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I. INTRODUCTION

I heard Ron DiPerna presented his new result with Pierre-Louis Lions on
the existence of global weak solutions of the Boltzmann in spring of 1988.
The result was stunning for several reasons.

First, no similar result was known for the equations of gas dynamics.

Second, they considered all physically meaningful initial data.

Third, they introduced the concept of renomalized solutions.

Fourth, they considered a larger class of collision kernels than had been
treated in classical mathematical studies of the Boltzmann equation.

It was clear that the mathmatical landscape of the Boltzmann equation had
been radically altered. There would be opportunities for many new results.



However, their work was also criticized by many for a number of reasons.

First, because they has used a compactness argument to obtain existence,
they had no uniqueness result.

Second, because the notion of renormalized solution was so weak, these
solutions did not satisfy formally expected conservation laws that were the
starting point for all formal derivations of gas dynamics.

Third, because their result was clearly an analog of Leray’s 1934 result on
the incompressible Navier-Stokes equations, and because there had been
little major progress in that subject for over 50 years, it was argued there
would not be much progress built upon the DiPerna-Lions theory. Indeed,
Ron DiPerna had made it clear that he had studied the Boltzmann equation
as route to obtain a theory of global weak solutions for the Euler equations
of gas dynamics, and that this program was far from succeeding.



In May of 1988 Claude Bardos, Francois Golse, and I began to study the
direct connection between the DiPerna-Lions theory and that of Leray. Our
program quickly broadened to include derivations of other fluid dynami-
cal systems, such as the acoustic system and the incompressible Stokes
system. It has achieved considerable success. Pierre-Louis Lions, Nader
Masmoudi, and Laure Saint-Raymond have made major contributions to
this success. A list of references that covers much (but not all) of this work
is given at the end of these slides.



This talk presents work with Nader Masmoudi (2008). We establish the
Boussinesq-balance incompressible Navier-Stokes limit for solutions of the
Boltzmann equation considered over any periodic spatial domain TD of
dimension D ≥ 2. We do this for a broad class of collision kernels that
relaxes the Grad small deflection cutoff condition for hard potentials made
by Golse and Saint-Raymond (2004 and 2008), and includes for the first
time kernels arising from soft potentials.

We show that all appropriately scaled families of DiPerna-Lions renormal-
ized solutions have fluctuations that are compact, and that every limit point
of such a family is governed by a Leray solution of the Navier-Stokes sys-
tem for all time. Key tools include the relative entropy cutoff method of Saint
Raymond, the L1 velocity averaging result of Golse and Saint Raymond,
and some new estimates.



II. BOLTZMANN EQUATION PRELIMINARIES

The state of a fluid composed of identical point particles confined to a
spatial domain Ω ⊂ RD is described at the kinetic level by a mass den-
sity F over the single-particle phase space RD × Ω. More specifically,
F(v, x, t) dv dx gives the mass of the particles that occupy any infinites-
imal volume dv dx centered at the point (v, x) ∈ RD × Ω at the instant
of time t ≥ 0. To remove complications due to boundaries, we take Ω

to be the periodic domain TD = RD/LD, where LD ⊂ RD is any D-
dimensional lattice. Here D ≥ 2.

The evolution of F = F(v, x, t) is governed by the Boltzmann equation:

∂tF + v ·∇xF = B(F, F) , F(v, x,0) = F in(v, x) ≥ 0 . (1)



The Boltzmann collision operator B models binary collisions. It acts only
on the v argument of F . It is formally given by

B(F, F) =

∫∫

SD−1×RD
(F ′

1F ′ − F1F) b(ω, v1 − v) dω dv1 , (2)

where v1 ranges over RD endowed with its Lebesgue measure dv1 while
ω ranges over the unit sphere SD−1 = {ω ∈ RD : |ω| = 1} endowed
with its rotationally invariant measure dω. The F ′

1, F ′, F1, and F appearing
in the integrand designate F(·, x, t) evaluated at the velocities v′1, v′, v1,
and v respectively, where the primed velocities are defined by

v′1 = v1 − ω ω · (v1 − v) , v′ = v + ω ω · (v1 − v) , (3)

for any given (ω, v1, v) ∈ SD−1× RD× RD.

Quadratic operators like B are extended by polarization to be bilinear and
symmetric.



The unprimed and primed velocities are possible velocities for a pair of par-
ticles either before and after, or after and before, they interact through an
elastic binary collision. Conservation of momentum and energy for particle
pairs during collisions is expressed as

v + v1 = v′ + v′1 , |v|2 + |v1|2 = |v′|2 + |v′1|2 .

Equation (3) represents the general nontrivial solution of these D+1 equa-
tions for the 4D unknowns v′1, v′, v1, and v in terms of the 3D − 1 param-
eters (ω, v1, v).

The collision kernel b is positive almost everywhere. The Galilean invari-
ance of the collisional physics implies that b has the classical form

b(ω, v1 − v) = |v1 − v|Σ(|ω ·n|, |v1 − v|) , (4)

where n = (v1−v)/|v1−v| and Σ is the specific differential cross-section.



Nondimensional Form

The Boltzmann equation can be brought into the nondimensional form

St ∂tF + v ·∇xF =
1

Kn
B(F, F) ,

where St is the Strouhal number, Kn is the Knudsen number.

We consider fluid dynamical regimes in which F is close to a spatially
homogeneous Maxwellian M = M(v). By an appropriate choice of a
Galilean frame and of mass and velocity units, it can be assumed that this
so-called absolute Maxwellian M has the form

M(v) ≡ 1

(2π)D/2
exp(−1

2|v|
2) .



Relative Kinetic Density

It is natural to introduce the relative density, G = G(v, x, t), defined by
F = MG. The initial-value problem for G is

St ∂tG + v ·∇xG =
1

Kn
Q(G, G) , G(v, x,0) = Gin(v, x) , (5)

where the collision operator is now given by

Q(G, G) ≡ 1

M
B(MG, MG)

=

∫∫

SD−1×RD
(G′

1G′ − G1G) b(ω, v1 − v, ) dω M1dv1 .

For simplicity, we consider this problem over the periodic box TD.



Normalizations

This nondimensionalization has the normalizations
∫

RD
Mdv = 1 ,

∫

TD
dx = 1 ,

associated with the domains RD and TD, the normalization
∫∫∫

SD−1×RD×RD
b(ω, v1 − v) dω M1dv1 Mdv = 1 .

associated with the collision kernel b, and the normalizations
∫∫

RD×TD
Gin Mdv dx = 1 ,

∫∫

RD×TD
v Gin Mdv dx = 0 ,

∫∫

RD×TD

1
2|v|

2Gin Mdv dx = D
2 .

(6)

associated with the initial data Gin.



Notation

In this lecture 〈ξ〉 will denote the average over RD of any integrable function
ξ = ξ(v) with respect to the positive unit measure Mdv:

〈ξ〉 =

∫

RD
ξ(v)Mdv .

Because dµ = b(ω, v1− v) dω M1dv1 Mdv is a positive unit measure on
SD−1× RD× RD, we denote by

〈〈
Ξ
〉〉

the average over this measure of
any integrable function Ξ = Ξ(ω, v1, v):

〈〈
Ξ
〉〉

=

∫∫∫

SD−1×RD×RD
Ξ(ω, v1, v) dµ .

The measure dµ is invariant under the coordinate transformations

(ω, v1, v) 7→ (ω, v, v1) , (ω, v1, v) 7→ (ω, v′1, v′) .

These, and compositions of these, are called collisional symmetries.



Conservation Properties

The collision operator has the following property related to the conservation
laws of mass, momentum, and energy.

For every measurable ζ the following are equivalent:

• ζ ∈ span{1, v1, · · · , vD, 1
2|v|

2};

• 〈ζ Q(G, G)〉 = 0 for “every” G;

• ζ′1 + ζ′ − ζ1 − ζ = 0 for every (ω, v1, v).



Local Conservation Laws

If G solves the scaled Boltzmann equation then G satisfies local conserva-
tion laws of mass, momentum, and energy:

St ∂t〈G〉 + ∇x · 〈v G〉 = 0 ,

St ∂t〈v G〉 + ∇x · 〈v ⊗ v G〉 = 0 ,

St ∂t〈12|v|
2G〉 + ∇x · 〈v1

2|v|
2G〉 = 0 .



Global Conservation Laws

When these are integrated over space and time while recalling the nor-
malizations associated with Gin, they yield the global conservation laws of
mass, momentum, and energy:

∫

TD
〈G(t)〉dx =

∫

TD
〈Gin〉dx = 1 ,

∫

TD
〈v G(t)〉dx =

∫

TD
〈v Gin〉dx = 0 ,

∫

TD
〈12|v|

2G(t)〉dx =

∫

TD
〈12|v|

2Gin〉dx = D
2 .

(7)



Dissipation Properties

The collision operator has the following property related to the dissipation
of entropy and equilibrium.

〈log(G)Q(G, G)〉 ≤ 0 for “every” G .

Moreover, for “every” G the following are equivalent:

• 〈log(G)Q(G, G)〉 = 0;

• Q(G, G) = 0;

• G is a local Maxwellian.



Local Entropy Dissipation Law

If G solves the scaled Boltzmann equation then G satisfies local entropy
dissipation law:

St ∂t〈(G log(G) − G + 1)〉 + ∇x · 〈v (G log(G) − G + 1)〉

=
1

Kn
〈log(G)Q(G, G)〉

= − 1

Kn

〈〈
1
4 log

(
G′

1G′

G1G

)

(G′
1G′ − G1G)

〉〉

≤ 0 .



Global Entropy Dissipation Law

When this is integrated over space and time, it yields the global entropy
equality

H(G(t)) +
1

St Kn

∫ t

0
R(G(s)) ds = H(Gin) ,

where the relative entropy functional H is given by

H(G) =
∫

TD
〈(G log(G) − G + 1)〉dx ≥ 0 ,

while the entropy dissipation rate functional R is given by

R(G) =

∫

TD

1
4

〈〈

log

(
G′

1G′

G1G

)

(G′
1G′ − G1G)

〉〉

dx ≥ 0 .



III. ASSUMPTIONS ON THE COLLISION KERNEL

We now give our additional assumptions regarding the collision kernel b.
These assumptions are satiisfied by many classical collision kernels.

For example, they are satisfied by the collision kernel for hard spheres of
mass m and radius ro, which has the form

b(ω, v1 − v) = |ω · (v1 − v)|(2ro)D−1

2m
. (8)



They are also satisfied by all the classical collision kernels with a small
deflection cutoff that derive from a repulsive intermolecular potential of the
form c/rk with k > 2D−1

D+1. Specifically, these kernels have the form

b(ω, v1 − v) = b̂(ω ·n) |v1 − v|β with β = 1 − 2D−1
k , (9)

where b̂(ω ·n) is positive almost everywhere, has even symmetry in ω, and
satisfies the small deflection cutoff condition

∫

SD−1
b̂(ω ·n) dω < ∞ . (10)

The condition k > 2D−1
D+1 is equivalent to β > −D, which insures that

b(ω, v1 − v) is locally integrable with respect to v1 − v.

The cases β < 0, β = 0, and β > 0 correspond respectively to the
so-called “soft”, “Maxwell”, and “hard” potential cases.



DiPerna-Lions Assumption

Our first assumption is that b satifies the requirements of the DiPerna-Lions
theory. That theory requires that b(ω, v1 − v) be locally integrable with
respect to dω M1dv1 Mdv, and that it moreover satisfies

lim
|v|→∞

1

1 + |v|2
∫

K
b̄(v1 − v) dv1 = 0 , for every compact K ⊂ RD ,

(11)
where b̄ is defined by

b̄(v1 − v) ≡
∫

SD−1
b(ω, v1 − v) dω .

Galilean symmetry (4) implies that b̄(v1 − v) is a function of |v1 − v| only.
The hard sphere kernel (8) and the inverse power kernels (9) with β > −D

satisfy this assumption.



Attenuation Assumption

A major role will be played by the attenuation coefficient a, which is defined
by

a(v) ≡
∫

RD
b̄(v1 − v)M1dv1 =

∫∫

SD−1×RD
b(ω, v1 − v) dω M1dv1 .

Galilean symmetry (4) implies that a(v) is a function of |v| only.

Our second assumption regarding the collision kernal b is that a is bounded
below as

Ca

(
1 + |v|

)α ≤ a(v) , (12)

for some constants Ca > 0 and α ∈ R. This assumption is satisfied by the
hard sphere kernel (8) and by the inverse power kernels (9) with β > −D.



Loss and Gain Operators

Another major role in what follows will be played by the linearized collision
operator L, which is defined formally by

Lg̃ =
∫∫

SD−1×RD

(
g̃ + g̃1 − g̃′ − g̃′1

)
b(ω, v1 − v) dω M1dv1 . (13)

One has the decomposition

1

a
L = I + K− − 2K+ ,

where the loss operator K− and gain operator K+ are formally defined by

K−g̃ ≡ 1

a

∫

RD
g̃1 b̄(v1 − v)M1dv1 ,

K+g̃ ≡ 1

2a

∫∫

SD−1×RD

(
g̃′ + g̃′1

)
b(ω, v1 − v) dω M1dv1 .



Loss Operator Assumption

Our third assumption regarding the collision kernel b is that there exists
s ∈ (1,∞] and Cb ∈ (0,∞) such that

(∫

RD

∣∣∣∣∣
b̄(v1 − v)

a(v1) a(v)

∣∣∣∣∣

s

a(v1)M1dv1

)1
s

≤ Cb . (14)

Because this bound is uniform in v, we may take Cb to be the supremum
over v of the left-hand side of (14). This assumption is satisfied by the hard
sphere kernel (8) and by the inverse power kernels (9) with β > −D. The
case s < ∞ allows the treatment of soft potential kernels.

Because K− : Lp(aMdv) → Lp(aMdv) is bounded with ‖K−‖Lp ≤ 1

for every p ∈ [1,∞), this assumption implies that

K− : Lp(aMdv) → Lp(aMdv) is compact for every p ∈ (1,∞) .



Gain Operator Assumption

Our fourth assumption regarding b is that

K+ : L2(aMdv) → L2(aMdv) is compact . (15)

This assumption is satisfied by the hard sphere kernel (8) and by the cutoff
inverse power kernels (9) with β > −D. For general D this fact was
demonstrated by Sun.

Because K+ : Lp(aMdv) → Lp(aMdv) is bounded with ‖K+‖Lp ≤ 1

for every p ∈ [1,∞), this assumption implies that

K+ : Lp(aMdv) → Lp(aMdv) is compact for every p ∈ (1,∞) .



Saturated Kernel Assumption

Our fifth assumption regarding b is that for every δ > 0 there exists Cδ

such that b̄ satisfies

b̄(v1 − v)

1 + δ
b̄(v1 − v)

1 + |v1 − v|2
≤ Cδ

(
1+a(v1)

)(
1+a(v)

)
for every v1, v ∈ RD .

(16)
This assumption is satisfied by the hard sphere kernel (8) and by the cutoff
inverse power kernels (9) with β > −D.

This technical assumption only enters into our key nonlinear equi-integrablity
estimate. It allows the treatment of soft potential kernels.



Fredholm Operators and Null Spaces

The decomposition 1
aL = I + K− − 2K+ and the fact that K− and K+

are compact combine to show that

1

a
L : Lp(aMdv) → Lp(aMdv) is Fredholm for every p ∈ (1,∞) .

(17)
Moreover, these operators are symmetric in the sense that

(
1

a
L
∣∣∣∣∣
Lp(aMdv)

)∗
=

1

a
L
∣∣∣∣∣
Lp∗(aMdv)

for every p ∈ (1,∞) .

These combine with classical L2 results to show that for every p ∈ (1,∞)

Null

(
1

a
L
∣∣∣∣∣
Lp(aMdv)

)

= Null(L) = span{1, v1, · · · , vD, |v|2} .



Coercivity of L

One can show that for some ℓ > 0 the operator L satisfies the coercivity
estimate

ℓ
〈
a (P⊥g̃)2

〉
≤ 〈g̃Lg̃〉 for every g̃ ∈ L2(aMdv) . (18)

Here P⊥ = I −P and P is the orthogonal projection from L2(Mdv) onto
Null(L), which is given by

P g̃ = 〈g̃〉 + v · 〈v g̃〉 +
(
1
2|v|

2 − D
2

) 〈
( 1
D|v|2 − 1) g̃

〉
.

Assumption (12) ensures that P and P⊥ are bounded as linear operators
from L2(aMdv) into itself.



Psuedoinverse of L

We use a pseudoinverse of L defined as follows. For every p ∈ (1,∞)

the Fredholm property (17) implies that for every ξ ∈ Lp(a1−pMdv) there
exists a unique ξ̂ ∈ Lp(aMdv) such that

Lξ̂ = P⊥ξ , P ξ̂ = 0 . (19)

For every ξ ∈ Lp(a1−pMdv) we define L−1ξ = ξ̂ where ξ̂ is determined
above. This defines an operator L−1 such that

L−1 : Lp(a1−pMdv) → Lp(aMdv) is bounded ,

L−1L = P⊥ over Lp(aMdv) ,

LL−1 = P⊥ over Lp(a1−pMdv) ,

and Null(L−1) = Null(L). The operator L−1 is the unique pseudoin-
verse of L with these properties.



IV. FORMAL NAVIER-STOKES DERIVATION

The Boussinesq-balance incompressible Navier-Stokes system governs
(ρ, u, θ), the fluctuations of mass density, bulk velocity, and temperature
about their spatially homogeneous equilibrium values. Specifically, these
fluctuations satisfy the incompressibility and Boussinesq relations

∇x· u = 0 , ρ + θ = 0 ; (20)

while their evolution is governed by the motion and heat equations

∂tu + u · ∇xu + ∇xp = ν∆xu , u(x,0) = uin(x) ,
D+2

2

(
∂tθ + u ·∇xθ

)
= κ∆xθ , θ(x,0) = θin(x) ,

(21)

where ν is the kinematic viscosity and κ is the thermal conductivity.



The Navier-Stokes system (20–21) can be formally derived from the Boltz-
mann equation through a scaling in which the fluctuations of the kinetic
density F about the absolute Maxwellian M are scaled to be on the order
of ǫ. More precisely, we consider families of initial data Gin

ǫ for and families
of solutions Gǫ to the scaled Boltzmann initial-value problem (5) that are
parametrized by St = Kn = ǫ and have the form

Gin
ǫ = 1 + ǫ gin

ǫ , Gǫ = 1 + ǫ gǫ , (22)

One sees from the Boltzmann equation (5) satisfied by Gǫ that the fluctua-
tions gǫ satisfy

ǫ ∂tgǫ + v ·∇xgǫ +
1

ǫ
Lgǫ = Q(gǫ, gǫ) ,

where L is the linearized collision operator defined by (13).



A moment-based formal derivation can be carried out by assuming that
gǫ → g with g ∈ L∞(dt;L2(Mdv dx)), and that all formally small terms
vanish. One finds that g has the infinitesimal Maxwellian form

g = v ·u +
(
1
2|v|

2 − D+2
2

)
θ , (23)

where (u, θ) solves the Navier-Stokes system (20–21) with the coefficients
of kinematic viscosity ν and thermal conductivity κ given by

ν = 1
(D−1)(D+2)

〈
Â :LÂ

〉
, κ = 1

D

〈
B̂ · LB̂

〉
. (24)

Here Â = L−1A and B̂ = L−1B where the matrix-valued function A and
the vector-valued function B are defined by

A(v) = v ⊗ v − 1
D|v|2I , B(v) = 1

2|v|
2v − D+2

2 v .



Because PA = 0 and PB = 0, it follows from (19) that Â and B̂ are
respectively the unique solutions of

LÂ = A , PÂ = 0 , and LB̂ = B , PB̂ = 0 . (25)

Because each entry of A and B is in Lp(a1−pMdv) for every p ∈ (1,∞),
each entry of Â and B̂ is therefore in Lp(aMdv) for every p ∈ (1,∞).



V. GLOBAL SOLUTIONS

In order to justify the Navier-Stokes limit of the Boltzmann equation, we
must make precise: (1) the notion of solution for the Boltzmann equation,
and (2) the notion of solution for the fluid dynamical systems. Ideally, these
solutions should be global while the bounds should be physically natural.

We therefore work in the setting of DiPerna-Lions renormalized solutions
for the Boltzmann equation, and in the setting of Leray solutions for the
Navier-Stokes system. These theories have the virtues of considering
physically natural classes of initial data, and consequently, of yielding global
solutions.



DiPerna-Lions Theory

The DiPerna-Lions theory gives the existence of a global weak solution to
a class of formally equivalent initial-value problems that are obtained by
multiplying the Boltzmann equation by Γ′(G), where Γ′ is the derivative of
an admissible function Γ:

(
ǫ ∂t + v ·∇x

)
Γ(G) =

1

ǫ
Γ′(G)Q(G, G) ,

G(v, x,0) = Gin(v, x) ≥ 0 .
(26)

This is the so-called renormalized Boltzmann equation. A differentiable
function Γ : [0,∞) → R is called admissible if for some constant CΓ < ∞
it satisfies

∣∣∣Γ′(Z)
∣∣∣ ≤ CΓ√

1 + Z
for every Z ≥ 0 .

The solutions lie in C([0,∞);w-L1(Mdv dx)), where the prefix “w-” on
a space indicates that the space is endowed with its weak topology.



DiPerna-Lions Solutions

We say that G ≥ 0 is a weak solution of the renormalized Boltzmann
equation provided that it is initially equal to Gin, and that for every Y ∈
L∞(dv;C1(TD)) and every [t1, t2] ⊂ [0,∞) it satisfies

ǫ
∫

TD
〈Γ(G(t2))Y 〉dx − ǫ

∫

TD
〈Γ(G(t1))Y 〉dx

−
∫ t2

t1

∫

TD
〈Γ(G) v ·∇xY 〉dxdt

=
1

ǫ

∫ t2

t1

∫

TD

〈

Γ′(G)Q(G, G)Y

〉

dx dt .

If G is such a weak solution of for one such Γ with Γ′ > 0, and if G satisfies
certain bounds, then it is a weak solution for every admissible Γ. Such
solutions are called renormalized solutions of the Boltzmann equation.



DiPerna-Lions Theorem - 1

Theorem. 1 (DiPerna-Lions Renormalized Solutions) Let b satisfy

lim
|v|→∞

1

1 + |v|2
∫

SD−1×K
b(ω, v1 − v) dω dv1 = 0

for every compact K ⊂ RD .

Given any initial data Gin in the entropy class

E(Mdv dx) =
{
Gin ≥ 0 : H(Gin) < ∞

}
, (27)

there exists at least one G ≥ 0 in C([0,∞);w-L1(Mdv dx)) that is a
renormalized solution of the Boltzmann equation.

This solution satisfies a weak form of the local conservation law of mass

ǫ ∂t〈G〉 + ∇x · 〈v G〉 = 0 .



DiPerna-Lions Theorem - 2

Moreover, there exists a martix-valued distribution W such that W dx is
nonnegative definite measure and G and W satisfy a weak form of the
local conservation law of momentum

ǫ ∂t〈v G〉 + ∇x · 〈v ⊗ v G〉 + ∇x · W = 0 ,

and for every t > 0, the global energy equality
∫

TD
〈12|v|

2G(t)〉dx +

∫

TD

1
2 tr(W (t)) dx =

∫

TD
〈12|v|

2Gin〉dx ,

and the global entropy inequality

H(G(t)) +
∫

TD

1
2 tr(W (t)) dx +

1

ǫ2

∫ t

0
R(G(s)) ds ≤ H(Gin) .



DiPerna-Lions Theorem - 3

Remarks: DiPerna-Lions renormalized solutions are very weak — much
weaker than standard weak solutions. They are not known to satisfy many
properties that one would formally expect to be satisfied by solutions of
the Boltzmann equation. In particular, the theory does not assert either
the local conservation of momentum, the global conservation of energy,
the global entropy equality, or even a local entropy inequality; nor does it
assert the uniqueness of the solution.



Leray Theory

The DiPerna-Lions theory has many similarities with the Leray theory of
global weak solutions of the initial-value problem for Navier-Stokes type
systems. For the Navier-Stokes system with mean zero initial data, we set
the Leray theory in the following Hilbert spaces of vector- and scalar-valued
functions:

Hv =

{
w ∈ L2(dx;R

D) : ∇x · w = 0 ,
∫

w dx = 0

}
,

Hs =

{
χ ∈ L2(dx;R) :

∫
χdx = 0

}
,

Vv =

{
w ∈ Hv :

∫
|∇xw|2 dx < ∞

}
,

Vs =

{
χ ∈ Hs :

∫
|∇xχ|2 dx < ∞

}
.

Let H = Hv ⊕ Hs and V = Vv ⊕ Vs.



Leray Theorem

Theorem. 2 (Leray Solutions) Given any initial data (uin, θin) ∈ H, there
exists at least one (u, θ) ∈ C([0,∞);w-H) ∩ L2(dt; V) that is a weak
solution of the Navier-Stokes system and that for every t > 0, satisfies the
dissipation inequalities

∫
1
2|u(t)|2dx +

∫ t

0

∫
ν|∇xu|2dxds ≤

∫
1
2|u

in|2dx ,
∫

D+2
4 |θ(t)|2dx +

∫ t

0

∫
κ|∇xθ|2dxds ≤

∫
D+2

4 |θin|2dx .

Remarks: By arguing formally from the Navier-Stokes system, one would
expect these inequalities to be equalities. However, that is not asserted by
the Leray theory. Also, as was the case for the DiPerna-Lions theory, the
Leray theory does not assert uniqueness of the solution.



A Variant of Leray Theory

Because the role of the above dissipation inequalities is to provide a-priori
estimates, the existence theory also works if they are replaced by the single
dissipation inequality

∫
1
2|u(t)|2 + D+2

4 |θ(t)|2dx +
∫ t

0

∫
ν|∇xu|2 + κ|∇xθ|2dx ds

≤
∫

1
2|u

in|2 + D+2
4 |θin|2dx .

(28)

It is this version of the Leray theory that we will obtain in the limit.



VI. MAIN RESULTS

Our main theorem is the following.

Theorem. 3 Let the collision kernel b satisfy the assumptions given above.

Let Gin
ǫ be a family in the entropy class E(Mdv dx) given by (27) that

satisfies the normalizations (6) and the bound

H(Gin
ǫ ) ≤ Cinǫ2 , (29)

for some positive constant Cin. Let gin
ǫ be the associated family of fluctu-

ations given by (22). Assume that for some (uin, θin) ∈ H the family gin
ǫ

satisfies in the sense of distributions

lim
ǫ→0

(
Π
〈
v gin

ǫ

〉
,
〈
( 1
D+2|v|

2 − 1) gin
ǫ

〉)
= (uin, θin) . (30)



Let Gǫ be any family of DiPerna-Lions renormalized solutions of the Boltz-
mann equation (5) that have Gin

ǫ as initial values. Let gǫ be the family of
fluctuations given by (22).

Then the family gǫ is relatively compact in w-L1
loc(dt;w-L1(σMdv dx)),

where σ = 1+|v|2. Every limit point g of gǫ has the infinitesimal Maxwellian
form (23) where (u, θ) ∈ C([0,∞);w-H) ∩ L2(dt;V) is a Leray solution
with initial data (uin, θin) of the Navier-Stokes system (20–21) with ν and
κ given by (24). More specifically, (u, θ) satifies the weak form of the
Navier-Stokes system and the dissipation inequality
∫

TD

1
2|u(t)|2 + D+2

4 |θ(t)|2 dx +
∫ t

0

∫

TD
ν|∇xu|2 + κ|∇xθ|2 dxds

≤ lim inf
ǫ→0

1

ǫ2
H(Gin

ǫ ) ≤ Cin .
(31)



Moreover, every subsequence gǫk of gǫ that converges to g as ǫk → 0 also
satisfies

Π〈v gǫk〉 → u in C([0,∞);D′(TD;RD)) , (32)

〈( 1
D+2|v|

2 − 1) gǫk〉 → θ in C([0,∞);w-L1(dx;R)) . (33)

where Π is the orthogonal projection from L2(dx;RD) onto divergence-
free vector fields.

Remark. The dissipation inequality (31) is just (28) with the right-hand side
replaced by the lim inf . We can recover (28) in the limit by replacing (29)
and (30) with the hypothesis

gin
ǫ → v ·uin +

(
1
2|v|

2 − D+2
2

)
θin entropically at order ǫ as ǫ → 0 .

(34)
The notion of entropic convergence is defined in [Bardos-Golse-L-93] as
follows.



Definition 4 Let Gǫ be a family in the entropy class E(Mdv dx) and let gǫ

be the associated family of fluctuations given by

gǫ =
Gǫ − 1

ǫ
.

The family gǫ is said to converge entropically at order ǫ to some g ∈
L2(Mdv dx) if and only if

gǫ → g in w-L1(Mdv dx) ,

and

lim
ǫ→0

1

ǫ2
H(Gǫ) =

∫

TD

1
2〈g

2〉dx .

(35)

Remark. Entropic convergence is stronger than norm convergence in
L1(σMdv dx). It is thereby a natural tool for obtaining strong convergence
results for fluctuations about an absolute Maxwellian.



With the addition of hypothesis (34), it is clear from (31) and (35) that (28) is
recovered. Moreover, one can prove in the style of Theorem 6.2 of [Golse-
L-02] that if (28) is an equality for every t ∈ [0, T ] then as ǫ → 0 one
obtains the strong convergences

gǫ(t) → v ·u(t) +
(
1
2|v|

2 − D+2
2

)
θ(t)

entropically at order ǫ for every t ∈ [0, T ], and

G′
ǫ1G′

ǫ − Gǫ1Gǫ

ǫ2(1 + 1
3ǫ gǫ)

1
2

→ Φ:∇xu + Ψ ·∇xθ

in L1([0, T ];L1((σ + σ1)dµdx)), where

Φ = A + A1 − A′ + A′
1 , and Ψ = B + B1 − B′ + B′

1 .

In particular, one obtains these strong convergences for so long as (u, θ)

is a classical solution of the Navier-Stokes system.



VII. PROOF OF MAIN THEOREM

Step 1: Compactness of Fluctuations. Because the family Gǫ satisfies
the entropy inequality

H
(
Gǫ(t)

)
+

1

ǫ2

∫ t

0
R
(
Gǫ(s)

)
ds ≤ H

(
Gin

ǫ

)
≤ Cinǫ2 , (36)

we obtain compactness results for the family of fluctuations

gǫ =
Gǫ − 1

ǫ
,

and the associated family of scaled collision integrands defined by

qǫ =
G′

ǫ1G′
ǫ − Gǫ1Gǫ

ǫ2
.



Proposition 3.1 (1) of [Bardos-Golse-L-93] implies that the family

σgǫ is relatively compact in w-L1
loc(dt;w-L1(Mdv dx)) ,

where σ = 1 + |v|2. Proposition 3.4 (1) of [BGL-93] imply that the family

σ
qǫ√
nǫ

is relatively compact in w-L1
loc(dt;w-L1(dµdx)) ,

where nǫ = 1 + 1
3ǫ gǫ, and dµ = b(ω, v1 − v) dω M1dv1 Mdv.

Consider any convergent subsequence of the family gǫ, abusively still de-
noted gǫ, such that the sequence qǫ/

√
nǫ also converges.



Step 2: Form of the Limit Points. Let g be the limit point of the sequence
gǫ, and q be the limit point of the sequence qǫ/

√
nǫ. Proposition 3.8 of

[BGL-93] implies that g is an infinitesimal Maxwellian given by

g = ρ + v ·u + (1
2|v|

2 − D
2 )θ , (37)

for some (ρ, u, θ) ∈ L∞(dt;L2(dx;R × RD× R)) that for every t ≥ 0

satisfies
∫

TD

1
2|ρ(t)|

2 + 1
2|u(t)|2 + D

4 |θ(t)|
2 dx =

∫

TD

1
2

〈
|g(t)|2

〉
dx

≤ lim inf
ǫ→0

1

ǫ2
H
(
Gǫ(t)

)
.

(38)

Proposition 3.4 (2) of [BGL-93] implies that q ∈ L2(dµdxdt). We will
show that (ρ, u, θ) is a Leray solution of the Navier-Stokes system (20–21)
with initial data (uin, θin).



Step 3: Nonlinear Equi-Integrablity. A major breakthrough of Saint-
Raymond was the development of the relative entropy cutoff method. Using
this we show that the entropy inequality (36) implies the sequence

a
g 2
ǫ

nǫ
is bounded in L1

loc(dt;L1(Mdv dx)),

and that for every [0, T ] ⊂ [0,∞)

lim
η→0

∫ T

0

∫

TD
sup

〈1S〉<η

〈

1S a
g 2
ǫ

nǫ

〉

dxdt = 0 uniformly in ǫ ,

where the supremum is taken over all measurable S ⊂ RD× TD × [0, T ].
Here 1S denotes the indicator function of S.



Step 4: Nonlinear Compactness by L1-Velocity Averaging. Using the
L1-velocity averaging theory of [Golse and Saint-Raymond 02] and our
equi-integrability result we show that the sequence

a
g 2
ǫ

nǫ
is relatively compact in w-L1

loc(dt;w-L1(Mdv dx)) . (39)

They used this averaging theory to prove analogous compactness results
while establishing Navier-Stokes-Fourier limits for collision kernels with a
Grad cutoff that derive from hard potentials [GStR-04, GStR-08].



Step 5: Approximate Conservation Laws. In order to prove our main
theorem we have to pass to the limit in approximate local and global con-
servation laws built from the renormalized Boltzmann equation (26). We
choose to use the normalization of that equation given by

Γ(Z) =
Z − 1

1 + (Z − 1)2
.

After dividing by ǫ, equation (26) becomes

ǫ ∂tg̃ǫ + v · ∇xg̃ǫ =
1

ǫ2
Γ′(Gǫ)Q(Gǫ, Gǫ) , (40)

where g̃ǫ = Γ(Gǫ)/ǫ. By introducing Nǫ = 1 + ǫ2g 2
ǫ , we can write

g̃ǫ =
gǫ

Nǫ
, Γ′(Gǫ) =

2

N 2
ǫ

− 1

Nǫ
.



When the moment of the renormalized Boltzmann equation (40) is formally
taken with respect to any ζ ∈ span{1, v1, · · · , vD, |v|2}, one obtains

∂t〈ζ g̃ǫ〉 +
1

ǫ
∇x · 〈v ζ g̃ǫ〉 =

1

ǫ

〈〈
ζ Γ′(Gǫ) qǫ

〉〉
. (41)

This fails to be a local conservation law because the so-called conservation
defect on the right-hand side is generally nonzero.

The fact that this defect vanishes as ǫ → 0 follows from the fact ζ is a
collision invariant and the compactness result (39). Specifically, following
[Golse-L 02] we show that

1

ǫ

〈〈
ζ Γ′(Gǫ) qǫ

〉〉
→ 0 in L1

loc(dt;L1(dx)) as ǫ → 0 . (42)



Step 6: Establishing the Global Conservation Laws. By (42) the right-
hand side of (41) vanishes with ǫ uniformly over all [t1, t2] contained in any
bounded interval of time. Letting ǫ → 0, and using the normalization (7)
shows that for every t ≥ 0 we have the limiting global conservation law

∫

TD
〈ζ g(t)〉dx =

∫

TD
〈ζ g(0)〉dx = 0 .

The infinitesimal Maxwellian form (37) then implies that, as stated by the
Main Theorem,

∫

TD
ρdx = 0 ,

∫

TD
udx = 0 ,

∫

TD
θ dx = 0 . (43)



Step 7: Establishing the Incompressibility and Boussinesq Relations.
By proceeding as in the proof of Proposition 4.2 of [BGL93], multiply (41)
by ǫ, pass to the limit, and use the infinitesimal Maxwellian of the form to
see that

∇x · u = 0 , ∇x(ρ + θ) = 0 .

The first of these is the incompressibility relation while the second is a
weak form of the Boussinesq relation. By (43) we see that

∫

TD
ρ + θ dx = 0 .

This then implies the Boussinesq relation

ρ + θ = 0 for almost every (x, t) ∈ TD × [0,∞) .



Step 8: Establishing the Dissipation Inequality. By passing to the limit
in the weak form of (40) we show that for every ξ̂ ∈ L2(aMdv)

〈〈
ξ̂ q
〉〉

=
〈
ξ̂ A

〉
:∇xu +

〈
ξ̂ B

〉
·∇xθ . (44)

Then by arguing as in the proof of Proposition 4.6 of [BGL 93] we obtain
∫ t

0

∫

TD
ν|∇xu|2 + κ|∇xθ|2 dxds ≤

∫ t

0

∫

TD

1
4

〈〈
q2
〉〉

dxds

≤ lim inf
ǫ→0

1

ǫ4

∫ t

0
R
(
Gǫ(s)

)
ds ,

(45)

where ν and κ are given by (24). The dissipation inequality (31) asserted
by the Main Theorem follows by combining (36), (38), and (45).



Step 9: Approximate Dynamical Equations. The approximate motion
and heat equations are

∂t〈v g̃ǫ〉 +
1

ǫ
∇x· 〈A g̃ǫ〉 +

1

ǫ
∇x〈 1

D|v|2g̃ǫ〉 =
1

ǫ

〈〈
v Γ′(Gǫ) qǫ

〉〉
, (46)

∂t〈(1
2|v|

2 − D+2
2 ) g̃ǫ〉 +

1

ǫ
∇x · 〈B g̃ǫ〉 =

1

ǫ

〈〈
(1
2|v|

2 − D+2
2 )Γ′(Gǫ) qǫ

〉〉
.

(47)

Second, the approximate momentum equation (46) will be integrated against
divergence-free test functions. The last term in its flux will thereby be elim-
inated, and we only have to pass to the limit in the flux terms above that
involve A and B — namely, in the terms

1

ǫ
〈A g̃ǫ〉 ,

1

ǫ
〈B g̃ǫ〉 . (48)

Recall that A = LÂ and B = LB̂ and that each entry of Â and B̂ is in
Lp(aMdv) for every p ∈ [1,∞).



Step 10: Compactness of the Flux Terms. We claim that the sequences

1

ǫ
〈A g̃ǫ〉 and

1

ǫ
〈B g̃ǫ〉 are relatively compact in w-L1

loc(dt;w-L1(dx)) .

More generally, we show the following. Let s ∈ (1,∞] be from the as-
sumed bound (14) on b. Let p = 2 + 1

s−1, so that p = 2 when s = ∞.
Let ξ̂ ∈ Lp(aMdv) and set ξ = Lξ̂. We show that the sequence

1

ǫ
〈ξ g̃ǫ〉 is relatively compact in w-L1

loc(dt;w-L1(dx)) . (49)

Because each entry of Â and B̂ is in Lp(aMdv), the claim follows. The
proof uses the compactness result (39), a decomposition and new quadratic
estimates.



If we define q̃ǫ and Tǫ by

q̃ǫ =
qǫ

N ′
ǫ1N ′

ǫNǫ1Nǫ
=

1

ǫ2
G′

ǫ1G′
ǫ − Gǫ1Gǫ

N ′
ǫ1N ′

ǫNǫ1Nǫ
,

1

ǫ

(
g̃ǫ + g̃ǫ1 − g̃′ǫ − g̃′ǫ1

)
= g̃′ǫ1g̃′ǫ − g̃ǫ1g̃ǫ − q̃ǫ + Tǫ ,

the flux terms decompose as

1

ǫ
〈ξ g̃ǫ〉 =

1

ǫ

〈(
Lξ̂
)

g̃ǫ

〉
=

1

ǫ

〈
ξ̂ Lg̃ǫ

〉
=

1

ǫ

〈〈
ξ̂
(
g̃ǫ + g̃ǫ1 − g̃′ǫ − g̃′ǫ1

)〉〉

=
〈〈

ξ̂
(
g̃′ǫ1g̃′ǫ − g̃ǫ1g̃ǫ

)〉〉
−
〈〈

ξ̂ q̃ǫ

〉〉
+
〈〈

ξ̂ Tǫ

〉〉

=
〈
ξ̂ Q(g̃ǫ, g̃ǫ)

〉
−
〈〈

ξ̂ q̃ǫ

〉〉
+
〈〈

ξ̂ Tǫ

〉〉
.

The first term in this decomposition is quadratic in g̃ǫ, the second is linear
in q̃ǫ, while the last is a remainder that vanishes as ǫ → 0.



We control the quadratic term with the following facts. Let Ξ = Ξ(ω, v1, v)

be in Lp(dµ) and let g̃ and h̃ be in L2(aMdv). Then Ξ g̃1 h̃ is in L1(dµ)

and satisfies the L1 bound

〈〈
|Ξ g̃1 h̃|

〉〉
≤ C

1
p∗
b

〈〈
|Ξ|p

〉〉1
p〈a g̃2〉

1
2 〈a h̃2〉

1
2 ,

where 1
p + 1

p∗ = 1 and g̃1 denotes g̃(v1). Moreover, if the family

〈ag̃ 2
ǫ 〉 is relatively compact in w-L1

loc(dt;w-L1(dx)) ,

while the family

〈ah̃2
ǫ 〉 is bounded in w-L1

loc(dt;w-L1(dx)) ,

then the family

Ξ g̃ǫ1 h̃ǫ is relatively compact in w-L1
loc(dt;w-L1(dµdx)) .

Here g̃ǫ1 denotes g̃ǫ(v1, x, t).



Step 11: Convergence of the Denisty Terms. We show that as ǫ → 0

the densities terms from (46) and (47) satisfy

Π〈v g̃ǫ〉 → u in C([0,∞);w-L2(dx;RD)) ,

〈(1
2|v|

2 − D+2
2 ) g̃ǫ〉 → D+2

2 θ in C([0,∞);w-L2(dx)) .
(50)

Here Π is the Leray projection in L2(dx;RD). The limits asserted in
(32) and (33) of the Main Theorem then follow. Moreover, by combin-
ing these results with (36), (38), and (45), we conclude that (u, θ) ∈
C([0,∞);w-H) ∩ L2(dt;V). By hypothesis (30) of the Main Theorem
we also can argue that

u(x,0) = uin(x) , θ(x,0) = θin(x) , for almost every x . (51)



Step 12: Convergence of the Flux Terms. By using (44) we see as in
[BGL-93] that as ǫ → 0 one has

〈〈
Â q̃ǫ

〉〉
→ ν

[
∇xu + (∇xu)T

]
in w-L2

loc(dt;w-L2(dx;RD∨D)) ,
〈〈

B̂ q̃ǫ

〉〉
→ κ∇xθ in w-L2

loc(dt;w-L2(dx;RD)) ,

where ν and κ are given by (24). Following [Lions and Masmoudi 2001]
we pass the limit in the quadratic terms as

lim
ǫ→0

Π∇x ·
〈
ÂQ(g̃ǫ, g̃ǫ)

〉
= Π∇x · (u ⊗ u)

lim
ǫ→0

∇x ·
〈
B̂ Q(g̃ǫ, g̃ǫ)

〉
= D+2

2 ∇x · (θ u)





in w-L1

loc(dt;D′(TD)) .

We thereby obtain the limiting fluxes for the Navier-Stokes motion and heat
equations, thereby completing the proof of the Main Theorem. �



VIII. CONCLUSION

The DiPerna-Lions theory has been a great starting point for theories of
fluid dynamical limits. However, much remains to be done. Major open
problems in the program include:

• the acoustic limit with optimal scaling;

• limits for domains with boundaries;

• limits for non-cutoff collision kernels;

• dominant-balance Stokes, Navier-Stokes, and Euler limits;

• uniform in time results (compressible Stokes system).

THANK YOU!
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