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Output tracking problem

Assumptions:

• Given a demand for a factory d(t) for a time interval T .

• Given the state of the factory at time t = 0 through the
distribution of the work in progress (WIP) through the factory.

Task:

Design a control actuator u(t) for 0 ≤ t ≤ T such that the output
o(t) of the factory is as close as possible to the demand over the
time interval T .
I.e.

Minu(t)||o(t) − d(t)||

in some suitable norm.



Control on the small scales:

Discrete event simulations



Re-entrant production

Semiconductor production is re-entrant:

Note: If the flow cycles 4 times through this factory then

• Machine 1 produces the steps; 1, 5, 9, 13

• Machine 2 produces the steps 2, 6, 10, 14 etc



Dispatch policy

Question: What is the dispatch policy ?

Major policies:

• Push policy - typically at the beginning of the line

• Pull policy - typically at the end of the line

The Push-Pull-Point PPP is the point in the factory where the
dispatch policy changes from Push to Pull.
The two policies are ordered Pull over Push.



Priority levels
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A new control actuator

Moving the PPP point

Change priority rules by moving the PPP point.
Position PPP such that WIP downstream is equal to the demand
in the demand period



Factory Model

Discrete Event Model

• 9 machine sets

• 26 production steps

• between 4 and 21 machines per machine set

• total raw processing time 58 hours

• machine set 1 and 2 are batch machines with 4 parts per batch

• simulation in χ (TU/e)

• machine time in service and time in repair randomly
distributed out of Weibull distributions

• actual processing times out of exponential distributions

• nominal capacity about 200 per week, stochastic variation
between 160 − 240.

• demand randomly generated and fixed, average at 180 lots per
week.



Heuristics: Clearing functions

Observations and conditions:

• The clearing function for Pull policy is significantly higher
than for Push policy
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Heuristics: Demand period

Readjustment period and cycle time

have to be related: need to place PPP on average in the middle of
the factory to have maximal actuator influence



Evaluation

Experiment

• Simulation time: 144 weeks

• Demand period 2 days

• 500 simulations per data point

• demand is not perishable - keep tally of backlog and
overproduction

• Cost:

m(0) = 0

m(t) = m(t − 1) + d(t) − o(t)

cost(T ) : = ΣT
i=1|m(i)|

i.e. backlog and overproduction cost the same



Results I

Compare different policies:

• Push

• Pull

• fixed PPP

• CONWIP with WIP = 119 and Pull dispatch policy

• CONWIP with WIP = 150 and PPP



Results II

a policy with PPP and CONWIP has much lower costs for high
demand variation.
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Explanation I
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Figure: Moving the PPP upstream



Explanation II

Note:

• Wip is lower after the flux bump has moved out

• If demand stays constant, there is not enough WIP
downstream from PPP

• Algorithm is unstable - PPP point will continue to move
upstream for constant demand.



Explanation III
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Figure: Moving the PPP upstream with CONWIP



Explanation IV

Note:

• Wip stays constant

• Flux stays high, i.e. total flux is increased

• Algorithm is stable - flux does not change for constant
demand.



Control on the large scales:

The continuum model



Semiconductor fab

Usual model: Faithful representation of the factory using Discrete

Event Simulations, e.g. χ (TU Eindhoven)

Problem:

Simulation of production flows with stochastic demand and
stochastic production processes requires Monte Carlo Simulations

Takes too long for a decision tool



A fluid model for a semiconductor fab

Fundamental Idea:

Model high volume, many stages, production via a fluid.

Basic variable

product density (mass density) ρ(x, t).
x- is the position in the production process, x ∈ [0, 1].
- degree of completion
- stage of production



Mass conservation and state equations

Mass conservation and state equation

∂ρ

∂t
+

∂F

∂x
= 0

F = ρveq

Typical models for the equilibrium velocity veq (state equation) are

vtraffic
eq (ρ) = v0(1 −

ρ

ρc

), (1)

veq(ρ) = Φ(L), (2)

with L the total load (Work in progress, WIP) given as

L(ρ) =

∫ 1

0
ρ(x , t)dx . (3)

Φ maybe determined experimentally or theoretically.



Validation

Compare a detailed discrete event simulation with a fluid
simulation
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Part II: Control of a Continuum Model

Problem: Tracking for a continuum model

Model: PDE model based on a product density ρ(x , t) and a state
equation for the velocity:

veq(ρ(t)) = Φ(L)

L(t) =

∫ 1

0
ρ(ξ, t)dξ

specifically - use a queuing model:

vQ
eq =

vmax

1 + L



PDE model

Mass conservation

leads to

ρt(x , t) + vQ
eqρx(x , t) = 0, (x , t) ∈ [0, 1] × [0,∞)

ρ(x , 0) = ρ0(x), x ∈ [0, 1]

λ(t) = v(ρ)ρ(x , t)|x=0

where λ(t) is the influx.



Tracking problem

Problem setup

• a fixed end time τ > 0.

• an initial profile ρ0(x).

• d(t) - the demand at time t. d(t) ∈ L2([0, τ ]).

Find the influx λ(t), t ∈ [0, τ ]:s.t.

j(ρ, λ) =
1

2

∫

τ

0

(

vQ
eq(ρ)ρ(1, t) − d(t)

)2
dt

is minimal



Constraints

Choose a test function φ(x , t) ∈ C 1([0, 1] × [0, τ ])

Lagrangian

L(ρ, λ, φ) = j(ρ, λ) + 〈E (ρ), φ〉 (4)

where

• Equality constraint set

E (ρ) = ρt + vQ
eq(ρ)ρx

•

〈u(x , t), v(x , t)〉 =

∫ 1

0

∫

τ

0
u(ξ, s)v(ξ, s)dsdξ



Variational Equations

Setting the variational derivatives of L(ρ(λ), λ, φ) with respect to
λ, ρ, φ equal to zero, leads to:

0 = ρt(x , t) + vQ
eq(ρ)ρx(x , t) (5)

0 = φt(x , t) + vQ
eq(ρ)φx(x , t) +

vQ
eq(ρ)2

vmax

(6)

∗

[

vQ
eq(ρ)ρ(1, t)2 − ρ(1, t)d(t) +

∫ 1

0
φ(s, t)ρx (s, t)

]

ds

0 = φ(1, t) + vQ
eq(ρ)ρ(1, t) − d(t) (7)

0 ≡ φ(x , τ) (8)

j ′(λ) = −φ(0, t) (9)



Equations

Structure of the equations:

• (5) is our PDE in ρ

• (6) is our PDE in φ

• (7) couples ρ, φ and the demand d(t).

• (8) is a terminal condition on φ

• (9) links the derivative of j with the solution to the φ PDE



Domains of influence



Finding a local minimum:

We have an iteration scheme

λ → I (λ) = (j(λ), j ′(λ))

and we are looking for that input function λ∗ s.t.
I (λ∗) = (j(λ∗), 0).

Algorithm

• Pick an inital guess for the control λ(t) = λ0(t) t ∈ [0, τ ].

• Solve PDE for ρ forward in time.

• Solve the adjoint equation for φ, using information gained
from solving the ρ PDE.

• Use j ′(λ) to update λ.

• Repeat until suitable stopping criteria is met.



Results

In the following figures:

• The demand is a step function of height 1

• vmax is 4

• ρ0(x) = 1 ∀ x ∈ [0, 1]

• λ0 = 2.

λ0 was chosen so that the initial influx maintained the initial WIP
profile ρ0(x).



Input/Output/Demand
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End Effect I

A real end effect:

• Does not go away with grid refinement; therefore, must come
from optimization routine.

• τ was 20; now 50

• Step occurs in both at t = 10.



End Effect II

0 5 10 15 20 25 30 35 40 45 50
1.5

2

2.5

3

3.5

4

4.5

5

time

influx λ
outflux µ
demand



System Reactivity I

The speed

v =
vmax

1 +
∫ 1
0 ρ(s, t) ds

is nonlinear, so the system’s ability to react to demand depends on:

1 The current system load L

2 vmax



vmax Reactivity

The following demands are two sinusoidal waves
d(t) = sin(πt) + 1 with:

• Same τ = 10

• Same amplitude of 1, height of 1, and frequency of 1
2

• Same initial condition ρ0(x) = 1 ∀ x ∈ [0, 1]

However, the Fig. 4 has a vmax of 1 while Fig. 5 has a vmax of 3
prior to the jump.



Low Speed
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High Speed
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Conclusions I

Heuristic

• uses a new actuator - the Push Pull Point coupled with a
CONWIP starts policy..

• is effective to reduce the mismatch between desired output
and actual output by a factor of four.

• works at the machine level, i.e. small scales.



Conclusions II

Large scale

We determined a theory to find a local minimum of the mismatch
between desired output and actual output as a function of the
influx for a large scale in space and time continuum model for
factory production.



Conclusions III

Extension

Continuum model can be controlled to minimize backlog b(t), i.e.

D(t) :=

∫ t

0
d(r) dr

O(t) :=

∫ t

0
v(ρ)ρ(1, r) dr

b(t) := D(t) − O(t)

with a cost functional of

J(ρ, λ) =
1

2

∫

τ

0
b(t)2 dt



Conclusions IV
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Open problems

Further work:

• Integrate both small and large scale optimization. E.g.
• annual production variation controlled by the influx
• weakly production variation controlled by the PPP

• Are there any cases where the local minimum is provably
global?

• So far Feedforward scheme - can we do a Feedback scheme?
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