A Semiclassical Transport Model for Quantum Barriers

Kyle Novak Air Force Institute of Technology

Joint work with Shi Jin University of Wisconsin–Madison

IPAM: Quantum and Kinetic Transport 1 April 2009

The views expressed are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

Overview

Background

Thin Barrier Model

Two Dimensions

Coherent Model

Background

Thin Barrier Model

Two Dimensions

Coherent Model

Background

Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Background

Classical and Quantum Scales

Background

Applications

- Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation Semiclassical Limit
- Thin Barrier Model
- Two Dimensions
- Coherent Model

Problem

Background

Applications

Problem

- Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation Semiclassical Limit
- Thin Barrier Model
- Two Dimensions
- Coherent Model

Problem Model the dynamics of a particle in a largely classical potential field with local quantum discontinuities

- Classical model misses key features wrong solution
- Numerical Schrödinger solution must resolve the de Broglie wavelength — inefficient over large domains/times
- Ben Abdallah, Gamba, Degond ['02] proposed a general classical-quantum coupling model difficult to implement

Approach A multiscale method for a thin quantum barrier

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Step

 $3\pi\varepsilon$

 $(3+\frac{1}{2})\pi\varepsilon$

Wide

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Step

 $3\pi\varepsilon$

 $(3+\frac{1}{2})\pi\varepsilon$

Wide

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Step

 $3\pi\varepsilon$

 $(3+\frac{1}{2})\pi\varepsilon$

Wide

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Step

 $3\pi\varepsilon$

 $(3+\frac{1}{2})\pi\varepsilon$

Wide

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Step

 $3\pi\varepsilon$

 $(3+\frac{1}{2})\pi\varepsilon$

Wide

Classical Mechanics

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density

Scaled Equations

Wigner Equation Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Hamilton's equations

$$\frac{dx}{dt} = p = \nabla_p H(x, p), \quad \frac{dp}{dt} = -\nabla_x V = -\nabla_x H(x, p)$$

Conservation of energy

$$H(x,p) = \frac{1}{2}|p|^2 + V(x) = E$$

Classical Mechanics

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation

Thin Barrier Model

Semiclassical Limit

Two Dimensions

Coherent Model

Hamilton's equations

$$\frac{dx}{dt} = p = \nabla_p H(x, p), \quad \frac{dp}{dt} = -\nabla_x V = -\nabla_x H(x, p)$$

Conservation of energy

$$H(x,p) = \frac{1}{2}|p|^2 + V(x) = E$$

Probability distribution f(x, p, t)

$$\frac{d}{dt}f = 0$$

Classical Mechanics

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Hamilton's equations

$$\frac{dx}{dt} = p = \nabla_p H(x, p), \quad \frac{dp}{dt} = -\nabla_x V = -\nabla_x H(x, p)$$

Conservation of energy

$$H(x,p) = \frac{1}{2}|p|^2 + V(x) = E$$

Probability distribution f(x, p, t)

$$\frac{d}{dt}f = \frac{\partial}{\partial t}f + \frac{dx}{dt} \cdot \nabla_x f + \frac{dp}{dt} \cdot \nabla_p f = 0$$

Liouville equation

$$\frac{\partial}{\partial t}f + p \cdot \nabla_x f - \nabla_x V \cdot \nabla_p f = 0$$

BackgroundApplicationsProblemThin BarriersClassical MechanicsQuantum MechanicsPosition DensityScaled EquationsWigner EquationSemiclassical LimitThin Barrier ModelTwo Dimensions

Coherent Model

Dirac quantization

Background
Applications
Problem
Thin Barriers
Classical Mechanics
Quantum Mechanics
Position Density
Scaled Equations
Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Dirac quantization

$$x \rightarrow x, \quad p \rightarrow -i\hbar
abla, \quad \text{and} \quad E \rightarrow i\hbar rac{\partial}{\partial t}$$

Conservation of energy

$$E = H(x, p) = \frac{1}{2}|p|^2 + V(x)$$

Background
Applications
Problem
Thin Barriers
Classical Mechanics
Quantum Mechanics
Position Density
Scaled Equations
Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Dirac quantization

$$x \rightarrow x, \quad p \rightarrow -i\hbar \nabla, \quad \text{and} \quad E \rightarrow i\hbar \frac{\partial}{\partial t}$$

Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\psi = \hat{H}\psi = \left(-\frac{1}{2}\hbar^2\Delta + V(x)\right)\psi$$

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Dirac quantization

$$x \rightarrow x, \quad p \rightarrow -i\hbar \nabla, \quad \text{and} \quad E \rightarrow i\hbar \frac{\partial}{\partial t}$$

Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\psi = \hat{H}\psi = \left(-\frac{1}{2}\hbar^2\Delta + V(x)\right)\psi$$

Macroscopic distribution $\tilde{f}(x, p)$

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Dirac quantization

$$x \rightarrow x, \quad p \rightarrow -i\hbar \nabla, \quad \text{and} \quad E \rightarrow i\hbar \frac{\partial}{\partial t}$$

Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\psi = \hat{H}\psi = \left(-\frac{1}{2}\hbar^2\Delta + V(x)\right)\psi$$

Density matrix

 $\hat{\rho}(x,x',t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \tilde{f}(\tilde{x},\tilde{p})\psi(x,t;\tilde{x},\tilde{p})\overline{\psi}(x',t;\tilde{x},\tilde{p}) \,d\tilde{x}\,d\tilde{p}$

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Dirac quantization

$$x \rightarrow x, \quad p \rightarrow -i\hbar \nabla, \quad \text{and} \quad E \rightarrow i\hbar \frac{\partial}{\partial t}$$

Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\psi = \hat{H}\psi = \left(-\frac{1}{2}\hbar^2\Delta + V(x)\right)\psi$$

Density matrix

$$\hat{\rho}(x,x',t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \tilde{f}(\tilde{x},\tilde{p})\psi(x,t;\tilde{x},\tilde{p})\overline{\psi}(x',t;\tilde{x},\tilde{p}) \, d\tilde{x} \, d\tilde{p}$$

Von Neumann equation

$$i\hbar\frac{\partial}{\partial t}\hat{\rho}(x,x',t) = \left(-\frac{1}{2}\hbar^2[\Delta_x - \Delta_{x'}] + V(x) - V(x')\right)\hat{\rho}(x,x',t)$$

Physical Observable—Position Density

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Liouville equation zeroth moment

$$\rho(x,t) = \int_{\mathbb{R}^d} f(x,p,t) \, dp$$

von Neumann equation diagonal of density matrix

$$\rho(x,t) = \hat{\rho}(x,x,t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \tilde{f}(\tilde{x},\tilde{p}) |\psi(x,t;\tilde{x},\tilde{p})|^2 \, d\tilde{x} \, d\tilde{p}$$

Schrödinger
$$\tilde{f}(\tilde{x}, \tilde{p}) = \delta(\tilde{x} - x_0)\delta(\tilde{p} - p_0)$$

$$\rho(x,t) = |\psi(x,t)|^2$$

Scaled Equations

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Characteristic length and time scale:

 $L\delta x$ and $L\delta t$ (where $\delta x = \lambda = \hbar/p_0$)

Rescale x, x', and t

$$x \mapsto x/L\delta x, \quad x' \mapsto x'/L\delta x, \quad t \mapsto t/L\delta t$$

then

$$i\varepsilon\frac{\partial}{\partial t}\hat{\rho}(x,x',t) = \left(-\frac{1}{2}\varepsilon^2[\Delta_x - \Delta_{x'}] + V(x) - V(x')\right)\hat{\rho}(x,x',t)$$

where $\varepsilon = \hbar / [L(\delta x)^2 / \delta t]$

Scaled Equations

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

Characteristic length and time scale:

 $L\delta x$ and $L\delta t$ (where $\delta x = \lambda = \hbar/p_0$)

Rescale x, x', and t

$$x \mapsto x/L\delta x, \quad x' \mapsto x'/L\delta x, \quad t \mapsto t/L\delta t$$

then

 $i\varepsilon\frac{\partial}{\partial t}\hat{\rho}(x,x',t) = \left(-\frac{1}{2}\varepsilon^2[\Delta_x - \Delta_{x'}] + V(x) - V(x')\right)\hat{\rho}(x,x',t)$

where $\varepsilon = \hbar / [L(\delta x)^2 / \delta t]$

! What's the behavior of physical observables as $\varepsilon \to 0$?

Wigner Equation

von Neumann equation

$$i\varepsilon\frac{\partial}{\partial t}\hat{\rho} - \left(-\frac{1}{2}\varepsilon^2[\Delta_x - \Delta_{x'}] + V(x) - V(x')\right)\hat{\rho} = 0$$

Wigner transform

$$W(x,p,t) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{\rho}(x + \frac{1}{2}\varepsilon y, x - \frac{1}{2}\varepsilon y, t) e^{-ip \cdot y} \, dy$$

Wigner Equation

von Neumann equation

$$i\varepsilon\frac{\partial}{\partial t}\hat{\rho} - \left(-\frac{1}{2}\varepsilon^2[\Delta_x - \Delta_{x'}] + V(x) - V(x')\right)\hat{\rho} = 0$$

Wigner transform

$$W(x,p,t) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{\rho}(x + \frac{1}{2}\varepsilon y, x - \frac{1}{2}\varepsilon y, t) e^{-ip \cdot y} \, dy$$

Wigner equation

$$\frac{\partial}{\partial t}W + p \cdot \nabla_x W - \Theta^{\varepsilon} W = 0$$

where

$$\Theta^{\varepsilon}W = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{i}{\varepsilon} \left[V(x + \frac{1}{2}\varepsilon y) - V(x - \frac{1}{2}\varepsilon y) \right] \widehat{W}(x, y, t) e^{-ip \cdot y} \, dy$$

Semiclassical Limit

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

If V(x) is *sufficiently smooth*, [Lions and Paul '93; Gérard, Markowich, Mauser and Poupaud '97]

$$\Theta^{\varepsilon}W \to \nabla_x V \cdot \nabla_p W$$
 as $\varepsilon \to 0$

Wigner equation $(\varepsilon \rightarrow 0)$

$$\frac{\partial}{\partial t}W + p \cdot \nabla_x W - \nabla_x V \cdot \nabla_p W = 0$$

Classical Liouville equation

$$\frac{\partial}{\partial t}f + p \cdot \nabla_x f - \nabla_x V \cdot \nabla_p f = 0$$

Semiclassical Limit

Background Applications Problem Thin Barriers Classical Mechanics Quantum Mechanics Position Density Scaled Equations Wigner Equation

Semiclassical Limit

Thin Barrier Model

Two Dimensions

Coherent Model

What if V(x) is only *piecewise* continuous (as $\varepsilon \to 0$)?

Background

Thin Barrier Model The Idea

- Approach
- Transfer Matrix
- Scattering
- Liouville Solver
- Interface Condition
- Example
- Example
- Two Dimensions
- Coherent Model

Thin Barrier Model

Semiclassical Thin Barrier Model

Background

Thin Barrier Model

- The Idea
- Approach
- Transfer Matrix
- Scattering
- Liouville Solver
- Interface Condition
- Example
- Example
- Two Dimensions
- Coherent Model

ldea

Classical-quantum coupling [Ben Abdallah, Degond, Gamba '02]
 Hamiltonian-preserving scheme [Jin and Wen '05]

Approach

- 1. Solve the Liouville equation locally.
- 2. Use the weak form of the conservation of energy
 - (H = constant) to piece the local solutions together.
- 3. Use the steady-state Schrödinger equation to choose the unique solution.

Semiclassical Thin Barrier Model

Background

Thin Barrier Model

- The Idea
- Approach
- Transfer Matrix
- Scattering
- Liouville Solver
- Interface Condition
- Example
- Example
- Two Dimensions
- Coherent Model

Idea

Classical-quantum coupling [Ben Abdallah, Degond, Gamba '02]
 Hamiltonian-preserving scheme [Jin and Wen '05]

Approach

- 1. Solve the Liouville equation locally.
- 2. Use the weak form of the conservation of energy
 - (H = constant) to piece the local solutions together.
- 3. Use the steady-state Schrödinger equation to choose the unique solution.

Assumptions

- 1. Potential is sufficiently smooth away from the barrier.
- 2. Barrier width $O(\varepsilon)$.
- 3. Barrier interactions are mutually independent.

Approach

$$\frac{\partial f}{\partial t} + p \frac{\partial f}{\partial x} - \frac{dV}{dx} \frac{\partial f}{\partial p} = 0$$

$$f_{1,\text{out}} + f_{2,\text{out}} = f_{1,\text{in}} + f_{2,\text{in}}$$

$$f_{1,\text{out}} = Rf_{1,\text{in}} + Tf_{2,\text{in}}$$
$$f_{2,\text{out}} = Tf_{1,\text{in}} + Rf_{2,\text{in}}$$

with
$$R + T = 1$$

$$\begin{array}{ccc} a_1 \rightarrow & & & & a_2 \\ b_1 \leftarrow & & & & \\ \mathcal{Q} & & \mathcal{C}_2 \end{array} & & -\varepsilon^2 \psi''(x) + 2V(x)\psi(x) = 2E\psi(x) \\ \mathcal{Q} & & \mathcal{C}_2 \end{array}$$
$$\psi(x) = \begin{cases} a_1 e^{ixp_1/\varepsilon} + b_1 e^{-ixp_1/\varepsilon}, & x \in \mathcal{C}_1 \\ a_2 e^{ixp_2/\varepsilon} + b_2 e^{-ixp_2/\varepsilon}, & x \in \mathcal{C}_2 \end{cases}$$

with
$$p_1 = \sqrt{2(E - V_1)}$$
 and $p_2 = \sqrt{2(E - V_2)}$

$$\begin{array}{ccc} & \stackrel{a_1 \rightarrow}{\longrightarrow} & \stackrel{\rightarrow}{\longrightarrow} & a_2 \\ & & \stackrel{\leftarrow}{\longrightarrow} & b_2 \\ & & & \mathcal{C}_2 \end{array} & -\varepsilon^2 \psi''(x) + 2V(x)\psi(x) = 2E\psi(x) \\ & & & \mathcal{C}_2 \\ & & & & \psi(x) = \begin{cases} a_1 e^{ixp_1/\varepsilon} + b_1 e^{-ixp_1/\varepsilon}, & x \in \mathcal{C}_1 \\ a_2 e^{ixp_2/\varepsilon} + b_2 e^{-ixp_2/\varepsilon}, & x \in \mathcal{C}_2 \end{cases} \end{array}$$

Transfer matrix M

$$\begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \mathsf{M} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$$

Transfer matrix M

$$\begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \mathsf{M} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$$

 $\mathsf{M} = \mathsf{M}_n \cdots \mathsf{M}_2 \mathsf{M}_1$

$$\begin{array}{cccc} & \stackrel{a_1 \rightarrow}{\longrightarrow} & \stackrel{\rightarrow}{\rightarrow} & a_2 \\ & \stackrel{\leftarrow}{\rightarrow} & b_1 \leftarrow & & \\ & & & \\ \mathcal{C}_1 & \mathcal{Q} & \mathcal{C}_2 & & \\ & & & \\ & & & \\ \mathcal{C}_1 & & & \\$$

Scattering matrix S

$$\begin{pmatrix} b_1 \\ a_2 \end{pmatrix} = \mathsf{S} \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} r_1 & t_2 \\ t_1 & r_2 \end{pmatrix} \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} -m_{21}/m_{22} & 1/m_{22} \\ \det \mathsf{M}/m_{22} & m_{12}/m_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ b_2 \end{pmatrix}$$

Transmission and reflection probabilities

 $T = \frac{\text{transmitted current density}}{\text{incident current density}} \quad R = \frac{\text{reflected current density}}{\text{incident current density}}$

Continuity equation

 $\frac{\partial}{\partial t}\rho + \nabla \cdot J = 0 \quad \text{where} \quad J(x) = \varepsilon \text{Im} \left(\overline{\psi} \nabla \psi\right)$

Transmission and reflection probabilities

 $T = \frac{\text{transmitted current density}}{\text{incident current density}} \quad R = \frac{\text{reflected current density}}{\text{incident current density}}$

Continuity equation

$$\frac{\partial}{\partial t}\rho + \nabla \cdot J = 0 \quad \text{where} \quad J(x) = \varepsilon \text{Im} \left(\overline{\psi} \nabla \psi \right)$$

Wave incident from the left $(a_1 = 1, b_2 = 0, b_1 = r_1 \text{ and } a_2 = t_1)$

Transmission and reflection probabilities

 $T = \frac{\text{transmitted current density}}{\text{incident current density}} \quad R = \frac{\text{reflected current density}}{\text{incident current density}}$

Continuity equation

$$\frac{\partial}{\partial t}\rho \ + \nabla \cdot J = 0 \quad \text{where} \quad J(x) = \varepsilon \text{Im} \left(\overline{\psi} \nabla \psi \right)$$

Wave incident from the left $(a_1 = 1, b_2 = 0, b_1 = r_1 \text{ and } a_2 = t_1)$

$$\begin{array}{ccc} 1 & \xrightarrow{} & \rightarrow t_1 \\ \hline & & & \\ \hline & & \\ \mathcal{C}_1 & \mathcal{Q} & \mathcal{C}_2 \end{array} & J(x) = \begin{cases} p_1 \left(1 - |r_1|^2\right), & x \in \mathcal{C}_1 \\ p_2 \left(|t_2|^2\right), & x \in \mathcal{C}_2 \end{cases}$$
$$R = |r_1|^2 \quad \text{and} \quad T = \frac{p_2}{p_1} |t_1|^2$$

Liouville Solver

Background

- Thin Barrier Model
- The Idea
- ${\sf Approach}$
- Transfer Matrix
- Scattering

Liouville Solver

- Interface Condition
- Example
- $\mathsf{Example}$
- Two Dimensions

Coherent Model

Liouville Equation

$$\frac{\partial f}{\partial t} = -p \frac{\partial f}{\partial x} + \frac{dV}{dx} \frac{\partial f}{\partial x}$$

Finite volume discretization of Liouville equation

$$\frac{f_{ij}^{n+1} - f_{ij}^n}{\Delta t} = -p_j \partial_x f_{ij}^n + \partial_x V_i \partial_p f_{ij}^n$$

where the cell average

$$f_{ij}^n = \frac{1}{\Delta x \Delta p} \iint_{C_{ij}} f(x, p, t_n) \, dx \, dp$$

Liouville Solver

Background

Thin Barrier Model	
The Idea	
Approach	
Transfer Matrix	
Scattering	
Liouville Solver	
Interface Condition	
Example	
Example Example	

The discrete operators $\partial_x f_{ij}$, $\partial_p f_{ij}$ and $\partial_x V_i$ are

 $\partial_x f_{ij} = (f_{i+1/2,j}^- - f_{i-1/2,j}^+) / \Delta x,$ $\partial_p f_{ij} = (f_{i,j+1/2} - f_{i,j-1/2})/\Delta p,$ $\partial_x V_i = (V_{i+1/2}^- - V_{i-1/2}^+) / \Delta x$

with

Coherent Model

$$\begin{split} f_{i+1/2,j}^{\pm} &= \lim_{x \to x_{i+1/2}^{\pm}} \frac{1}{\Delta p} \int_{p_{j-1/2}}^{p_{j+1/2}} f(x,p) \, dp, \\ f_{i,j+1/2} &= \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} f(x,p_{j+1/2}) \, dx, \text{ and} \\ V_{i+1/2}^{\pm} &= \lim_{x \to x_{i+1/2}^{\pm}} V(x). \end{split}$$

Interface Condition

Background

Thin Barrier Model The Idea

Approach

Transfer Matrix

Scattering

Liouville Solver

Interface Condition

Example Example

Two Dimensions

Coherent Model

Interface condition

$$f_{Z+1/2,j}^{+} = R(q_j) f_{Z+1/2,-j}^{+} + T(q_j) f(x_{Z+1/2}^{-}, q_j) \quad \text{for } j > 0$$

$$f_{Z+1/2,j}^{-} = R(q_j) f_{Z+1/2,-j}^{-} + T(q_j) f(x_{Z+1/2}^{+}, q_j) \quad \text{for } j < 0$$

where the incident $q_j = p_j \sqrt{1 + 2(V_{Z+1/2}^+ - V_{Z+1/2}^-)/p_j |p_j|}$.

We define
$$f(x_{Z+1/2}^-, q_j)$$
 as the cell average
$$f(x_{Z+1/2}^-, q_j) = \frac{1}{p_j \Delta p} \int_{q_{j-1/2}}^{q_{j+1/2}} pf(x_{Z+1/2}^-, p) \, dp$$

where
$$q_{j\pm 1/2} = \sqrt{p_{j\pm 1/2}^2 + 2(V_{Z+1/2}^+ - V_{Z+1/2}^-)}.$$

Example: Step potential

Thin Barrier Model

The Idea Approach

Transfer Matrix

Scattering

Liouville Solver

Interface Condition

Example

Example

Two Dimensions

Coherent Model

Example: Step potential

Background	E
Thin Barrier Model	ntu
The Idea	lah
Approach	dı
Transfer Matrix	
Scattering	
Liouville Solver	
Interface Condition	
Example	
Example Example	
Example Example Two Dimensions	
Example Example Two Dimensions Coherent Model	
Example Example Two Dimensions Coherent Model	
Example Example Two Dimensions Coherent Model	

semiclassical

Background

Thin Barrier Model The Idea

- Approach
- Transfer Matrix
- Scattering
- Liouville Solver
- Interface Condition
- Example
- Example
- Two Dimensions
- Coherent Model

Background

Thin Barrier Model The Idea

- Approach
- Transfer Matrix
- Scattering
- Liouville Solver
- Interface Condition
- Example
- Example
- Two Dimensions
- Coherent Model

22 / 43

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

Two Dimensions

Overview

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

Overview

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

2D interface condition

$$f(\mathbf{x}_{\text{in}}, p_{\text{in}}, \theta_{\text{in}}) = \int_{-\pi/2}^{\pi/2} R(\theta_{\text{out}}; p_{\text{out}}, \theta_{\text{in}}) f(\mathbf{x}_{\text{out}}, p_{\text{out}}, \theta_{\text{out}}) d\theta_{\text{out}} + \int_{-\pi/2}^{\pi/2} T(\theta_{\text{out}}; q_{\text{out}}, \theta_{\text{in}}) f(\mathbf{x}_{\text{out}}, q_{\text{out}}, \theta_{\text{out}}) d\theta_{\text{out}}$$

(with
$$q^2 = p^2 + 2\Delta V$$
)

Scattering Probabilities

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

 $S(\theta; p, \theta_{\rm in}) = \frac{\theta \text{-component to flux scattered across interface}}{\text{incident flux}}$

Current density: $J(x,y) = \text{Im } \left(\overline{\psi}(x,y)\nabla\psi(x,y)\right)$

Solution in C_j for constant V_j

$$\psi_j(x,y) = \int_{-\pi}^{\pi} a_j(\theta) e^{ip_j(x\cos\theta + y\sin\theta)} d\theta, \qquad j = 1, 2.$$

Flux

$$\int_{-\infty}^{\infty} J(x,y) \, dy = \int_{-\pi}^{\pi} p |a(\theta)|^2 (\cos \theta, \sin \theta) \, d\theta$$

Scattering Probabilities

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

For particle incident from left at angle θ_{in} :

$$\psi_1(x,y) = e^{ip_1(x\cos\theta_{\rm in} + y\sin\theta_{\rm in})} + \int_{-\pi/2}^{\pi/2} r(\theta)e^{-ip_1(x\cos\theta + y\sin\theta)} d\theta$$
$$\psi_2(x,y) = \int_{-\pi/2}^{\pi/2} t(\theta)e^{ip_2(x\cos\theta + y\sin\theta)} d\theta$$

 $R(\theta; p_1, \theta_{\mathsf{in}}) = |r(\theta)|^2 \frac{\cos \theta}{\cos \theta_{\mathsf{in}}} \quad \text{and} \quad T(\theta; p_1, \theta_{\mathsf{in}}) = |t(\theta)|^2 \frac{p_2 \cos \theta}{p_1 \cos \theta_{\mathsf{in}}}$

! Find $r(\theta)$ and $t(\theta)$ by solving Schrödinger equation in Q.

Background

Thin Barrier Model

- Two Dimensions
- Overview
- Interface condition
- Scattering

QTBM

Particle Method

Example

Example

Coherent Model

Solve the Schrödinger equation

$$-\frac{\partial^2}{\partial x^2}\psi_{\mathcal{Q}}(x,y) - \frac{\partial^2}{\partial y^2}\psi_{\mathcal{Q}}(x,y) + 2V_{\mathcal{Q}}(x,y)\psi_{\mathcal{Q}}(x,y) = p^2$$

in \mathcal{Q} with matching conditions

$$\psi_{\mathcal{Q}}(x_j, y) = \psi_j(x_j, y)$$
$$\frac{\partial}{\partial x} \psi_{\mathcal{Q}}(x_j, y) = \frac{\partial}{\partial x} \psi_j(x_j, y), \qquad j = 1, 2$$

We must eliminate unknowns $r(\theta)$ and $t(\theta)$ from boundary conditions. But $r(\theta)$ and $t(\theta)$ are coupled by the integral.

Quantum Transmitting Boundary Method

Background

Thin Barrier Model

Two Dimensions

Overview

- Interface condition
- Scattering

QTBM

Particle Method Example

Example

Coherent Model

Fourier transform of ψ into momentum space $(y \mapsto \xi)$

$$\frac{\partial^2}{\partial x^2}\hat{\psi}_{\mathcal{Q}}(x,\xi) + \eta_1^2(\xi)\hat{\psi}_{\mathcal{Q}}(x,\xi) - 2\int_{-\infty}^{\infty} V_{\mathcal{Q}}(x,y)\psi(x,y)e^{-i\xi y}\,dy = 0$$

in $\ensuremath{\mathcal{Q}}$ with matching conditions

$$\hat{\psi}_{\mathcal{Q}}(x_j,\xi) = \hat{\psi}_j(x_j,\xi)$$
$$\frac{\partial}{\partial x}\hat{\psi}_{\mathcal{Q}}(x_j,\xi) = \frac{\partial}{\partial x}\hat{\psi}_j(x_j,\xi), \qquad j = 1,2$$

where $\eta_1^2(\xi)=p^2-\xi^2$

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

 $\mathsf{Example}$

Example

Coherent Model

In C_1 and C_2

$$\hat{\psi}_1(x,\xi) = \delta(\xi - \xi_{\text{in}})e^{i\eta_1(\xi)(x-x_1)} + s_1(\xi)e^{-i\eta_1(\xi)(x-x_1)}$$
$$\hat{\psi}_2(x,\xi) = s_2(\xi)e^{i\eta_2(\xi)(x-x_2)}$$

Eliminating the unknowns $s_1(\xi)$ and $s_2(\xi)$ gives the mixed boundary conditions

$$i\eta_1(\xi)\hat{\psi}_{\mathcal{Q}} + \frac{\partial}{\partial x}\hat{\psi}_{\mathcal{Q}} = 2i\eta_1(\xi)\delta(\xi - \xi_{\text{in}}) \quad \text{at } x = x_1$$
$$i\eta_2(\xi)\hat{\psi}_{\mathcal{Q}} - \frac{\partial}{\partial x}\hat{\psi}_{\mathcal{Q}} = 0 \quad \text{at } x = x_2$$

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

After solving the Schrödinger equation

 $r(\theta; p, \theta_{in}) = \hat{\psi}_{\mathcal{Q}}(x_1, p \sin \theta) - \delta(\theta - \theta_{in})$ $t(\theta; p, \theta_{in}) = \hat{\psi}_{\mathcal{Q}}(x_2, p_2(p) \sin \theta)$

! We need to do this for every incident p and θ_{in} .

Particle Method

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

 $f_0(r) = \int_{\Omega} f_0(\tilde{r})\delta(r-\tilde{r})\,d\tilde{r} \quad \to \quad f_0^h = \sum_{j=1}^N w_j\delta^h(r-r_j)$

Solve
$$\frac{dx}{dt} = p, \quad \frac{dp}{dt} = -\nabla_x V$$

Interface condition

Initial conditions

Monte Carlo sample $S(\theta_{out}; p, \theta_{in})$ Deterministic take all paths

Reconstruct density distribution with bicubic cutoff function

Example: Circular Barrier

Schrödinger ($\varepsilon = 1/400$)

Semiclassical

Example: Circular Barrier

Schrödinger ($\varepsilon = 1/400$)

Semiclassical

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

$$V(x,y) = \begin{cases} 2\cos^2(\pi x/2\varepsilon)\cos^2(y/4\varepsilon), & x \in (-\varepsilon,\varepsilon) \\ 0, & \text{otherwise} \end{cases}$$

Background

Thin Barrier Model

Two Dimensions Overview Interface condition Scattering QTBM Particle Method Example Example

Coherent Model

Semiclassical (p = 1 and $\theta_{in} = 10^{\circ}$)

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

Semiclassical (p = 1 and $\theta_{in} = 10^{\circ}$)

Fraunhofer diffraction

Schrödinger ($\varepsilon = 1/800$)— red Semiclassical — black contour

Background

Thin Barrier Model

Two Dimensions

Overview

Interface condition

Scattering

QTBM

Particle Method

Example

Example

Coherent Model

Schrödinger ($\varepsilon = 1/800$)— red Semiclassical — black contour

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

Coherent Model

Extending the Thin Barrier Model

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

Idea Combine several thin barriers.

Problem Wigner transform discards phase information, so barrier interactions are mutually independent.

Approach Track both f(x, p, t) and phase offset $\theta(x, p, t)$.

Example: Harmonic Oscillator with Delta Barrier

 $V(x) = \frac{1}{2}x^2 + \varepsilon\alpha\delta(x)$ $\alpha = \sqrt{3}: \ \frac{1}{4} \text{ transmission probability}$

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

 $\mathsf{Example}$

Example

Conclusion

quantum

semiclassical

Example: Harmonic Oscillator with Delta Barrier

 $V(x) = \frac{1}{2}x^2 + \varepsilon\alpha\delta(x)$ $\alpha = \sqrt{3}: \ \frac{1}{4} \text{ transmission probability}$

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

 $\mathsf{Example}$

Example

Conclusion

quantum

semiclassical

Example: Harmonic Oscillator with Delta Barrier

 $V(x) = \frac{1}{2}x^2 + \varepsilon\alpha\delta(x)$ $\alpha = \sqrt{3}: \ \frac{1}{4} \text{ transmission probability}$

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

 $\mathsf{Example}$

Example

Conclusion

quantum

semiclassical

Numerical Implementation

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

Initialization

- Solve time-independent Schrödinger equation to get the complex scattering coefficients
- Eulerian Solver/Lagrangian Solver
 - Use finite volume/particle method method locally
 - ◆ Incorporate interface condition at quantum barrier

Conclusion

Eulerian Implementation

$$\frac{\partial f}{\partial t} + p \frac{\partial f}{\partial x} - \frac{dV}{dx} \frac{\partial f}{\partial p} = 0$$
$$f_{2,\text{out}}$$

$$f_{1,\mathsf{out}} + f_{2,\mathsf{out}} = f_{1,\mathsf{in}} + f_{2,\mathsf{in}}$$

Build wave interference into the interface conditions

$$\rho_{1+2} = |\psi_1 + \psi_2|^2 = \rho_1 + \rho_2 + 2\sqrt{\rho_1\rho_2}\cos\theta$$

So,
$$\frac{f_{1,\text{out}} = Rf_{1,\text{in}} + Tf_{2,\text{in}} + 2\sqrt{RTf_{1,\text{in}}f_{2,\text{in}}}\cos\theta}{f_{2,\text{out}} = Tf_{1,\text{in}} + Rf_{2,\text{in}} - 2\sqrt{RTf_{1,\text{in}}f_{2,\text{in}}}\cos\theta}$$

Eulerian: Tracking the phase $\boldsymbol{\theta}$

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

$$\Phi(x, p, t) = \sqrt{f(x, p, t)}e^{i\theta(x, p)}$$
$$\frac{d\Phi}{dt} = \frac{\partial\Phi}{\partial t} + p\frac{\partial\Phi}{\partial x} - \frac{dV}{dx}\frac{\partial\Phi}{\partial p} = 0$$

with the interface condition

$$\Phi_{1,\text{out}} = r_1 \Phi_{1,\text{in}} + \sqrt{\frac{p_1}{p_2}} t_2 \Phi_{2,\text{in}}$$
$$\Phi_{2,\text{out}} = \sqrt{\frac{p_2}{p_1}} t_1 \Phi_{1,\text{in}} + r_2 \Phi_{2,\text{in}}$$

Then $e^{i\theta} = \Phi/|\Phi|$.

Define

Implementation Issues

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

• $\Phi(x, p, t) = \sqrt{f(x, p, t)}e^{i\theta(x, p)}$ is a hybrid of f and ψ .

We could have simply solved

$$\frac{\partial \Phi}{\partial t} + p \frac{\partial \Phi}{\partial x} - \frac{dV}{dx} \frac{\partial \Phi}{\partial p} = 0$$

but scheme does not conserve $\rho(x,t) = \int |\Phi(x,p,t)|^2 dp$.

Solve in (x, E)-domain rather than (x, p)-domain.

$$\frac{d}{dt}F(x,E) = \frac{\partial F}{\partial t} + p\frac{\partial F}{\partial x} = 0$$

Prevent numerical mixing of the characteristics.
Simplifies the scheme for discontinuous potentials.

Lagrangian Solver

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

 $\mathsf{Example}$

Example

Conclusion

$$\frac{dx}{dt} = p, \ \frac{dp}{dt} = -\frac{dV}{dx} \text{ with } \Phi_k(x, p, 0) = \sqrt{f_k(x, p, 0)}.$$
Solution $f(x, p, t) = \left| \sum_k s_k(H(x, p)) \Phi_k(x, p, t) \right|^2$
Linear Interface Condition: $r \Phi_{1,\text{out}} + t \Phi_{2,\text{out}} = \Phi_{1,\text{in}}.$

Lagrangian Solver

Background Thin Barrier Model

Two Dimensions

Coherent Model

S

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

$$\frac{dx}{dt} = p, \ \frac{dp}{dt} = -\frac{dV}{dx} \text{ with } \Phi_k(x, p, 0) = \sqrt{f_k(x, p, 0)}.$$
Solution $f(x, p, t) = \left| \sum_k s_k(H(x, p)) \Phi_k(x, p, t) \right|^2$
Linear Interface Condition: $r \Phi_{1,\text{out}} + t \Phi_{2,\text{out}} = \Phi_{1,\text{in}}$

$$\begin{array}{ll} \text{Monte Carlo } (\xi \in [0,1]) \ \begin{cases} \text{transmission}, & \text{if } \xi < \frac{|t|}{|t|+|r|} \\ \text{reflection}, & \text{otherwise}. \end{cases} \end{array}$$

 $s_k \leftarrow (|t| + |r|)e^{i\theta}s_k$ with $e^{i\theta} = \begin{cases} t/|t|, & \text{for transmission} \\ r/|r|, & \text{for reflection} \end{cases}$

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

$$V(x) = \alpha \varepsilon \left[\delta(x - \ell/2) + \delta(x + \ell/2) \right], \quad \ell = 10\varepsilon$$

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

 $V(x) = \alpha \varepsilon \left[\delta(x - \ell/2) + \delta(x + \ell/2) \right], \quad \ell = 10\varepsilon$

Thin Barrier

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

Two Thin Barriers

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

Coherent Model

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

 $\mathsf{Example}$

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

Coherent Model (Averaged Solution)

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

 $V(x) = \alpha \varepsilon \sum_{k=-5}^{5} \delta(x - k\ell), \quad \ell = 20\varepsilon$

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

Several Decoherent Thin Barriers

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

Coherent Model

Background

Thin Barrier Model

Two Dimensions

Coherent Model

The Idea

Example

Implementation

Eulerian

Lagrangian

Example

Example

Conclusion

Coherent Model (Averaged Solution)

Conclusion

Background

- Thin Barrier Model
- Two Dimensions
- Coherent Model
- The Idea
- Example
- Implementation
- Eulerian
- Lagrangian
- Example
- Example
- Conclusion

- ${\cal O}(\varepsilon)$ semiclassical model captures a variety of quantum effects
 - partial reflection
 - partial transmission
 - tunneling
 - resonance
 - caustics

- internal scattering
- refraction
- diffraction
- time delay
- trapping