IPAM April 28, 2009

Statistical Stability of Kinetic Models
for High Frequency Waves

Guillaume Bal

Department of Applied Physics & Applied Mathematics
Columbia University

http://www.columbia.edu/~gb2030
gb2030@columbia.edu

Joint with Ian Langmore, Olivier Pinaud, Kui Ren, Lenya Ryzhik



IPAM April 28, 2009

Outline

1. Formal derivation of kinetic models

2. Numerical validity of Kinetic models

3. Statistical stability
4. Stability/Instability in parabolic Anderson model

5. Optimal stability in simplified regimes



IPAM April 28, 2009

Scalar wave equation

The pressure p(t,x) solves following closed form scalar equation

82p . 2 L 1
@ = C (X)Ap, C (X) pm— IOOK/(X)
Moreover
2 X
Ep(t) = %/Rd (“(X) (%)2(@@ + |Vp|pc()t, )>dX = & (0).

The role of a kinetic model is to predict the spatial distribution of the

above conserved quantity.

We are interested in the high frequency regime, where the initial con-

ditions have the form p(0,x) = p(E).
£
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wignher Transform
Let ¢ be a small parameter modeling typical wavelength.
The Wigner transform of two propagating vector fields is defined by:

Y dy
27 (2m)d’

Welu, v](x, k) = /R eV ku(x - %)v*(x + e
It is the inverse Fourier transform of the product:
Welu, v](x, k) = F~1 (u(x + 6%)V*(X — 8%))
We verify that
/R Wl vI(x k)dk = (uv*)(x)

The Wigner transform captures field-field correlations.



IPAM April 28, 2009
Weak-Coupling Regime

In the weak coupling regime, the random fluctuations of the media are
modeled by

(£)°(x) =g~ VEVF(),| p=1.2

1 2
c% = : VP(x) = —K,l ?(x),
KOPO
where cg is the average background speed and /-4;1 and V¥ are random
fluctuations in the compressibility and sound speed, respectively. We

assume that V¥(x), ¢ = 1,2, are statistically homogeneous mean-zero
random fields with correlation functions and power spectra given by:

RV (x) = (VO(y)V¥(y +x)), 1<o,¢ <2,
(2m)4cE R (p)s(p+a) = (V¥ (P)V¥(q)).
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Kinetic theory In weak coupling regime

Let W:(t,x,k) be the Wigner transform of two fields uy and u, propa-
gating in the two media ¢ =1, 2.

The limit Wigner distribution is decomposed over propagating modes as:
W(t,x, k) = a,+(1;,:x;,k)b+b*jr + a_(t,x,k)b_b*. Furthermore, the radia-
tive transfer equation for ay is (with w4 = cglk|):

P J ook Vay + (S0 + N0y,
= Wi(k)/ R (k — a)ap ()6 (wy (@) — wi(K))d
~ 2(2m)d Jre AR o R 5
w2 (k) R11 4 R22
S0 = ST (k- @5(wp (@) — 0 (9)da
: . U = 511 22 w-(k)w_|_(q)
Nt = 5505 p.v./Rd(R _R )(k—q)wqu)_w_l_(k)dq.
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Equation for spatial Wigner transform

All models start with an equation for the Wigner transform, which re-
quires the field equation to be first-order in the time variable:

ouf
ot
The Wigner transform of the two fields defined as

£ + Afuf = 0, o =1,2,

W€(t7 X, k) — W[ug: (ta ')7 ug(t7 )] (X7 k)7
solves the equation
OWe

ot

Some pseudo-differential calculus allows us to write W[Alul,u2] in terms
of W:(t,x,k) and thus get a closed form equation for W:(¢,x,k) amenable
to (non-rigorous) asymptotic expansions.

£ + wiAlul, u?] + Wlul, A%u?] = 0.
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Numerical validation

Source medium fluctuations 5-8%
(150,150) %(3 Foints per wavelength
) )
| 300 75 150
£
Inclusion (450,150)
Detector 600 R=5040,30,20,10

The domain size is roughly 20,000 x 10,000 = 200M nodes
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Effect of void inclusions

X 10_4 Cor(ections, R.=50’ isotropic case 8%

x 107 Corrections, R=50, isotropic case
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Correction generated by an inclusion of radius R = 50 where the random

fluctuations are suppressed. Left: 5% RMS. Right: 8% RMS. Transport
and diffusion generated by best energy fit. The diffusion fit is now much

more accurate.
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Discrete Scatterers and frequency domain

S . . The sound speed fluctuations
f::i 1,. . take  the  form VeEVe(2), where
O T e PR B AT _

TR ) = T v (= % ) with
" ﬁ > 0 and v < 1. "The scatterers are
- | | modeled as a Poisson point process: the
points xj.(w) form a Poisson point process

Detector ——> o<—— Source

of density v = £74ng.

At the wave level, the scatterers are sufficiently localized so that we can
use a Foldy-Lax model. At the transport level, we observe that the power
spectrum Re converges to Rg = L29E{r?}ng.
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Comparison Wave Energy - Transport
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Small detector (left) and Large detector (right). Error bars = 1 standard
deviation (50 realizations)
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Duke experimental set-up
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Duke numerical set-up
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All subsequent reconstructions based on frequency average on the interval

[OGHz,11GHz].

Best fit for mean free path is 42cm (91cm for band
[6.5GHz,8.5GH?z], showing behavior of mfp in k~3).
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Reconstruction of outside rods
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Reconstruction of four (small) rods outside the random medium from
differential measurements.
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Reconstruction of voids inside random

medium
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Reconstruction of four holes created by the removal of three rods. Re-
construction based on differential measurements.
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Stability and Imaging

The above derivation for the radiative transfer equation is formal. How-
ever, the simplest arguments show that the ensemble average of the
energy density solves the (deterministic) radiative transfer equation:

E{&.(t,x)} <=2 [t (6 x k) dk.

How about &:(t,x)? Does it converge as well? Is the limit independent
of the realization of the random medium?

Answering these questions is crucial to address the inverse problem: we
do not have access to the influence of a buried inclusion averaged over
(a sample of the) realizations of the random medium.

We thus need to understand the statistical instability of the energy mea-
surements and acknowledge that our lack of knowledge of the random
medium translates into inevitable noise).
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Paraxial equation and time regularization

In the paraxial approximation, wave propagation is modeled by Schrodinger
equation

Gng

’ilﬁ)&‘

+ ~ — "CQ\fV(_ _)¢6 =0,
%(z = 0, x, H:) = wo€< k).

Mixing of waves is now simplified: we assume the random field V(z,x) is
a Markov process in z with a correlation function R(z,x):

E{V(s,y)V(z+s,x+y)} = R(2,x) forall x,y € R? and z,s € R.

We now have access to a full machinery (Invariant measures and spectral
gaps for Markov processes, perturbed test function method and weak
convergence of measures on space of continuous paths) to address the
convergence properties of the Wigner transform.
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Stability result

Theorem [B. Papanicolaou Ryzhik]. The Wigner distribution Ws con-
verges in probability and weakly in L?(R2%) to the (deterministic) solution
W of the transport equation

oW
— 4+ k VxW = kLW,
0z
with L2(R2%) initial data Wo(x, k) and operator £ defined by
dp - |p|?—
Rd (27)4 2

where R(w,p) is the Fourier transform of the correlation function of V.

k|2

P —k)(A(p) — A(k)),

More precisely, for any test function A € L2(R24) the process (We(z),\)
converges to (W(z),\) in probability as € — 0.
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Radiative transfer and diffusion regimes

Consider more generally the follovving Schrodinger equation

/8_
Z€1+5a¢€ _I_ Awé‘ — e V(%’ %)¢8 p O
0z e’ ¢

Theorem [B. Ryzhik] The associated Wigner distribution converges in
probability and weakly to the deterministic solution of
(i) the radiative transfer equation when aa < 8 =1 and § = O:

oW p|* — K%Y 5

— 4+ k-VxW = 5( )R —k)(W — Wi(k

= W= [ o) Ro® — W () ~ W ()
(ii) the diffusion equation when a«a < 3 =1 and § > O:

oW
8— — VXDVXW — O D = k ® £_1k,
Z




(iii) the Fokker-Planck equation when a <3< 1 and § = 0.

oW _
W k. VW = 2v (/ 5(k-p)R
5, Tk Vx SVi | Jo 0 P)Eo(p)p@P

dp )
Vi W
2 (2m)d) K
The Fokker Planck equation is valid the wavelength is much shorter than
the correlation length of the medium. We may see the dynamics as wave

packets propagating in a random Hamiltonian.

The Fokker-Planck may be seen as an approximation to radiative transfer
when scattering is highly peaked forward so that the direction of the
wavepackets follows Brownian dynamics.
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Parabolic equation with large potential

Consider the parabolic equation

ou 1 /x
8756 — Aug — 5@(2)“6 =0, ug(O,:E) — UO(CU)a

with g(x) mean-zero Gaussian. Assume that the correlation function

R(z) = E{q(y)q(z +y)} ~ 0<p<d

II‘O

Then for (p > 2| and a = 1, ug converges strongly to u solution of

ou d R(f)
— —Au—pu=20 t>0, xe€eR", —/
ot p - P Rd |€|2 5
p_
The fluctuation (corrector) w1, =& 2 (ue —E{us}) converges in law to
uq solution of the SPDE with additive (fractional) noise:

ouq

E — Aug — puy = VeuW (z).
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Parabolic equation with large potential

Consider the same parabolic equation

Ous N iq@)ug =0, ue(0,z) = ug(x),
ot ¥ \e K
R(z) = E{q(y)q(z +y)} ~ Tz’ O<p<d

Then for [p < 2|, « =% and d > 2, us converges in law to u solution of

9 |
a—rj—Auz\/EuoW(az), t>0, zecRL

The above SPDE with multiplicative noise has to be understood in the
Stratonovich sense and admits a unique square integrable solution in an
appropriate functional setting.

This shows a totally different behavior of us depending on the decorrela-
tion properties of R(x): stochastic behavior for slow decorrelation and
homogenization for fast decorrelation.




IPAM

5.

Outline

. Formal derivation of kinetic models

. Numerical validity of kinetic models

Statistical stability
Stability/Instability in parabolic Anderson model

Optimal stability in simplified regimes

April 28, 2009



IPAM April 28, 2009

ItO0 Schrodinger approximation

Assume now that the fluctuations in z are faster than in the transverse
variables x:

8w5 1€ 1 Z
— ~ADxPe = 1 V( )w& a > 0.
0z 2 c '5 1+a’

Then we can formally replace

1 z X X
LY e B,
132V (e y (2, d?)

where B(x,dz) is the usual Brownian motion in z with statistics
(B(x,2)B(y,z")) = Q(y —x)zAZ', and obtain the [t6-Schrodinger equation

die(x, 2) = QL-&AX?A&;(X, 2)dz 4 iktpe(x, 2) o B(z, dz).
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Kinetic models

Upon using the It formula, we obtain that the average Wigner transform

ag(t,x,k) = E{W:(t,x,k)},
solves the following kinetic model

0
S+ k- Vxac + Roae = [ Rk~ qa=(t, x, @)

CLg(O,X, k) Wg(O,X, k)

(2 )d’

This equation provides a kinetic model for the ensemble average of the
Wigner transform. The kinetic model is here exact.
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Kinetic model for the scintillation function

A natural object in the study of the statistical stability of Wg is the
following covariance (scintillation) function:

Je(t,x,k,y,p) = E{W:(t,x, K)We(t,y,p)} — E{We(t,x, k) }E{W:(t,y,pP)}
Another application of the Itd formula shows that
0
(a ‘|‘7—2 ‘|‘ 2RO — QQ — Ke:)Js — ’Ceas X ag,

where
7, = k-Vx+p-Vy

027 = [, (RU= K50 ) + R — )5~ 1) )T p) 5
(x—y)-u du
Keh = Z /RQd R(u)e" = e h(X k-|—622,y,p‘|‘ 32)(27T)d

€5,€j=
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Stability estimates for the Wigner transform

Define domains of measurements:

(x.k) = 1 x k— kl)
Pe81,520 ) = gd(51+82)¢<581’ es2 )

By using the Chebyshev inequality, we obtain the following estimate on
the probability that W. deviate from its ensemble average ac:

1
P<|<W€(t)7 906,81,82> o <a€(t)7 906,81782>| 2 5) § 5_2<J€(t)7 Pe, 81,52 X 905,31,52>-

We are therefore interested in estimating the above right-hand side.
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Main stability result

Theorem.[B. Pinaud] Let ¢¥:(x,0) be a sequence of functions uniformly
bounded in LQ(Rd), compact at infinity, and e-oscillatory. Let a:(0,x,k)
be the corresponding sequence of Wigner transforms. We assume that

| Fxac(0,w, k)| 1oy S e and || Fas(0,%,8) | 1 (goay S e,

This means the source concentrates at the scale €% in space and 2 in
wavenumbers Physically, a + 8 = 1. Then we find that

(Je(t), Pe,s1,50 @ Pes1,52) S ge
d(1—a)—2d(s1+s5) [82(1—a)—sl—sl\/SQ—I—(a—B)\/O]
Vel-B+((a-BVO)A((d-1) (1-a—B)+a)

ge — €

when d > 3 (with a modified expression when d = 2).
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Small support of the sources large detectors

Let us assume that the spatial support of the domain of measurements
is large. Then we find that

(Je(t), ¢ @ @) S e Fdl=a),

The scintillation is of order O(ed) when a = 0, which corresponds to a
large support of the initial source term. This corresponds to the ideal
case where the scintillatidon iIs smallest. In such a setting, we obtain that
(We — ae, ) is of order e2.

For a very small support of the initial source with aa = 1, we obtain tl’llat
the scintillation is of order O(e) so that (W — ae, ) is now of order &2.
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Small domain of measurements.

Conversely, we consider the case of a source term with a large support
and a small spatial measurement domain of size 451, In this setting, we
find that

(Je, pe,s1 @ Pe,s1) S gd1=s1),

The energy density becomes asymptotically statistically stable as soon
as it is measured over an area that is large compared to the correlation
length of the medium. This is an optimal result of self-averaging as
we cannot expect the energy density to be statistically stable on sub-
wavelength domains.
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Convergence of the scintillation function

Theorem. Consider initial conditions of the form a:(0,x,k) = §(x) f(k)
for some smooth function f(k) in dimension d > 2. (Small domain of the
source in space.) Then e 1J.(t) converges in the space of distributions
uniformly in time to the limit J(¢t) = J(¢,x,k,y,p), which solves an explicit
kinetic equation.

This result shows that the O(e) estimate obtained earlier is optimal for
sources supported on small domains.
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Single scattering Full kinetic model

Let us come back to the kinetic model for the Schrodinger equation

iea;:s 4+ 2 Aus — \/EV(E)UE = 0,
with highly oscillatory initial conditions. Let R(z) be the correlation
function of V. The scintillation function has two contributions: one
linear in R(x), and the other one involving higher-order moments of V.
We analyze the former contribution to scintillation. Consider an initial
condition for us that is localized in space at O and wavenumber around
ko. The Wigner transform of such an initial condition is of the form

1 —
af€(x7k) — da'<aj ksﬁkC))a

g o’

with 8 =1 — o (uncertainty principle).
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Single scattering scintillation

For ¢ a (large) detector array characteristic, we want

s = [ J11c(t 2, k9, (e, K)oy, a)dadkdydg.

Long range correlations (slow decay of R(x)) are modeled by singular
behavior of power spectrum R(¢) at € = O:

S(©) K

R(f)zwy 0 =d—p, R(w)Nwa T — 00,

The size of I depends in a fairly complex way on o, 8 =1 — «, and 9d:

When § = 0 (integrable correlation function), the maximum scintillation
is of order £ and o« = 1 (localized source term in space).

When § — d (very long range p — 0), the maximum scintillation ap-

1
proaches €2 and a = 3 = 3.
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Conclusions

Kinetic models for waves in random media are homogenization models.
They work great in many practical settings.

Limitations are to be found in resulting scintillation. Scintillation is a
complex functional of the wave propagation model, the singular struc-
ture of the initial conditions, and the long range properties of the
randomness.

In the parabolic Anderson model, homogenization is replaced by a stochas-
tic description for sufficiently long range correlations (more constraining
in high dimensions).

Same should occur for waves with a transition from homogenization
to localization. Waves always localize in 1D (at least for strictly time-
independent randomness). They may localize in higher dimensions for
long range power spectra, though the model will presumably depend on
the initial conditions.



