Multiscale control of transport equations

Dieter Armbruster

Department of Mathematics and Statistics,
Arizona State University

& Department of Mechanical Engineering
Eindhoven University of Technology
E-mail: armbruster@asu.edu

April 26, 2009

Collaborators

- Michael La Marca, Department of Mathematics and Statistics ASU
- Christian Ringhofer Department of Mathematics and Statistics ASU
- Michael Herty, RWTH Aachen
- Erjen Lefeber, Mechanical Engineering, Eindhoven University of Technology
- Dominique Perdaen Mechanical Engineering, Eindhoven University of Technology
- Karl Kempf, Intel Corporation

Partial support by NSF grants DMS 0204543 and DMS-0604986 is gratefully acknowledged

Outline

1 Introduction - the output tracking problem

Outline

1 Introduction - the output tracking problem

2 Control on the small scales: Discrete event simulations

Outline

1 Introduction - the output tracking problem

2 Control on the small scales: Discrete event simulations

3 Control on the large scales: The continuum model

Output tracking problem

Assumptions:

- Given a demand for a factory d(t) for a time interval T.
- Given the state of the factory at time t = 0 through the distribution of the work in progress (WIP) through the factory.

Task:

Design a control actuator u(t) for $0 \le t \le T$ such that the output o(t) of the factory is as close as possible to the demand over the time interval T.

I.e.

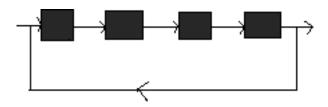
$$Min_{u(t)}||o(t)-d(t)||$$

in some suitable norm.

Control on the small scales: Discrete event simulations

Re-entrant production

Semiconductor production is re-entrant:



Note: If the flow cycles 4 times through this factory then

- Machine 1 produces the steps; 1, 5, 9, 13
- Machine 2 produces the steps 2, 6, 10, 14 etc

Dispatch policy

Question: What is the dispatch policy?

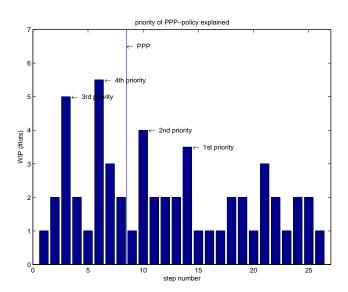
Major policies:

- Push policy typically at the beginning of the line
- Pull policy typically at the end of the line

The Push-Pull-Point **PPP** is the point in the factory where the dispatch policy changes from Push to Pull.

The two policies are ordered Pull over Push.

Priority levels



A new control actuator

Moving the PPP point

Change priority rules by *moving the PPP point*. Position PPP such that WIP downstream is equal to the demand in the demand period

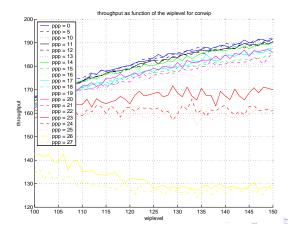
Discrete Event Model

- 9 machine sets
- 26 production steps
- between 4 and 21 machines per machine set
- total raw processing time 58 hours
- machine set 1 and 2 are batch machines with 4 parts per batch
- simulation in χ (TU/e)
- machine time in service and time in repair randomly distributed out of Weibull distributions
- actual processing times out of exponential distributions
- nominal capacity about 200 per week, stochastic variation between 160 – 240.
- demand randomly generated and fixed, average at 180 lots per week.

Heuristics: Clearing functions

Observations and conditions:

 The clearing function for Pull policy is significantly higher than for Push policy



Heuristics: Demand period

Readjustment period and cycle time

have to be related: need to place PPP on average in the middle of the factory to have maximal actuator influence

Experiment

- Simulation time: 144 weeks
- Demand period 2 days
- 500 simulations per data point
- demand is not perishable keep tally of backlog and overproduction
- Cost:

$$m(0) = 0$$

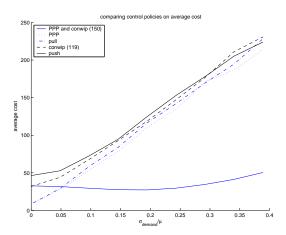
 $m(t) = m(t-1) + d(t) - o(t)$
 $cost(T) : = \sum_{i=1}^{T} |m(i)|$

i.e. backlog and overproduction cost the same

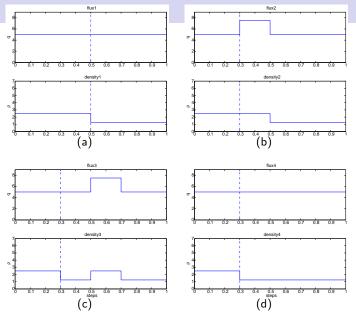
Compare different policies:

- Push
- Pull
- fixed PPP
- CONWIP with WIP = 119 and Pull dispatch policy
- ullet CONWIP with WIP = 150 and PPP

a policy with PPP and CONWIP has much lower costs for high demand variation.



Explanation I



Explanation II

Note:

- Wip is lower after the flux bump has moved out
- If demand stays constant, there is not enough WIP downstream from PPP
- Algorithm is unstable PPP point will continue to move upstream for constant demand.

Explanation III

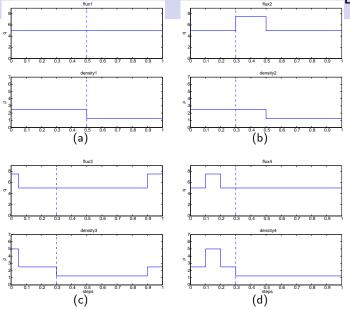


Figure: Moving the PPP upstream with CONWIP

Explanation IV

Note:

- Wip stays constant
- Flux stays high, i.e. total flux is increased
- Algorithm is stable flux does not change for constant demand.

Control on the large scales: The continuum model

Semiconductor fab

Usual model: Faithful representation of the factory using *Discrete Event Simulations*, e.g. χ (TU Eindhoven)

Problem:

Simulation of production flows with stochastic demand and stochastic production processes requires Monte Carlo Simulations

Takes too long for a decision tool

A fluid model for a semiconductor fab

Fundamental Idea:

Model high volume, many stages, production via a fluid.

Basic variable

product density (mass density) $\rho(\mathbf{x}, \mathbf{t})$.

- *x* is the position in the production process, $x \in [0,1]$.
- degree of completion
- stage of production

Mass conservation and state equations

Mass conservation and state equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial F}{\partial x} = 0$$

$$F = \rho v_{eq}$$

Typical models for the equilibrium velocity v_{eq} (state equation) are

$$v_{eq}^{traffic}(\rho) = v_0(1 - \frac{\rho}{\rho_c}), \qquad (1)$$

$$v_{eq}(\rho) = \Phi(L), \qquad (2)$$

$$u_{eq}(\rho) = \Phi(L),$$
(2)

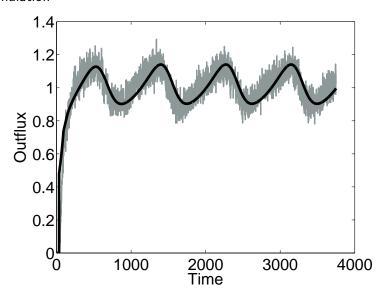
with L the total load (Work in progress, WIP) given as

$$L(\rho) = \int_0^1 \rho(x, t) dx. \tag{3}$$

Φ maybe determined experimentally or theoretically,

Validation

Compare a detailed discrete event simulation with a fluid simulation



Part II: Control of a Continuum Model

Problem: Tracking for a continuum model

Model: PDE model based on a product density $\rho(x,t)$ and a state equation for the velocity:

$$v_{eq}(\rho(t)) = \Phi(L)$$

$$L(t) = \int_0^1 \rho(\xi, t) d\xi$$

specifically - use a queuing model:

$$v_{eq}^Q = rac{v_{max}}{1+L}$$

Mass conservation

leads to

$$\rho_{t}(x,t) + v_{eq}^{Q} \rho_{x}(x,t) = 0, \quad (x,t) \in [0,1] \times [0,\infty)
\rho(x,0) = \rho_{0}(x), \quad x \in [0,1]
\lambda(t) = v(\rho)\rho(x,t)|_{x=0}$$

where $\lambda(t)$ is the influx.

Problem setup

- a fixed end time $\tau > 0$.
- an initial profile $\rho_0(x)$.
- d(t) the demand at time t. $d(t) \in L^2([0,\tau])$.

Find the influx $\lambda(t), t \in [0, \tau]$:s.t.

$$j(
ho,\lambda) = \frac{1}{2} \int_0^{ au} \left(v_{ ext{eq}}^Q(
ho)
ho(1,t) - d(t) \right)^2 dt$$

is minimal

Choose a test function $\phi(x,t) \in C^1([0,1] \times [0,\tau])$

Lagrangian

$$L(\rho, \lambda, \phi) = j(\rho, \lambda) + \langle E(\rho), \phi \rangle \tag{4}$$

where

• Equality constraint set

$$E(\rho) = \rho_t + v_{eq}^Q(\rho)\rho_x$$

•

$$\langle u(x,t),v(x,t)\rangle=\int_0^1\int_0^{ au}u(\xi,s)v(\xi,s)dsd\xi$$

Variational Equations

Setting the variational derivatives of $L(\rho(\lambda), \lambda, \phi)$ with respect to λ, ρ, ϕ equal to zero, leads to:

$$0 = \rho_t(x,t) + v_{eq}^Q(\rho)\rho_x(x,t)$$
 (5)

$$0 = \phi_t(x,t) + v_{eq}^{Q}(\rho)\phi_x(x,t) + \frac{v_{eq}^{Q}(\rho)^2}{v_{max}}$$
 (6)

$$*\left[v_{eq}^Q(
ho)
ho(1,t)^2-
ho(1,t)d(t)+\int_0^1\phi(s,t)
ho_{\scriptscriptstyle X}(s,t)
ight]ds$$

$$0 = \phi(1,t) + v_{eq}^{Q}(\rho)\rho(1,t) - d(t)$$
 (7)

$$0 \equiv \phi(x,\tau) \tag{8}$$

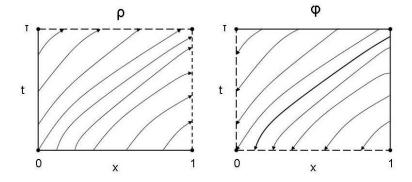
$$j'(\lambda) = -\phi(0,t) \tag{9}$$

Equations

Structure of the equations:

- (5) is our PDE in ρ
- (6) is our PDE in ϕ
- (7) couples ρ , ϕ and the demand d(t).
- (8) is a terminal condition on ϕ
- (9) links the derivative of j with the solution to the ϕ PDE

Domains of influence



Finding a local minimum:

We have an iteration scheme

$$\lambda \to I(\lambda) = (j(\lambda), j'(\lambda))$$

and we are looking for that input function λ^* s.t. $I(\lambda^*) = (j(\lambda^*), 0)$.

Algorithm

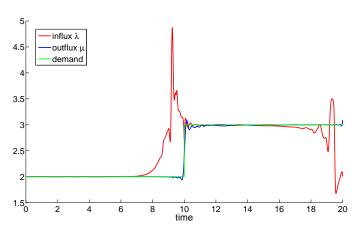
- Pick an inital guess for the control $\lambda(t) = \lambda_0(t)$ $t \in [0, \tau]$.
- Solve PDE for ρ forward in time.
- Solve the adjoint equation for ϕ , using information gained from solving the ρ PDE.
- Use $j'(\lambda)$ to update λ .
- Repeat until suitable stopping criteria is met.

In the following figures:

- The demand is a step function of height 1
- v_{max} is 4
- $\rho_0(x) = 1 \ \forall x \in [0,1]$
- $\lambda_0 = 2$.

 λ_0 was chosen so that the initial influx maintained the initial WIP profile $\rho_0(x)$.

Input/Output/Demand

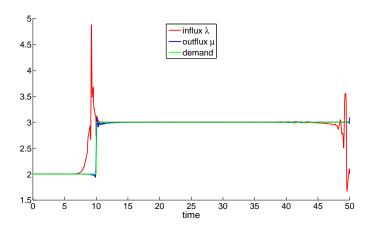


Note the end effect

A real end effect:

- Does not go away with grid refinement; therefore, must come from optimization routine.
- τ was 20; now 50
- Step occurs in both at t = 10.

End Effect II



System Reactivity I

The speed

$$v = \frac{v_{max}}{1 + \int_0^1 \rho(s, t) \, ds}$$

is nonlinear, so the system's ability to react to demand depends on:

- 1 The current system load L
- 2 V_{max}

v_{max} Reactivity

The following demands are two sinusoidal waves $d(t) = \sin(\pi t) + 1$ with:

- Same $\tau = 10$
- Same amplitude of 1, height of 1, and frequency of $\frac{1}{2}$
- Same initial condition $\rho_0(x) = 1 \ \forall \qquad x \in [0,1]$

However, the Fig. 4 has a v_{max} of 1 while Fig. 5 has a v_{max} of 3 prior to the jump.

Low Speed

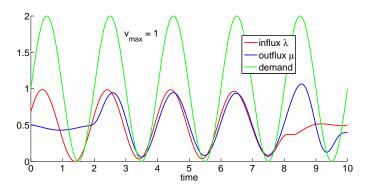


Figure: v_{max} of 1

High Speed

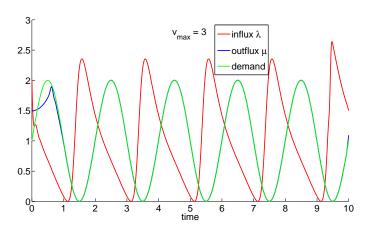


Figure: v_{max} of 3

Conclusions I

Heuristic

- uses a new actuator the Push Pull Point coupled with a CONWIP starts policy.
- is effective to reduce the mismatch between desired output and actual output by a factor of four.
- works at the machine level, i.e. small scales.

Conclusions II

Large scale

We determined a theory to find a local minimum of the mismatch between desired output and actual output as a function of the influx for a large scale in space and time continuum model for factory production.

Extension

Continuum model can be controlled to minimize backlog b(t), i.e.

$$D(t) := \int_0^t d(r) dr$$

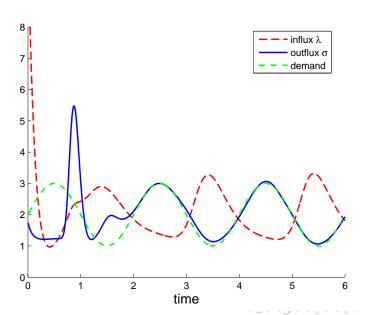
$$O(t) := \int_0^t v(\rho)\rho(1, r) dr$$

$$b(t) := D(t) - O(t)$$

with a cost functional of

$$J(\rho,\lambda) = \frac{1}{2} \int_0^\tau b(t)^2 dt$$

Conclusions IV



Open problems

Further work:

- Integrate both small and large scale optimization. E.g.
 - annual production variation controlled by the influx
 - weakly production variation controlled by the PPP
- Are there any cases where the local minimum is provably global?
- So far Feedforward scheme can we do a Feedback scheme?