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Renormalized solutions of an equation

Definition: Let (~) be an equation (EDP, or integrodifferential) for a nonnizgat
function f. We say thaff is a renormalized solution @f~) when for some one-to-one
(strictly increasing or strictly decreasing) smooth fumet) from R to R, the
function¢ o f satisfies in the sense of distributions the equation dediored( ) for

¢ o f by applying at the formal level the chain rule.

Properties: All strong solutions are renormalized solutions. All remalized
solutions which are smooth are strong solutions.
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Boltzmann Equation
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Cross sections

/U—,U*

B = |v— .| b( . 0)

v — .
Angular cutoff of Grad for the angular part:
be L'

Classification for the kinetic part:
v, v €]0,1], Hard Potentials or Hard Spheres,
v, 7=0, Maxwellian Molecules,
v, v €] —2,0] Soft Potentials,

v, v €] —3,-2], Very Soft Potentials.

s—b
s—1

Remark: v = for an intermolecular force i /r*.



Natural a priori estimates

Mass, energy and entropy:

sup //ftxv (1+|:U| + |v|? —|—|logf(ta:v)|>dvd:c

te[0,T]

§Cst(T,//f(O,a:,fu) dfudac,//f((),ac,v) z|* dvdz,
//f((),a:,v) ]fu|2dvdx,//f(0,a:,fu) log f(0,z,v) dvdac).

Dissipation of entropy:

:/OT/../(f(t,x,v')f(t,x,’vi)—f(t,x,v)f(t,a:,v*)>

X (log(f(t,x,v') f(t,z,v.))—log(f(t,z,v) f(t,:z:,v*))) B dodv.dvdxdt < C'st(..).



Existence Theorem

Theorem (DiPerna, P.-L. Liong Let B be a cross section with angular cutoff, for
v €] — 3,1], andf(0, -, -) be an initial datum with finite mass;|> moment, energy
and entropy. Then, there exists a renormalized solutiongd@®bltzmann equation with
this initial datum. More precisely, there existss C'(R; L") (nonnegative) such that

LD liesin Li,.(Ry; L) and
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Main estimate

///fodddt ///ff 1+f e,

[ [ LTI ¢ VIOV ) T = VIOV g
0 1+ f(v)

(/ /) 1+f »B>U2
X (/../(\/f(v’)f(v;) VT F)? B)1/2
- <D(f>+/OT//f(t,x,v*)de*dxdt)l/Q(D(f))l/Q.

Consequence dfc — y) (logz — logy) > Cst (v — /y)°.




Remarks

Restriction to spatially homogeneous data: The theory of renormalized
solutions also holds for the spatially homogeneous cadeawery soft (cutoff)
potential.

Simplifications in the proof: It is possible to use an averaging lemma (Cf.
Golse, P.-L. Lions, Perthame, Sejth a r.h.s. bounded in' rather than weakly

compact inL' (Cf. Gérard, Golsk It is possible to remove the use of subsolutions and
supersolutions (CfP.-L. Liong.

Still lacking: the combined use of the strong compactnessah " (Cf.
Bouchut-LD, Lu, P.-L. Lions, Wennbe)y@nd the averaging lemma in order to produce
strong compactness inx, v for f.



Extensions (equations with first order derivatives only),

Cf. DiPerna, P.-L. Lions
Vlasov-Maxwell equation:

(Ot +v-Vaz)f+(E+vxB)-V,f =0,
Renormalized form:

1

1
(at-l—’l)vag)——l—(E—l—’UXB)vym:

0.
L+ f

Useful whenf (0, -, -) is not bounded ), B naturally lie inL?).

Transport equation with divergence fréé"' coefficients.



Renormalized solutions with defect measure

Definition: Let () be a time-dependent equation (EDP, or integrodiffereriala
nonnegative functiorf, such that the mask f is conserved at the formal level. We say
that f is a renormalized solution with defect measur¢ ©f when for some one-to-one
(strictly increasing or strictly decreasing) smooth fumet) from R to R, the
function¢ o f satisfies in the sense of distributions an inequality cpweding to the
equation deduced fro¥) for ¢ o f by applying at the formal level the chain rule.

Properties: All strong solutions are renormalized solutions with d¢i@measures.
To be verified and discussed on each case: all renormalizetioss which are
smooth are strong solutions.



The example of the Landau equation (Cf.P.-L. Lions, Villani)

Landau equation:

Of +v-Vof =V, - ((a*f)va—(b*f)f),

where

a(z) = cp(\x\?){\x\? Id—z® az}

b(z) =V -a(z) = — (N - 1) &(|z") ,

and® is a cross section.



According toP.-L. Lions, Villani, and under suitable assumptions®nif f(0, -, -) has

finite mass, energy and entropy, then foa function of clas€'” onR ., , concave, and
v, ¢ defined in such a way that

Ve eRy, 7 (x)=-8"(x), ((z)=08(z)—z06 ()

there exists a renormalized solutigrwith defect measure to the Landau equation,
that is a solution of

(0r +v-Vz)B(f) = Vo Vo : ((a* f)ﬁ(f)) +(ax* f): Voy(£)Vory(f)

2y, (<b “ f) 5(f)> (V) % ) ).

Extension to the Boltzmann equation without angular cutdiéxandre, Villani



Reaction-diffusion systems for reversible chemistry

A+ A3 = Az + Ay

Unknown : a; = a;(t,z) > 0 concentration of4; att > 0 andx € €2 (bounded
regular open set ™).

Equations (after rescaling):

p
8ta1 — d1 A{L'al — a2 a4 — aq as,

Oraz — d2 Agas = —(a2 as — Qa1 a3),

&tag — d3 Aa;ag = a2 a4 — aj as,

8ta,4 — d4 A;,;CM — —(CLQ a4 — ai CL3).

Equivalently

ﬁtaq; — dzA;,;CLZ — (—I)H_l (CL2 as — ai CL3).

Boundary and initial condition:

Vzai(t,xz) -n(x) = 0forz € 09, a;(0,z) > 0.



A priori estimates (1)

Conservation of numbers of molecules:

/Q (al(t,x) + az(t,x)> do = /Q (mo(x) + ago(az)> dx := Mis

/Q (al(t,az) + a4(t,:c)> do = /Q (alo(az) + MO@:)) do = M,
/Q (ag(t,az) 4 a4(t,:c)> do — /Q (ago(:c) + MO@:)) do = My

Consequence: estimate inL.>° (R ; L' (Q)).

Remark: enough to conclude in the case of ODEs or whem aire equal.



A priori estimates (2)

Entropy inequality:

d
— —H(a1,a2,a3,a4) = D(a1,a2,as,a4) > 0,

dt

with the entropy

4
H(ai,az2,a3,a4) := Z/(ai loga; —a; + 1) dzx,
i=1 7

and the entropy dissipation

4 12
D(a1,a2,a3,a4) := ZdZ/ Ve ?z‘ dr + / (a1 a3 — a2 aq)log (al a3> dz.
Q Q

: a; as a4
1=1



Kinetic equations for reactive rarefied gases

One dominant specie of density

2
[v]

M) = (2r) 2% e 2

and 4 species of (relatively) “small” density.

Unknown: densityf* (¢, z,v) > 0 of molecules of species(i = 1, .., 4) which at
time ¢ and pointz have velocityv.

(Rescaled) equation:

i ' _ 4 o .
O vV = LQuL(F M)+ Y Qe () + eQin(f 1Y)

j=1

whereQ 1, is a kernel for elastic (non-reactive) collisions ang ;; is a kernel for
reactive collisions.



Link with the reaction-diffusion

(Formal) limit whens — 0 (LD, M. Bisi):

i i e 2
fe(t,z,v) = a'(t,x) ek
where
oa; i
aa; — dz AXCLZ' p— (—1) T+ (CL2 a4 — ai CL3).

Cf. alsoR. Spigler, D. Zanettfor asymptotics starting from BGK.



Entropy inequality at the kinetic level

d

— = Hin (f2, J2, 12, 15) = Dran (£2, £2, 12, 12),

with the entropy

4
Hkin(fl,fQ,fS,fél) c= Z/Q . fi(t,ﬂ?,’l}) logfi<t7ajav) d’l)dCIZ,

and the entropy dissipatiaR;.. (f1, f2, f3, fa) > 0.

The entropy estimate passes to the limit when 0.



Consequence of the entropy estimate

Entropy and entropy dissipation:

sup ( /Q (ai(t,:c) log(ai(t, z)) — as(t, ) + 1) d:c) <,

teR

/ / Ver/ai|” dzdt < C.
0 Q

Estimates in Sobolev and Orlicz spaces:

a; € L™ (R4; Llog L(2)),

Vai € L*(Ry; H' (2)).



Use of Sobolev inequality

T (N—2)/N
/ (/ la; (¢, )|V N2 dx) dt < C(1+T).
0 Q

Interpolation with theL.> (R ; L' (Q)) estimate:

N/(N+2
||CL’L||L1—{—2/N([O’T]XQ) <C(+T) /(N+2)

When N = 2, this estimate is replaced by

/OT (/Q |a7;(t,:c)|pda:>1/pdt <CO+T),

forall p € [1, +oc|, and after interpolation,

llail| e (o,r1x) < C (1L+T)Y7

forallp € [1,2].



Two-dimensional case: use of Trudinger’s inequality

For somes > 0,

T ) e sai(t,x) N
Jo Jposte p(wa—i(t,-)@l(m) drdt =D,

Thanks to the interpolation with

a; € L™ (R4; Llog L(2)),

and Young'’s inequality (valid for any > 0)

ry < + 2 (log(

~y )_1)7

= (<

one gets
ail| L2 (o, 17x0) < C (1 + )2,



One-dimensional case : Smoothness (1)

WhenN = 1, thanks to Sobolev inequality,

/OT (sup ai(t,az)> dt < C(1+T),

x e

and after interpolation,

aillL2 o, mx0) < C(1+ )"/,
Then (Cf.Rothg, if the initial datum is smooth,

a; € L7 ([0,T] x Q) = as as;a1az € L'([0,T] x Q)

= Ora; — di Aga; € L'([0,T] x Q) = a; € L*7°([0,T] x Q)



One-dimensional case : Smoothness (2)

=  agas;aras € L2700, T]xQ) =  Oai—d; Avai € L¥?*7°([0,T]xQ)

= a; € L0, 7] x Q) = azas;araz € L= °(0,T] x Q)
=  Owa; —d; Aza; € LOO_O([O,T] X Q) = a; € 00,1—0([0,T] X ﬁ)
= a; cCHTN0,TIxQ) = a;eC™Y0,T] xQ)

= .. = a €C™(0,T] x Q).

Remark:
|aillop 0.5y < Pol(T).



The method of duality applied to the entropy

4

4
8t(2(ailogai —a; + 1)) —ZdiAm (ailogai —a; + 1) <0,

=1 =1
so that

4

4
&g(Z(ai loga; —a; + 1)) — Ay (A Z(ai loga; —a; + 1)) <0,

where

Z;L:l d; (CLZ‘ log a; — a; + 1)
> i1 (ailoga; —ai +1)




Estimates for singular parabolic equations

Lemma (R.-H. Martin, M. Pierrg: Let’I" > 0 and(2 be a bounded regular open set
of R"Y. We suppose that, < A(t,z) < A, for some constantd,, A; > 0.

We assume that : [0, 7] x 2 — R is a nonnegative solution to the parabolic
inequation :

Oz — Az(Az) <0, Vi(Az) - n=0 on 0.
Then, there exists a constarit(depending oY, Ap, A1, {2) such that

120122 10,71 x0) < C112(0, )| 22 (-



Existence for all dimensions

Using the approximate equation

n n n n
i+1 Q2 g4 — Q71 Q3

1+ % > (ap)?

ora; —di Agza; = (—1)

(with Neumann boundary condition), one can prove the

Theorem (LD, K. Fellner, M. Pierre, J. Vovelle Let (2 be a bounded regular open
set of R, letd; > 0 be diffusivity constants, and let (0, -) > 0 be initial data in
L*(log L)*(2).

Then, there exists a weak solutionc L7, .(R.; L*(Q))) to the system

8tai — dz Axaz- f— (—1)i+1 (CLQ a4 — QA CL3),

with Neumann boundary condition.
In dimension 2Goudon, Vasseurave proven that those solutions are strong.



Extension to higher order chemistry

Proposition (LD, K. Fellner, M. Pierre, J. Vovelle Assume
a;(0,-) € L? (log L)* (). If p; < 2 for all 4, then equation

Ora; — di Aga; = (—1)i (al? CL§3 — ab? ab*)

(with Neumann boundary conditions) has a renormalizedisoluwith defect measure
in any dimension. Thatisy,; € L7,.(R.; L*(Q2)) and

2(-1)
(1 + aq;)3

Vzai)”
(I +ai)*

8,5(1 +a7;)_2 —d; Agc(l —I—CLfL')_2 <

P1 D3 P2 P4 _
(al a3” — Ay~ Gy )_Gdz

In dimension 1, it is also the case as soopas. 3 for all <. It is moreover a weak
solution if in additionp, + ps < 3 andpz + psa < 3.



Sketch of the proof (p; = 2)

Thanks to the duality method, we obtain thatog |a;| is bounded in.* ([0, T] x Q).
Morover the entropy estimate writes

sup /Zaz ) log a;(t +2/ /Zd

te[0,T]

/ / at as —a2a4) log (Zl 23> < C'r.
2 ay

2 2 2 2
a1 Gz — Q2 A4

(1 + CLZ')3

So

Is well defined.
Then, using an approximate sequeng¢eof solutions, strong compactness is obtained

n|2
thanks to the heat kernel, and one can pass to the limit inteath excep%, in
which one uses Fatou’s lemma to recover an inequality.



Coagulation equations and the problem of gelation

Discrete coagulation equation for diffusive polymers imdnsionl: (¢; := ¢;(t, x)
density of polymers of sizéc N*):

oo 7
8,507; — dz &,;xcz- = — E CLrL'j C; Cj + E Cqu;_j Cj Cq;_j,
J=1 J=1

where( < Ao < d; < Amaz < —+ 00, andaij = Qj; > 0.

At the formal level, the conservation of mass holds:

Z/ici(t,az) dx:Z/z'cz-(O,:r;) dz.
i=1 i=1



A priori estimates

According toLaurencot-MischleandCanizo-LD-Fellnerthe quantities

Z;Zl aji—j cjci—jandy 77 ai;cic;liein L', so that thanks to the heat kernel
properties (in dimension 1); € L°~°,

Passing to the limit in an approximate equation,

fe’e) 7
O:C; — di OpsCs < — E Qij Ci Cj E Qji—j CjCi—j.

J=1 J=1

Problem: interpretation of this result when gelation magurqthat is, for example
whena;; > Cst (i + 7)™, with § > 0).



A few open problems

Direct proof of strong stability for the Boltzmann equatiwith cutoff
(Polynomially growing)L.>® estimates in all dimensions for quadratic or
superguadratic reactions?

Existence of (renormalized with defect measure) satgtior very high-order
reactions?

Rigorous passage from reactive Boltzmann equationsadragtic
reaction-diffusion equations?
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