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3. Flow characteristics
Poiseuille flow
dynamically neutral particles
perfect mixing at junctions pi = φi/

∑
φi, with φr ∝ r4

i

4. Trapping mechanism:  
particle > pore → permanent, complete blockage 

→large pores entered preferentially
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Pw(t) ∼
w

t3/2
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w
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2
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2

〈tk〉 =

∫
∞
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 Summary & Outlook

Basic contradiction of filters:

Gradients drive depth filtration breakdown

Some open questions:  
When is a filter “dead”?

Other mechanisms: sclerosis, relaunching, aggregation...

Clogging time governed by extreme events
          →power law clogging time distribution

A filter should be long for good filtering
short to be active

How to describe gradient-driven percolation?


