An Eulerian Gaussian Beam Method for
Semi-classical Limit of the Linear
Schrodinger Equation

Shi Jin, Wisconsin
Hao Wu, Tsinghua, China
Xu Yang, Princeton

Supported by NSF grant and

NSF FRG grant ” Kinetic Desciptions of Multiscal Phenomena: Modeling, and Computation
and Applications

http://www.cscamm.umd.edu/frg/#



High frequency waves
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Fig. 1. The electromagnetic spectrum, which encompasses the visible region of light, extends
from gamma rays with wave lengths of one hundredth of a nanometer to radio waves with wave

lengths of one meter or greater.

High frequency waves: wave length/domain of computation <<1



Difficulty of high frequecy wave
computation

e Consider the example of visible lights in this
lecture room:

wave length: ~ 10°m
computation domain ~ m
1d computation: 10° ~ 107
2d computation: 1012 ~ 1014
3d computation: 1018 ~ 1021
do not forget time! Time steps: 10° ~ 107




An Example: Linear Schrodinger
Equation

2
ie t;l'g—l—%.&ﬂl' — V=10 xR, t=0

Sgix)
w(x,0) = Ag(x)e" -

In this equation, ¥ (x.t) 15 the complex-valuaed wave
function, € 1s or 1s playving the role of Planck's con-
stant. It 1s assumed to be small here. The solution
ir and the related physical observables become os-
ciifatory in space and time in the order of O(e),
causing all the mathematical and numerical chal-
lenges.



Semiclassical limit of the linear schrodinger
eqguation

If one can find the asymptotic (semiclassical) limit as
¢ —> 0 then one can just solve the limiting equation
numerically.



The WKB Method

We assume that solution has the form (Madelung Transform)

(X, 1) = A(x.t)e' «

and apply this ansatz into the Schrodinger equation with initial data.
Separating the real part from the imaginary part, and keeping only the leading
order term, one can get

: 1 : ,
St + 5|‘F5’|2 +V =0 eiconal equation

(JA]?) + V - (JA|?VS) = 0 transport equation



Multivalued solutions

This limit is not valid at and beyond caustics;
Multivalued solution (rather than the viscosity
solution) Is the correct one beyond caustics:

« Homander, Maslov, Keller, Whitham, Flashka-Forest-
MacLaughlin, Lax-Levemore, Majda-Majda-Zheng, Brenier,
Gosse, Sparber-Markowich-Mauser, Jin-Li, Engquist-
Runborg, Jin-Osher-Cheng-Liu-Tsal, etc.



Shock vs. multivalued solution for velocity




Multivalued phase

(a) Correct solution (b) Eikonal equation



Semiclassical limit in the phase space

Wigner Transform

Wex. k) = (L) d

ikv oo e y )
e Yh(x — )P (x “dy
=)/ b(x = DU+ )d:

where \overline{wy} is the complex conjugate of .

A convenient tool to study the semiclassical limit

(Lions-PauI; Gerard, Markowich, Mauser, Poupaud)



The semiclassical limit in phase space

As ¢ — 0, the limit Wigner equation is the Liou-
ville equation in phase space

W4k VW =YV ¥ W =0

with the initial condition

W(0,x,k) = |4g(x)0(k — VSp(x))



Problem at caustics

 The GO limit is invalid at caustics since
the density blows up there — inaccurate for
seismic imaging ( Hill, Geophys, 1990,
2001)



Errors at caustics

e Semiclassical limit
(Liouville equation)

e Semiclassical limit

with phase-shift
(Keller-Maslov index)
(Jin-Yang, JSC 08)




Gaussian beam method

 More accurate at caustics

& (tx,yg) = Alt,y)el U=/ (2.1)

where y = y(t,yg) and T(t,x,y) 1s given by the Taylor expansion

Iit,e,y) =St y)+plt.y)(z-y) +1 z—y) M(t,y)(x—y)+0(|z—y[).

(2:2)
in which (z — y)" is the transpose of (z —y). Here SeR, pe B", A € C.
M e C*", The imaginary part of M will be chosen so that (2.1) has a
Ganssian beam profile. We call (2.1) as the beam-shaped ansatz,



Lagrangian formulation

* Applying this ansatz to the Schrodinger
equation, ignoring O(g?) and O(|x-y|3)
terms, one can derive the following set of
ODEs (in the Lagrangian coordinate

dy/dt=p) for M(t,y), S(t,y), and A(t,y):



Lagrangian formulation

dy

a P o

dp yllyyg) = wyg

= = Y.} . s

At ® Pl yg) = VaSolyg).
"L;‘: — —M?-V2iV, M(0,yy) = ‘Fi.ﬂ'n(yn']—l—ff.
|l . \ . y

s _ 1.2y, S(0,yg) = Solwg),

e 2 ' A0, ys) = Aglyq).
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Properties (following Ralston ‘82)

Theorem 2.1 Let Pt y(t,yy)) and R(t, y(t.yy)) be the (global) solutions
of the equations

dF dR 95,
— =R, —=—=(VV)P. 217
dt T (Val) (2.17)
with initial conditions
PO, yg) =1, R(0,yg) = M(0,yg). (2.18)

where matriz I i the identity matriz and Im{M(0,vy,)) is positive definite.
Assume M(0,yq) 18 symmetric, then for each initial position yg, we have
the following resulits:

1. Pit,ylt.yg)) s tnvertible for allt > 0,
2. The solution to equation (2.14) is given by

M(t,y(t.up)) = Rit.u(t,uo) )Pt u(t.up)) (2.19)

3. M(t.y(t.yy)) is symmetric and Im(M (t.y(t,yy))) is positive definite
for all t = (0.



Density does not blow up

Moreover, AZ det(P-1) is conserved in time, thus
|A| Is always finite If it is initially (note P =I)

Lagrangian Gaussian beams for waves:

Cerveny-Popov-Psencik ('82), Hill ("90, '01),
Tanushev-Qian-Ralston-Leung-Burridge ('07-),
Matamed-Runborg ('08)

Gaussian beams in quantum chemistry: Heller,
etc.

Laser physics, etc.



The Lagrangian beam summation

*I}fa['f.m} (

The diserete form of (2.28) in a bounded domain is given by

) sl —ylt,yg) )y a‘ T, Yo ) dyp. {
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The Eulerian formulation

* Recall the semiclassical limit of the linear
Schrodinger equation is (via Wigner
transform) is the Liouville equation:

LT=61+& -V, I-VV.V,. 1=0
f(O, X, &) = Al 6(€ - V, Sp)



Level set method

« This initial value problem can be solved by (¢ is the level set function whose
zero gives multivalued u=V, S)

L$p=0, ¢€Rn
00, X, §)=E - V. S,

(¢ is the level set function whose zero gives multivalued u=V, S)

Ly=0, yveR
v(0, x, €)=|A?

F=yd(9)

(Jin-Osher, Cheng-Liu-Osher, Jin-Liu-Osher-Tsai, 03-06)



Eulerian method for the Hessian of S

 Leung, Qian, Burridge '07, 08
LR=-(V5V)P; ReCM™r
LP=R P e Cm™n
M=R P!

This requires to solve 2n? complex-valued,
iInhomogeneous Liouville equations



A key observation

Recall the level set equation

L¢=0 (*)

by taking the y and &-derivatives:
L (V,$)=V4 V V.0, L(V:d)=-Vyo

and comparing these equations with:
LR=-(V4V)P; LP=R

we find that R=-V, 0, P=V;¢
provides they are given the same initial data and

Thus M=-V, ¢ (V. $)*



Our level set method

e Solve L$p=0 ¢peCn
with ¢(0.y,E)=-1y+ (&-V Sp)
(note Re(9)=0 at E&=u=V, S)
* The above Liouville fluxes give V, ¢ and V, ¢ thus M
 From u one can obtain S (Gosse, Jin-Yang)
« Solves L y=0, ye R

with w(0, y, £)=[A|*
then A(t, x)= (det (V. ¢)) v)"/? (principle value)

The complexity is comparable to the level set method for
semiclassical limit; only now that ¢ € C" rather than R»



The method Is well-defined!

 The density A does not blow up!

Theorem 3.2 Let ¢ = ¢(t.y,&) € C be the solution of (3.5) with metial
data (3.14). Then we have the following: properties

1. Ve is non-degenerate for all t > 0.

2. Im (—?ytﬁ('ﬁgfﬁ)_l] is positive definite for allt >0, y, & € R".



The Eulerian Gaussian beam summation

Define
Peult. .y, &) = A(t, y, §)et mvIE,
where

Tit, @, y,&) =5y, §) + & (@ —y)+ (@~ y) "Mt y. &)z — y).

then the wave function is constructed via the following Eulerian Gaunssian
beam summation formmila:

DL (@) = f / (‘?T’) rol® — u)we, (t, =y, £)IT_16(Re[o;] )dEdy.
(3.20)
in which ry € C57(IR"). rg = 0 1s a truneation function with rp = 11in a
ball of radius ¢ = 0 about the origin and & is the Dirac delta function. The



Evaluation of the singular integral

e This (singular) integral can be written as

. . 1 \T . ot (L gy, ug) . .
PL (t.x) =/ ( ) rgle —y) y —— = 17 —dy, (3.21)
“ n \ 2me Z:;: |det(Re[Ved]|g—, )|

Since det (I{,G[TEG'J]} = 0 at canstics, a direct numerical integration of
(3.21) loses accuracy around singularities (see Example 3 in Section 5 for
the detailed namerical demonstrations). To get a better accuracy, we split
(3.21) into two parts

. 1 T s (e, . ) _ .
I = f ( ) role —y) ——= . —dy, (3.22)
ZA:: L, \2me |det(Re[Ved g, )|
. 1 T s (e, . ) _ .
Is = f ( ) re(e — y)——— . —dy. (3.23)
Zk: Ly \2m= |[det(Re[Ved|g—uw, )|
where
L1 = {-y“{1L1T{R{=[Tp€3]['t.y~pj']}| >},

Ly — {.y | det(Re[Vpé](t, y, p;))| < r}k

with 7 being a small parameter.



In our nmmerical simulations, [ is treated using the trapezoid guadrature
rile, while the singular integral 5 is treated by the semi-Lagrangian method
introduced in [19]. For convenience we summarize the semi-Lagrangian
method here. Suppose we take a number of discrete beams centered at
y, j=1,-.., M, with the velocity ui on the contour, the idea 1s to trace
each individual {yj.u-;] back to the initial position {yﬂ.uiﬂ} using (2.12)-
(2.13) with t — —t, then determine the weight function wlfyf:,‘,l for it. For
example in one dimension, if the two adjacent points of yé are -yﬂl ancl -ygﬂ
such that o' < u) < y@2, then w(yg) = (y? — 2! )/2 (see Page 68 in [19] for
details). In this process one gets rid of the singular term by noticing that

dyg = dy. The discrete form of (3.23) reads as
Yo |det(Re[Ved] gm, )| Y of (3.23)
L 1 \2 | o |
=) (Q,T) ro(@ — y? )i, (t @,y ug )w(vy). (3.24)
i=1 &



* Note we use the semi-Lagrangian method
only locally (around caustics). This
maintains the efficiency and accuracy of
the Eulerian method



Computational cost

e Use Ay=0(e!?), A t= O(g!/?)
cost: O(g(MD/2|n g1/2)

* The direct simulation of the linear
Schrodinger equation (via time-splitting
spectral): A y= O(g), A t= O(1)
cost: O(e™M)



1d numerical example (¢=10+*
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Error rate of Gaussian beam




An 2D example
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Figure 9: Example 4, the two components of the multivalued velocity at
t =0.5.



Wave amplitude

15 15

Figure 10: Example 4, the comparison of the wave amplitude between the
Schrodinger solution W= on the left and the Eulerian beams solution ©F, on
the right for £ = 0.001 and at £ = 0.5.



Maximum error ~ O(gl/?)
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Figure 11: Example 4, the error plot of ||¥®| — |D,||.



Schrodinger equation with periodic
potentials

e Joint with Wu-Yang-Huang

e 2
je— = —— AT + Vg (

ot g

) U+ ()05, z B,

* Motion of electrons in periodic media
generated by lonic cores

* Photonic crystal; Bose-Einstein
condensations, elastic waves, etc.




Bloch decomposition

H(k,z) = =(—i8, + k)? + Vp(2),

 E_(k): m-the energy band
* vn(K): corresponding eigenfunctions



Semiclassical limit

When ¢ 0, the semiclassical limit is the
superposition of Liouville equation for each
Bloch band

Analytic study of Gaussian beam for Bloch
electron (Dimassi-Guillot-Ralston MPAG 06)

Use of Bloch basis for numerical computation
(Huang-Jin-Markowich-Sparber, SISC 07) better
than Fourier spectral method when resolving
oscillations

Computation of the limit using level set: (Liu-
Wang, JCP 09)



Bloch-decomposition based
Gaussian beam method

 \We combined the Bloch decomposition
with our Eulerian Gaussian beam methods

e Important since every band may generate
caustics. there are many caustics!




Mathieu’'s model: V(x)=cos(x)

18 1|
12 | | - 9l ]
12 !l i |J [ 4
o i '
- l |'| I " ’| ]
;; } | |'|‘-’ .I ] !,’I fL‘I' i
oz i ‘L-' M,
o= T
o -8 -2 04 -0z ER— -2 0.8 04 -0z o
x x
1
a) s = —
(@) 128
18 — o
1.4 - || 038

N

I -
» N

"; M,MLM“'W’II!\I]![

-0.2 -0.0
-1 -08 -08 -04 -02 a -1 -0.8 -0.8 -04 -02 a
) .
1
512
04
-
& cas
1.4
0.3
1.2
0.25]
1
0.2]
08
. .15
04 o1
” el — |
0 [+]
-0.2 -0.0¢
-1 -0.8 -0.6 -04 -0z a -1 -0.5 -0.8 -04 -0.2 1]
) X
1
(c) e = -
2048

Figure 3: Example 2, the Schrédinger solution |¥F| versus the Gaussian
- - ar B -3
beams solution |OF 5 3
parisons of the wave amplitude at

[ — @5

ﬁ. The left figures are the com-
2;

p — 1
at £ = 195

12>
=0



Extensions

Schrodinger-Poisson equations
Interface (partial transmission/reflection)
Elastic waves through periodic arrays

Quantum chemistry applications (surface
hopping etc)



Open problems

« Can one derive these complex valued Liouville
equations from the Schrodinger equations using
Wigner type of transformation?

e Using Gaussian beam ansatz, can one derive
new quantum hydrodynamic equations (QHD)
that are more accurate than the the QHD using
Madelung transformation?

« What kind of regularizations does the Gaussian
profile provide to the QHD?



Conclusions

e A new Eulerian Gaussian beam method

1) in dimension n, based on solving only n
complex-valued and 1 real-valued
homogeneous Liouville equation

(solving 7 homogeneous equations in 3D rather
than 40 inhomogeneous eguations)

2) Gaussian beam method now
geometric optics (for the time evolution)

e Future applications in many interesting problems
In high frequency waves and quantum chemistry
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