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Overview

• The equations of thermal radiation transport

• Angular, energy, spatial, and temporal discretization

• Traditional solution of the transport equation

• Source Iteration (SI)

• Diffusion-Synthetic Acceleration (DSA)

• Linear Multifrequency Grey Acceleration (LMFGA)

• Krylov solution of preconditioned systems from acceleration schemes

• Nested Krylov methods versus nested acceleration schemes

• LMFGA-preconditioned systems

• Computational results

• Concluding remarks
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Basic Equations

• The equations of thermal radiation transport consist of a transport

equation for the angular intensity I(
−→

r ,
−→

Ω , E, t):

1

c

∂I

∂t
+

−→

Ω ·
−→

∇ I + σtI =
σs

4π
φ + σaB(T ) ,

and an equation for the material temperature T (
−→

r , t):

Cv
∂T

∂t
=

∫

∞

0

σa[ φ − 4πB(T ) ] dE .

• The angular intensity has units of

(energy/area − time − steradian − energy),
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Basic Equations

•

−→

Ω is the photon direction vector,

• E = hν (energy) is the photon energy,

• c (length/time) is the speed of light,

• σt(
−→

r , E, T ) (length−1) is the total macroscopic cross section,

• σs(
−→

r , T ) (length−1) is the Thompson macroscopic scattering cross

section,

• φ(
−→

r , E, t) (energy/area − time − energy) is angle-integrated

intensity,

• Cv(
−→

r , T ) (energy/volume − temperature) is the material heat

capacity,

Presentation at the Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA, March 31, 2009 Slide 4/42



Basic Equations

• B(E, T ) (energy/area − time − steradian − energy) is the

Planck function:

B(E, T ) =
2E3

h3c2

[

exp

(

E

kT

)

− 1

]

−1

,

• h is Planck’s constant,

• k is Boltzmann’s constant
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Nonlinearities

• Note that the radiative transfer equations have nonlinearities arising only

from the temperature dependence of the material property coefficients and

the Planck function.

• The heat capacity is generally a weak function of temperature, while the

absorption cross sections are strong functions of temperature.

• The radiative transfer equations are generally solved using an approximate

form of Newton’s method.

• The method is approximate in that the contributions to the Jacobian from

the material property functions are neglected.

• Tabulations of material property data are generally not differentiable.

• Stability considerations require linearization of the Planck function but not

the material property functions.
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Connection with Neutronics

• The radiative transfer equations have much in common with the neutron

transport equation.

• The regimes are quite different, but most of the computational technology

developed for neutron transport has been applied over the last twenty

years to the radiative transfer equation both in static media and with

nonrelativistic material motion.

• Because radiative transfer calculations are much more demanding than

neutron transport calculations, this connection has resulted in

improvements in neutron transport methods that might not otherwise have

occured.
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Radiation-Hydrodynamics

• The radiative transfer equations are often coupled with the hydrodynamics

equations to form the radiation-hydrodynamics equations.

• With non-relativistic material motion, operator splitting techniques can be

applied in conjunction with standard hydrodynamics and radiative transfer

solution techniques to solve the radiation-hydrodynamics equations.

• For the case of relativistic material motion, fundamentally different

approaches to the solution of the radiative transfer equations are required.
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Discretization

• We use the Sn or discrete-ordinates angular discretization, which is

basically a collocation technique.

• We use the multigroup discretization in energy, which is basically a

Petrov-Galerkin method with piecewise-constant weight functions.

• We use lumped discontinous Galerkin discretizations in space because of

their accuracy, robustness, and asymptotic-preserving properties.

• We generally use the Backward-Euler discretization in time, although

second-order non-oscillatory schemes such as the BDF-2 and trapezoidal

BDF-2 schemes can be used in conjunction with the solution techniques

described here.
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Solution of the Radiative Transfer Equations

• Traditional accelerated iterative solution techniques for the transport

equation are closely related to multilevel or multigrid methods.

• In most instances, some type of diffusion operator is used to approximate

a transport operator.

• For many years, such methods were thought to be unconditionally

effective as long as the diffusion equations were differenced in a manner

consistent with the spatial discretization of the transport operator.

• Unfortunately, when discontinuous Galerkin methods are used for the

transport equation, the consistent diffusion discretizations are of a mixed

form and can be very expensive to solve.
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Solution of the Radiative Transfer Equations

• A great deal of research effort has been spent over the last 20 years or so

to find ways to either use simpler diffusion discretizations or solve the full

discretizations in an approximate manner without significant loss of

effectiveness.

• These efforts have met with limited success.

• Furthermore, over the last five years or so, it has been recognized that

traditional acceleration techniques are not uniformly effective in

multidimensional calculations even when consistent diffusion

discretizations are used.

• In particular, it has been found that strong material inhomogeneities can

degrade effectiveness and occasionally generate instabilities.
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Solution of the Radiative Transfer Equations

• It has now become clear that by recasting traditional accelerated iteration

schemes as preconditioned Krylov methods, far greater lattitude in the

choice of diffusion discretization is possible, the degrading effects of

strong material inhomogeneities can be significantly reduced, and any

associated instabilities eliminated.

• Consequently, there is currently a great deal of research within the

computational transport community devoted to preconditioned Krylov

methods.
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Solution of the Radiative Transfer Equations

• As previously noted, the radiative transfer equations are generally solved

via an approximate form of Newton’s method.

• After linearization, temporal discretization (backward-Euler), and energy

discretization (multigroup), we are able to eliminate the temperature from

the transport equation:

−→

Ω ·
−→

∇ Ig +σ∗

τ,gI =
1

4π
σ∗

s,gφg +
1

4π
νχg

G
∑

k=1

σ∗

a,kφk +ξg , g = 1, G,

• and obtain an intensity-dependent temperature equation:

T = T ∗+
∑G

g=1 σ∗

a,g

[

φg − 4πB∗

g

]

+ C∗

v

∆tk (Tn − T ∗)

C∗

v

∆tk +
∑G

g=1 σ∗

a,g4π
∂B∗

g

∂T

,
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The Equations of Thermal Radiation Transport

• where

σ∗

τ = σ∗

t + τ ,

τ =
1

c∆tk
,

ν =

∑G
g=1 σ∗

a,g4π
∂B∗

g

∂T

C∗

v

∆tk +
∑G

g=1 σ∗

a,g4π
∂B∗

g

∂T

χg =
σ∗

a,g
∂B∗

g

∂T
∑G

k=1 σ∗

a,k
∂B∗

k

∂T

,

ξg = σ∗

a,gB
∗

g + τIn
g −

1

4π
νχg

[

G
∑

k=1

σ∗

a,k4πB∗

k +
C∗

v

∆tk
(Tn − T ∗)

]

.
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Source Iteration

• The traditional method for solving the transport equation is a nested

source iteration.

• Denoting the iteration index by ℓ, the inner iteration can be represented as

follows:

−→

Ω ·
−→

∇ Iℓ+1
g + σ∗

τ,gI
ℓ+1
g =

1

4π
σ∗

s,gφ
ℓ
g +

1

4π
νχg

G
∑

k=1

σ∗

a,kφk + ξg ,

• and the outer iteration can be represented as follows:

−→

Ω ·
−→

∇ Iℓ+1
g + σ∗

τ,gI
ℓ+1
g −

1

4π
σ∗

s,gφ
ℓ+1
g =

1

4π
νχg

G
∑

k=1

σ∗

a,kφ
ℓ
k + ξg .
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Source Iteration

• The operator
−→

Ω ·
−→

∇ + σ∗

τ,g involves no angular or energy coupling.

• When spatially discretized it takes on a block lower-triangular form with a

block corresponding to the intensities within a single spatial cell for a

single direction and energy.

• This operator is easily inverted using a “wavefront” or “sweep” algorithm.

• The attenuation of errors in φg determines the convergence rate of the

inner iteration process.

• The attenuation of errors in f =
∑G

g=1 σ∗

a,gφg determines the

convergence rate of the outer iteration process.
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Source Iteration

• The inner iteration process can become arbitrarily slow to converge as

σ∗

s,g → σ∗

τ,g . This corresponds to scattering dominating absorption.

• The outer iteration can become arbitrarily slow to converge as ν → 1 and

τ → 0. This physically corresponds to strong material-radiation coupling

(small heat capacity and large absorption cross section).

• For the case of an infinite homogeneous medium, Fourier analysis can be

used to demonstrate that the most slowly converging error modes for both

iterations are those that slowly vary in space.

• Thus the inversion of
−→

Ω ·
−→

∇ + σ∗

τ,g via sweeps is a form of relaxation:

high-frequency errors are strongly attenuated, while low-frequency errors

are poorly attenuated.
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Diffusion-Synthetic Acceleration

• Inner source iteration with diffusion-synthetic acceleration (DSA) takes the

following form:

−→

Ω ·
−→

∇ I
ℓ+ 1

2

g + σ∗

τ,gI
ℓ+ 1

2

g =
1

4π
σ∗

s,gφ
ℓ
g +

1

4π
νχg

G
∑

k=1

σ∗

a,kφk + ξg ,

−
−→

∇ ·
1

3σ∗

τ,g

−→

∇ δφg +
(

σ∗

τ,g − σ∗

s,g

)

δφg = σ∗

s,g

(

φ
ℓ+ 1

2

g − φℓ
g

)

,

φℓ+1
g = φ

ℓ+ 1

2

g + δφg .
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Diffusion-Synthetic Acceleration

• For the case of an infinite homogeneous medium, Fourier analysis can be

used to demonstrate that the diffusion step completely attenuates the

low-frequency error modes and grossly underestimates the high-frequency

error modes, which are already strongly attenuated by the sweep.

• This is the best one can hope for in a low-rank approximate inverse.

• The scheme is unconditionally effective in 1-D and only becomes

ineffective in strongly heterogeneous multidimensional problems.
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Linear Multifrequency-Grey Acceleration

• Outer source iteration with LMFGA takes the following form:

−→

Ω ·
−→

∇ I
ℓ+ 1

2

g + σ∗

τ,gI
ℓ+ 1

2

g −
1

4π
σ∗

s,gφ
ℓ+ 1

2

g =
1

4π
νχgf

ℓ + ξg ,

−
−→

∇ ·〈D〉
−→

∇ δΦ + [〈σa〉 (1 − ν) + τ ] δΦ = ν
(

f ℓ+ 1

2 − f ℓ
)

, (1)

f ℓ+1 = f ℓ+ 1

2 + 〈σa〉δΦ ,

Presentation at the Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA, March 31, 2009 Slide 20/42



Linear Multifrequency-Grey Acceleration

• where

〈D〉 =
G

∑

g=1

ςg
3σ∗

τ,g

,

〈σa〉 =
G

∑

g=1

σ∗

a,gςg ,

ςg =

χg

σ∗

τ,g

∑G
k=1

χk

σ∗

τ,k

.
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Linear Multifrequency-Grey Acceleration

• For the case of an infinite homogeneous medium, Fourier analysis can be

used to demonstrate that the diffusion step completely attenuates the

low-frequency error modes and grossly underestimates the high-frequency

error modes, which are already strongly attenuated by the transport solves.

• This is the best one can hope for in a low-rank approximate inverse.

• The scheme appears to be unconditionally effective in 1-D but can

apparently become unstable in strongly heterogeneous multidimensional

problems.

• This motivates us to develop a preconditioned Krylov method based upon

the multifrequency-grey acceleration technique.
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Krylov Methods

• Suppose one wants to solve a linear system of the following form:

A
−→

x =
−→

y ,

where A is a matrix,
−→

x is the solution vector, and
−→

y is the source

vector.

• To solve this system using a Krylov method, one must simply be able to

provide the Krylov routine with the action of A on an arbitrary vector,
−→

z ,

i.e., one must compute
−→

v where

−→

v = A
−→

z .

• For the case of radiative transfer, the matrix A is dense and the action of

A must be calculated in an indirect manner.
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Krylov Methods

• Characterizing the convergence of Krylov methods for general matrices is

difficult, but there is one simple rule that can be followed: convergence will

improve as the domain of the eigenvalues becomes smaller and as the

domain moves away from the origin.

• Furthermore, all Krylov methods converge in one iteration in the limit as

the matrix A approaches the identity.

• Preconditioning can be used to improve convergence by modifying the

spectrum of the constituent operator without changing the solution of the

equation.

• We use traditional acceleration schemes to provide preconditioning and

we define our preconditioned equations directly from the accelerated

iteration equations.
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Preconditioned Systems from Iteration Schemes

• We now show how to construct a preconditioned system of equations from

the accelerated iteration equations.

• We begin by expressing the accelerated iteration scheme in standard

single-step form:
−→

x
ℓ+1

= Mxℓ +
−→

q ,

where
−→

x is the solution vector, M is the iteration matrix,
−→

q is the

source vector, and ℓ is the iteration index.

• Although most schemes are more easily expressed in a multi-step form, it

is simply a question of algebra to obtain the single-step form.

• We next rewrite this iteration scheme in the form of Richardson iteration:

−→

x
ℓ+1

=
−→

x
ℓ
+

−→

q − (I − M)
−→

x
ℓ
.
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Preconditioned Systems from Iteration Equations

• Note that Richardson iteration is being performed on the following system:

(I − M)
−→

x =
−→

q .

• This the preconditioned system solved with the Krylov method.

• Note that the generating the action of this operator almost identical to

perfoming an iteration.

• If the accelerated iteration scheme is highly effective, the iteration matrix

M must be ”close” to the zero matrix, and if this is so, then the matrix

(I − M) must be “close” to the identity matrix.

• Thus it follows that a Krylov method should be highly effective for solving

the preconditioned system.
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Preconditioned Systems from Iteration Equations

• It would seem from this result that there is only one way to formulate the

preconditioned system, given an accelerated iteration scheme, but the

same iteration scheme can sometimes be expressed in terms of different

unknowns.

• One generally wants the preconditioned system to have the unknown of

lowest possible rank.

• This rank is given by the rank of the operator that is being iterated upon.
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Nested traditional iteration versus nested Krylov

• There is one disadvantage of nested Krylov methods relative to nested

acceleration schemes that is not immediately obvious, but easily

understood.

• We define a nested scheme to be one in which one or more equations

must be iteratively solved to obtain the action of the consituent operator.

• For an acceleration scheme, the solution for each of the nested systems

converges as the outer iteration proceeds. Thus one has an increasingly

better initial guess for the nested iterations.

• This is not the case for a nested Krylov vector because the Krylov vectors

do not converge to the solution.

• Thus the nested iterations associated with Krylov methods can take much

longer on the average than those associated with acceleration schemes.
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Nested traditional iteration versus nested Krylov

• There is some theory regarding techniques for maximizing the nested

convergence tolerance in Krylov iterations.

• A. Bouras and V. Frayssé, “A Relaxation Strategy for Inexact

Matrix-Vector Products for Krylov Methods,” European Centre for

Research and Advanced Training in Scientific Computation, Toulouse,

France, CERFACS TR/PA/00/15 (2000), Submitted to SIAM J. Matrix

Anal. Appl.,

http://www.cerfacs.fr/algor/reports/2000/TR PA 00 15.ps.gz.

• V. Simoncini and D. Szyld, “Theory of Inexact Krylov Subspace

Methods and Applications to Scientific Computing,” SIAM J. Sci.

Comput., 25, 454–477 (2003).

• Krylov methods may have concrete advantages over acceleration

schemes for maximizing the nested convergence tolerance.
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LMFG-Preconditioned Systems

• We consider two LMFG-accelerated iteration schemes and associated

preconditioned systems.

• The first system corresponds to the standard LMFG iteration scheme, but

its unknown is the absorption rate f rather than the intensity.

• A significant advantage of this system is that the f -vector is low-rank

relative to the I-vector.

• A disadvantage of this system is that it is nested with G independent

transport equations and one grey diffusion equation that must be solved to

obtain the action of the associated operator.

• Once the absorption rate has been obtained, the intensities are obtained

by solving G independent transport equations:

−→

Ω ·
−→

∇ Ig + σ∗

τ,gIg −
1

4π
σ∗

s,gφg =
1

4π
νχgf + ξg .
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First Preconditioned System

CBf = C

G
∑

g=1

σ∗

a,gPA
−1
g ξg ,

where

P〈·〉 =

∫

4π

〈·〉 dΩ ,

Ag ≡
−→

Ω ·
−→

∇ + σ∗

τ,g −
1

4π
σs,gP ,

B =



I −

G
∑

g=1

σ∗

a,gPA
−1
g

1

4π
νχg



 ,

C ≡
(

I + 〈σa〉H
−1ν

)

,

H ≡ −
−→

∇ ·〈D〉
−→

∇ + [〈σa〉(1 − ν) + τ ] .
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LMFG-Accelerated Preconditioned Systems

• The second system corresponds tc a “modified” LMFG iteration scheme,

but its unknown is the group-dependent angle-integrated intensities

{φg}
G
g=1.

• In particular, the modified iteration scheme corresponds to the substitution

of one sweep for each of the G independent transport solves:

−→

Ω ·
−→

∇ I
ℓ+ 1

2

g + σ∗

τ,gI
ℓ+ 1

2

g =
1

4π
σ∗

s,gφ
ℓ
g +

1

4π
νχgf

ℓ + ξg ,

−
−→

∇ ·〈D〉
−→

∇ δΦ + [〈σa〉 (1 − ν) + τ ] δΦ = ν
(

f ℓ+ 1

2 − f ℓ
)

,

f ℓ+1 = f ℓ+ 1

2 + 〈σa〉δΦ .
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LMFG-Accelerated Preconditioned Systems

• An advantage of this system is that the φ-vector is low-rank relative to the

I-vector, but a disadvantage is that the φ-vector is high-dimensional

relative to the f -vector.

• An advantage of this system is that only G independent “sweeps” and one

grey diffusion solve must be performed to obtain the action of the

associated operator.

• A disadvantage of this system is that it corresponds to less effective

version of the LMFG method, however it is only intended to be applied in

problems with weak scattering.

• Once the angle-integrated intensities have been obtained, the intensities

are obtained by performing G independent sweeps:

−→

Ω ·
−→

∇ Ig + σ∗

τ,gIg =
1

4π
σ∗

s,gφg +
1

4π
νχgf + ξg .
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Computational Results

• We do not yet have computational results for two LMFG-preconditioned

systems.

• We do have results that:

• Compare a traditional acceleration scheme and its preconditioned

Krylov counterpart.

• Demonstate the disadvantage of Krylov methods with respect to nested

iterations.
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A Multigroup Diffusion Example

• We have tested a LMFG-preconditioned Krylov method that solves the

following equation:

−
−→

∇ ·D∗

g

−→

∇ φg + σ∗

τ,gφg − νχg

G
∑

k=1

σ∗

a,kφk = ξg , g = 1, G,

• The method is analogous to our transport method.

• The only significant difference is that

Ag ≡ −
−→

∇ ·Dg

−→

∇ + σ∗

τ,g .

• Thus we solve a diffusion equation rather than a transport equation for

each group.

Presentation at the Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA, March 31, 2009 Slide 35/42



A Multigroup Diffusion Example

• There are really only two material regions, the middle region facilitates

non-uniform zoning.

• There are two problems: one with a uniform density everywhere and the

other with a density jump of 1000 between the inner and outer regions -

both were performed with the same 10-group cross sections.

• The radiation source is turned on at t = 0 and radiation propagates

through the system.

Cylindrical Geometry for Diffusion Test Problems.

Source

0 1 2 3 4 5 6 7

0.5

1

0

Region 2
Region 1

Region 3

Z

R
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A Multigroup Diffusion Example

Comparisons for the variable–density calculations.

No. of “Outer” No. of “Inner”∆t (sh) Method Time (s)
Iterations Iterations

LMFGK 1.553 7.98 1424.42
0.1

LMFGA 2.992 25.73 2929.14

LMFGK 0.848 3.55 668.40
0.01

LMFGA 0.986 8.07 785.00

LMFGK 0.450 1.26 260.32
0.001

LMFGA 0.417 1.56 190.12
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A Multigroup Diffusion Example

Comparisons for the uniform–density calculations.

No. of “Outer” No. of “inner”∆t (sh) Method Time (s)
Iterations Iterations

LMFGK 0.601 3.41 455.71
0.2

LMFGA 0.646 6.14 472.31

LMFGK 0.561 2.83 403.83
0.1

LMFGA 0.561 4.57 376.99

LMFGK 0.425 1.228 249.49
0.01

LMFGA 0.388 1.375 180.97
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A Multigroup Diffusion Example

Outer iteration counts as a function of time-step number for the

variable–density problem with a 0.1 sh time step.
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A Multigroup Diffusion Example

• The Krylov method always takes fewer outer iterations than the

acceleration method.

• The Krylov method takes significantly fewer outer iterations with a large

discontinuity in density.

• The relative CPU times are not proportional to the number of outer

iterations because the Krylov method requires more inner iterations per

outer iteration than the acceleration method.

• This is the effect that was previously explained.

• The inner solves for the acceleration technique have increasingly better

initial guesses as the solution converges - the guesses are the solutions

from the previous outer iteration.

• The inner iteration solutions for the Krylov method are independent for

each outer iteration, so an initial guess of zero is always used.
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A Multigroup Diffusion Example

• This effect causes the Krylov method to be about 10 percent less efficient

than the acceleration scheme in the worst case.

• Nonetheless, the Krylov method is about two times more efficient than the

acceleration scheme in the best case.

• The ratio of iterations between the two methods varies significantly

between time steps.

• The acceleration method has been observed to go unstable in complex

and highly heterogeneous calculations.

• The Krylov method has so far remained effective in such calculations.

• Heuristic methods have been developed to deal with the instabilities of the

acceleration technique, but a robust method is always preferable.
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Concluding Remarks

• The robustness and versatility of Krylov methods eliminates many of the

problems associated with traditional accelerated iteration schemes.

• There may be many simplified variants of traditional iteration schemes that

are themselves unstable but still may provide effective preconditioned

systems for solution via Krylov methods.

• Ongoing work:

• Computationally compare the two LMFG-preconditioned systems.

• Investigate nested tolerance maximization algorithms for both Krylov

solvers and traditional acceleration schemes.
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