topology of the network

� Production mix and priority rules

Planning of a Production Network

Arriving products

Departing products

Typical questions:
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Dynamics

Discrete Event 

Simulation

Discrete
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Queueing

Theory
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ADR – Model (2004)

Network - Model

ExistenceExtensions

Optimization

ContinuousDiscrete

Modeling
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AssumptionsAssumptions

No goods are gained or lost 

during the production process.
The production process is dynamic.

The output of one supplier is fed 

into the next supplier.
Each supplier has fixed features.

MODEL

Continuous models are valid for large quantity production!
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ADR ADR -- ModelModel
See Armbruster, Degond and Ringhofer (2004): A model for the 

dynamics of large queuing networks and supply chains
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NetworkNetwork ModelModel

� Idea:

� Each processor is described by one arc

� Use ADR Model for dynamics inside the processor

� Add equations for queues in front of the processor

� Advantage:

� Standard treatment of equations

� Straightforward definitions for complex networks

queues
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Network ModelNetwork Model

See Göttlich, Herty, Klar (2005): Network models for supply chains

A production network is a finite directed graph (E,V)     where each

arc corresponds to a processor on the intervall

Each processor has an associated queue in front. 

Definition

Processor:

PDE: Linear transport equation
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Network ModelNetwork Model

See Göttlich, Herty, Klar (2006): Modeling and optimization of supply chains 

on complex networks

Queue:

Inflow Outflow

Case 2

Case 1

Nonlinear ODE

Case 1 Case 2
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We define time-dependent distribution rates for each

vertex with multiple outgoing arcs. The functions are

required to satisfy and              

Network Coupling Network Coupling 

will be obtained as solutions of the optimization problem

Example:
Inflow into queue of arc 2

Inflow into queue of arc 3

Definition
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NumericalNumerical ResultsResults

QueuesDensity

ADR-Model 
Density

Example

Network-Model

Bottleneck

Bottleneck
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Continuous Production Models Continuous Production Models 

� Accurate description of 
supply chain behavior

� Fast computing times

� Opportunity to 

introduce non-linearities

� Difficult to include
discrete decisions

� PDE-constrained

optimization problems

Pros Cons
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ADR – Model (2004)

Network - Model

ExistenceExtensions

Optimization

ContinuousDiscrete

Modeling
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OptimizationOptimization ProblemProblem

� Consider network with entry/exit suppliers

� Given are time-dependent inflow profiles

� Controls are the distribution rates at vertices

What is the optimal distribution of parts among the network?
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OptimizationOptimization ProblemProblem

Cost functional

Constraints

Positive weightsControls

Processor

Queue

Initial conditions
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Solution TechniquesSolution Techniques

Mixed Integer Programming

(MIP)

Adjoint Calculus

Optimal control problem with PDE/ODE as constraints!

How to solve ?

MIP           LP
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Mixed Integer Program (MIP)Mixed Integer Program (MIP)

A mixed-integer program is the minimization/maximization of a linear 
function subject to linear constraints.

Problem: Modeling of the queue-outflow in a discete framework

See Fügenschuh, Göttlich, Herty, Klar, Martin (2006): A Discrete 

Optimization Approach to Large Scale Networks based on PDEs

1See Armbruster et al. (2006): Autonomous Control of Production Networks 

using a Pheromone Approach

Relaxed queue-outflow1

Solution: Reduce complexity (as less as possible binary variables) 
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Derivation MIPDerivation MIP

Idea: Introduce binary variables (decision variables)

Problem: Suitable discretization of the -nonlinearity

Example:              implies and

Outflow of the queue

= Inflow to a processor

The problem has                                      binary variables! 
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Mixed Integer ProgramMixed Integer Program

maximize outflux

processor

queue outflow

initial conditions

Two-point Upwind discretization (PDE) and explicit Euler discretization (ODE)

leads to

queue
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ToothbrushToothbrush ManufacturingManufacturing

Entrance
Exit

1
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ExampleExample
Solved by ILOG CPLEX 10.0

Maximization of outflow, i.e. optimizing the

amount of parts passing processor 12

Constant inflow until

• Solution time = 11.16 sec

• # Variables = 9600 
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OptimizationOptimization
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ResultsResults

Maximal load of queues Evolution of queues
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Advantage MIP Advantage MIP 

� Bounded queues:

� Optimal inflow profile:

In other words: Find a maximum possible inflow to 
the network such that the queue-limits are not 
exceeded.

Constraints can be easily added to the MIP model:

Optimal ??
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� Maintenance shut-down:

� Processor has to be switched off for N          

consecutive time intervals during the total run
time      .   

Advantage MIPAdvantage MIP
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ADR – Model (2004)

Network - Model

ExistenceExtensions

Optimization

ContinuousDiscrete

Modeling
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AdjointAdjoint CalculusCalculus

See Göttlich, Herty, Kirchner, Klar (2006): Optimal Control for Continuous 

Supply Network Models 

Adjoint calculus is used to solve PDE and ODE constrained optimization

problems. Following steps have to be performed: 

1. Define the Lagrange – functional:

with Lagrange multipliers and

Cost functional

PDE processor

ODE queue
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AdjointAdjoint CalculusCalculus

2. Derive the first order optimality system (KKT-system):

Forward (state) equations:

Backward (adjoint) equations:

Gradient equation:
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OptimizationOptimization AlgorithmAlgorithm

Projected steepest descent method:

1. Choose initial control vector

2. Compute for the solution of state and adjoint equations

3. Compute the gradient. If it is zero, then STOP.

4. Update the control vector.

5. Go to 2.
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Optimal Optimal outflowoutflow profileprofile

Optimal functional value:



May 2009 Simone Göttlich 

Optimal Optimal controlcontrol

Distribution rates computed by

the MIP (left) and the adjoint approach (right)

No No uniquenessuniqueness!!
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MotivationMotivation

Optimizing large-scale networks with hundreds of arcs and vertices

Solving the adjoint system or the MIP is computationally expensive!
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Solution TechniquesSolution Techniques

Mixed Integer Programming

(MIP)

Adjoint Calculus

Optimal control problem with PDE/ODE as constraints!

How to solve ?

MIP           LP
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Linear Linear ProgramProgram (LP)(LP)

Outflow of the queue

Idea: Use adjoint equations to prove the reformulation of the MIP as a LP

MIP

LP

Remark: The remaining equations remain unchanged!

Remove the

complementarity condition!
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Assume the inflow at a fixed vertex is non-zero and                    

Let either the costs be monotone increasing in time or

Then, every optimal solution to the LP automatically satifies the

complementarity condition  

FromFrom MIP to LPMIP to LP

In other words:

We can solve the LP model and obtain the same solution as 
for the complementary problem! 

Theorem
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IdeaIdea of of thethe ProofProof: Part I : Part I 

Constraints can be reformulated as follows:

� Complementary condition is satisfied whenever the inflow to the arc is

maximized

� Monotone increasing costs imply maximizing

� Maximizing is minimizing either or

complementary condition is satisfied
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IdeaIdea of of thethe ProofProof: Part II : Part II 

� Consider a single supplier with constant costs and time horizon T=2 

� Complementary solution is still an optimal solution

� But we obtain another solution if we store all incoming parts in the queue for

one time-step and extract later complementary condition is not satisfied

� For                 the cost vector is orthogonal to the boundary

Complementary solution is at 
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interior network points

Example

NumericalNumerical ResultsResults II

Solved by ILOG CPLEX 10.0



May 2009 Simone Göttlich 

NumericalNumerical ResultsResults IIII

A production network consisting

of 418 arcs and 233 vertices.  

Clipping area

Simulation results for t=10,23,36,50

Optimization results for t=10,23,36,50

MIP: no result

after one day!

LP: ca. 5 hours

~15 Mio. variables!
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