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What is filtration? What is clogging?
Basic Approach:

minimalist modeling; probabilistic descriptions

Two Main Results:
density profiles of trapped & escaped particles

clogging time and its distribution

Summary & Outlook
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pore
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3. Flow characteristics
Poiseuille flow

dynamically neutral particles
perfect mixing at junctions p; = ¢;/ > ¢;, with ¢, oc 7}
— large pores entered preferentially

4. Trapping mechanism:
particle > pore — permanent, complete blockage



S. Datta & SR,

|. Distribution of Trapped Particles e rizs 199



S. Datta & SR,

|. Distribution of Trapped Particles e rizs 199

assumptions:
critical clogging overlapping particle & pore sizes



S. Datta & SR,

|. Distribution of Trapped Particles e rizs 199

assumptions:
critical clogging overlapping particle & pore sizes
large w (unperturbed approximation)



|. Distribution of Trapped Particles e rizs 199
assumptions:
critical clogging overlapping particle & pore sizes
large w (unperturbed approximation)
idealized radii distributions



|. Distribution of Trapped Particles e rizs 199
assumptions: b(r)
critical clogging overlapping particle & pore sizes A
large w (unperturbed approximation)
idealized radii distributions




S. Datta & SR,

|. Distribution of Trapped Particles e rizs 199

assumptions: b(r) p(r) (U[a,b])
critical clogging overlapping particle & pore sizes A
large w (unperturbed approximation)
idealized radii distributions

a b r



S. Datta & SR,

|. Distribution of Trapped Particles e rizs 199

assumptions: b(r) p(r) (U[a,b])
critical clogging overlapping particle & pore sizes A
large w (unperturbed approximation)
idealized radii distributions
for particle of radius r: 2 b,
p<. = prob. of getting stuck in a bubble

r b 5 5
T — Q

o / T/4d,r/// T/4dT/ o - -
N . b° — a



|. Distribution of Trapped Particles e rizs 199
assumptions: b(r) p(r) (U[a,b])
critical clogging overlapping particle & pore sizes A
large w (unperturbed approximation)
idealized radii distributions
for particle of radius r: a b |
p< = prob. of getting stuck in a bubble
r b 7°5 o CL5
= /a T’4dr’//a r'Adr’ = R
P, = prob. of getting stuck in bubble n
= (1-po)" ' p<



|. Distribution of Trapped Particles e rizs 199
assumptions: b(r) p(r) (U[a,b])
critical clogging overlapping particle & pore sizes A
large w (unperturbed approximation)
idealized radii distributions
for particle of radius r: a b,
p<. = prob. of getting stuck in a bubble
r b 7°5 o CL5
= /a T’4dr’//a r'Adr’ = R
P, = prob. of getting stuck in bubble n
= (1-po)" ' p<

n—1
(Pp) = ’ 1 — - r’—a’ dr average over
R b> — a® b> —a® b—a particle radii



|. Distribution of Trapped Particles e rizs 199
assumptions: b(r) p(r) (U[ab])
critical clogging overlapping particle & pore sizes A
large w (unperturbed approximation)
idealized radii distributions
for particle of radius r: a b,
p<. = prob. of getting stuck in a bubble
r b T5 o CL5
= /a 7"’4dr’//a r'Adr’ = R
P, = prob. of getting stuck in bubble n
= (1-po)" ' p<
Py ’ | > —a®\" 15 —a® dr average over
(Pn) = . Y b5 —a® b—a particle radii
b°—a® , —2 .
5a4(bcia)n ) a # 07



10

Trapped Particle Distributions
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assume particle and pore sizes (U[0,1]) pe =17

to escape nth bubble, get trapped at n’>n
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size distribution of escapees at n
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bubble model w=10 square lattice 50x 1000

“dry” flow, entrance prob. o r?
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Single bond clogging (cont):
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Single bond clogging (cont):
probability that bond of radius R is blocked by Nth particle:
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Clogging Time and its Distribution

Single bond clogging (cont):
probability that bond of radius R is blocked by Nth particle:
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moments of clogging time

partial clogging time

distribution
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Summary & Outlook

Gradients drive depth filtration breakdown

Basic contradiction of filters:

A filter should be long for good filtering
short to be active

Clogging time governed by extreme events
—power law clogging time distribution

Some open questions:
When is a filter “dead”?

How to describe gradient-driven percolation?
Other mechanisms: sclerosis, relaunching, aggregation...



