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Abstract

We review a few problems issued from the modeling of the transport of charged particles,
subject to the influence of given or self-consistent electric fields. We describe some of the
mathematical methods introduced to deal with these problems.

1 A review of the models

Let us start by presenting the different possible modeling for charge transport. The motion of
charged particles is indeed governed by the surrounding electro-magnetic field. However, local
concentration and movements of charges also create electric fields and currents which, in turn,
lead to nonlinear PDEs. The topics is very active since the 80’s, motivated by applications in
plasma physics and the modeling of semiconductor devices, the reduction of the size of the devices
demanding accurate description (see the classical treatise [72] or surveys in [76], [30]). Projects of
energy production based on strong electromagnetic or inertial confinment is currently motivating
intense research, it is definitely a source of challenging mathematical problems, see [56]. Interest for
these models also comes from spacecraft engineering: a spacecraft interacts with the surrounding
plasma and, depending on the environment, difference of potential might appear between some
places of the spacecraft, or between the spacecraft and the plasma. These potential gradients can
produce the formation of electrical arch which in turn produce devices failures and possibly the lost
of the spacecraft. Understanding of these complex phenomena can help in preventing such violent
consequences of the charge mechanisms. Such a problem is addressed for instance in [26, 25, 89, 90].
We mention also specific models for dealing with ionospheric plasmas [11]. It is worth pointing out
that models having a similar structure than those of charge transport appear in different fields
of physics and can lead to related interesting mathematical difficulties; we mention in particular
the case of particles subject to gravitational forces in astrophysics [24], the recent development of
kinetic or hydrodynamic models in biology [23]... These models are particularly challenging since
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singularities can appear in finite time. We also mention fluid/particles flows with application in
combustion theory [94] or for describing pollutants transports [1, 2, 18, 38, 57, 52, 53, 20, 54]... We
distinguish:

- quantum models, which are based on the Schrödinger equation,
- kinetic models, collisional or not, where a statistical viewpoint is adopted, particles being

described by their particle distribution function in phase space,
- hydrodynamic models where the charge transport is described by classical models of contin-

uum mechanics.

1.1 Quantum models

A fine description of electrons in a crystal takes into account quantum effects. Hence, electrons
are described through their wave function ψ(t, x) ∈ C, where t and x stand for the time and the
space variables respectively. This quantity itself has no physical meaning, but instead |ψ(t, x)|2 is
interpreted as a probability density: ∫

Ω

|ψ(t, x)|2 dx

is the probability of finding electrons in the domain Ω ⊂ RN at time t. We thus associate to this
quantity some physical observables, like the density of electrons at time t and position x defined
by

n(t, x) = |ψ(t, x)|2,
or the current density given by

J(t, x) = Im
(
ψ(t, x)∇xψ(t, x)

)
The wave function obeys the Schrödinger equation

i~∂tψ = − ~2

2m
∆xψ + qV ψ (1.1)

where

• ~ > 0 stands for the reduced Planck constant,

• q > 0 stands for the electron charge,

• m > 0 stands for the electron mass,

while V is the potential the charge particles are subject to. It splits into the given potential Vp

of the crystal in which the electrons are evolving and the self-consistent potential Vs created by
the charged particles themselves. The former takes into account the structure of the crystal and
therefore presents naturally some oscillations which can be modeled either by periodic or random
variations. The latter is defined through the following Poisson equation

−ε0

q
∆xVs = n−B (1.2)
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where ε0 is the permittivity and B some given background density of positive charges. Hence, it
makes the problem non linear since the term Vsψ in (1.1) depends quadratically on the unknown.

Let us briefly comment on (1.2). When working on the whole space RN , the Poisson equation
(1.2) should actually be understood as the convolution formula

ε0

q
Vs(t, x) =

∫
RN

EN(x− y)(n−B)(t, y) dy

=

∫
RN

∫
RN

EN(x− y)f(t, y, ξ) dξ dy −
∫

RN

EN(x− y)B(t, y) dy,
(1.3)

where

EN(x) =



−|x|
2

if N = 1,

− 1

2π
ln |x| if N = 2,

1

4π |x|
if N = 3,

CN
1

|x|N−2
if N > 2 with CN > 0

(1.4)

stands for the elementary solution of the Laplacian (−∆x). Note that, when B = 0, n ≥ 0, we
have Vs ≥ 0 for N ≥ 3.

1.2 Kinetic models

We can also adopt a statistical description of the charge transport by introducing the density of
particles in phase space: f(t, x, ξ) ≥ 0, where ξ is the so-called wave vector variable, is such that

f(t, x, ξ) dξ dx

gives the number of particles at time t in the ball centred on (x, ξ) with volume dξ dx in phase
space. This quantity obeys the following PDE

∂tf + v(ξ) · ∇xf −
q

m
∇xV · ∇ξf =

1

τ
Q(f). (1.5)

The left hand side describes the transport of particles, while the interaction mechanisms the par-
ticles are subject to (binary collisions, collisions with impurities or another species of particles...)
are embodied into the “collision” operator Q(f). The parameter τ > 0 is a relaxation time; it
characterizes how often such collision events occur. The function

v : RN −→ Rd

ξ 7−→ v(ξ)

is the velocity of the particles. We associate to this statistical quantity some macroscopic quantities
like the macroscopic density

n(t, x) =

∫
RN

f(t, x, ξ) dξ,
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the macroscopic current

J(t, x) =

∫
RN

v(ξ) f(t, x, ξ) dξ = nu(t, x)

u being the bulk velocity, and the temperature

NnΘ(t, x) =

∫
RN

∣∣v(ξ)− u
∣∣2 f(t, x, ξ) dξ.

Let us neglect temporarily the interaction mechanisms and assume Q = 0. Then (1.5) can be
interpreted by reasoning on the characteristics equations: we define X(t; s, x, ξ) and Ξ(t; s, x, ξ)
solution of the ODE system{

d

dt
X = v(Ξ),

d

dt
Ξ = − q

m
∇xV (t,X)

X|t=s = x, Ξ|t=s = ξ.
(1.6)

Then, (1.5), with Q = 0, reduces to the simple conservation ODE

d

dt
f
(
t,X(t; s, x, ξ),Ξ(t; s, x, ξ)

)
= 0.

Accordingly, given the initial data
f|t=0 = f0

the solution is given by
f(t, x, ξ) = f0

(
X(0; t, x, ξ),Ξ(0; t, xξ)

)
. (1.7)

Then, the equation agrees with Newton’s law: derivative of the position is the velocity, derivative
of the momentum equals the applied force. As a matter of fact, in the absence of force, that
is V = 0, particles are moving freely and keep constant velocity: we get Ξ(t; s, x, ξ) = ξ and
X(t; s, x, ξ) = x + (t − s)ξ so that f(t, x, ξ) = f0(x − tξ, ξ) in this simple case. However, this
approach leads to a couple of mathematical difficulties, in particular when we consider non–linear
models where the potential depends on the unknown by the coupling induced by (1.2). On the one
hand, (1.6)–(1.7) is not a closed relation in this case since the potential and thus the characteristics
depend on the unknown f itself. On the other hand, (1.6) makes sense under some regularity
assumptions (applying the Cauchy-Lipshtiz Theorem requires ∇xV to be locally Lipschitz with
respect to the space variable...) and it is not clear at all that the necessary regularity is guaranteed
when dealing with such nonlinear models. Anyway, this reasoning gives another (fruitful) way of
thinking the motion of electrons: considering a finite set of M particles subject to a given (smooth)
potential Vp, the trajectories obeys (1.6). Namely, for any j ∈ {1, ...,M}, we have{

d

dt
Xj = v(Ξj),

d

dt
Ξj = − q

m
∇xVp(t,Xj, )

Xj,|t=s = xj, Ξj,|t=s = ξj.

Then, we check that the distribution

f(t, x, ξ) =
M∑
i=1

δ(x = Xj(t; 0, xj, ξj))⊗ δ(ξ = Ξj(t; 0, xj, ξj))
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verifies
∂tf + v(ξ) · ∇xf −

q

m
∇xVp · ∇ξf = 0.

Self-interaction are described at the M−particles level by the coupled EDO system
d

dt
Xj = v(Ξj),

d

dt
Ξj = −∇xVp(t,Xj)−

∑
k 6=j

Vs(|Xj −Xk|),

Xj,|t=s = xj, Ξj,|t=s = ξj.

Then a natural and delicate question consists in obtaining the corresponding Vlasov equation by
passing to the limit M →∞.

In the right hand side of (1.5), the collision operator, which can be linear or not, has usually
a specific structure. This structure is motivated by the physical modeling, but it also induces
mathematical properties crucial to the analysis. Usually the operator Q acts only on the variable
ξ and remains local with respect to time and space; it is for instance an integral or a differential
operator with respect to ξ. In particular, a lot of models implies the following key features:

• The operator Q is orthogonal to some functions, usually of polynomial nature, of ξ, which
induces local and conservation properties.

• The functions which make vanish the collision operator have a specific dependence with
respect to the variable ξ, a typical example being

Q(f) = 0 iff f(ξ) = nM(ξ), M(ξ) =
e−E(ξ)∫

RN

e−E(ξ′) dξ′
, ∇ξE(ξ) = v(ξ).

• The operator Q dissipates some quantities, which means that∫
RN

Q(f) Ψ(f) dξ ≤ 0

holds for some function Ψ : R+ → R. These dissipation properties are crucial for the mathe-
matical analysis since they provide useful a priori estimates on the solution (in some sense they
govern the functional spaces to be used). Moreover, the dissipation vanishes when f = nM
is a (local) equilibrium, indicating the relaxation effects of the collisions.

The simplest example is given by the relaxation (or linear BGK) operator

Q(f) = M(ξ)

∫
RN

f(ξ′) dξ′ − f(ξ). (1.8)

It preserves the charge since ∫
RN

Q(f) dξ = 0.
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Accordingly, integrating (1.5) yields the local charge conservation equation relating the macroscopic
charge and current

∂tn+ divxJ = 0,

and thus the global charge conservation

d

dt

∫
RN

n dx = 0.

A slightly more involved operator, the so–called linear Boltzmann operator, reads

Q(f) =

∫
RN

b(ξ, ξ′)
(
M(ξ)f(ξ′)− f(ξ)M(ξ′)

)
dξ′ (1.9)

for some positive and symmetric kernel b(ξ, ξ′) = b(ξ′, ξ) > 0. It describes the binary collisions
dynamics of the electrons with other particles which remain in an equilibrium state described by
the Maxwellian M(ξ). It also implies the charge conservation. Clearly the kernel of Q is spanned
by functions proportional to M : Ker(Q) = Span{M}. We observe also that∫

RN

Q(f)Ψ(f/M) dξ =

∫
RN

∫
RN

b(ξ, ξ′)M(ξ)M(ξ′)
( f

M
(ξ′)− f

M
(ξ)

)
Ψ(f/M)(ξ) dξ′ dξ

= −1

2

∫
RN

∫
RN

b(ξ, ξ′)M(ξ)M(ξ′)
( f

M
(ξ′)− f

M
(ξ)

)
×

(
Ψ(f/M)(ξ′)−Ψ(f/M)(ξ)

)
dξ′ dξ

is non positive for any non decreasing function Ψ. Specializing to Ψ(z) = z and assuming b(ξ, ξ′) ≥
β > 0, it can be interpreted as a spectral gap inequality

−
∫

RN

Q(f)
f

M
dξ ≥ β

2

∫
RN

∫
RN

M(ξ)M(ξ′)
( f

M
(ξ′)− f

M
(ξ)

)2

dξ′ dξ

≥ β

2

∫
RN

(
f −M(ξ)

∫
RN

f(ξ′) dξ′
)2 1

M(ξ)
dξ.

In turn, we deduce the following a priori estimate

d

dt

∫
RN

∫
RN

f 2 dξ

M
dx+

1

2

∫
RN

∫
RN

b(ξ, ξ′)M(ξ)M(ξ′)
( f

M
(ξ′)− f

M
(ξ)

)2

dξ′ dξ ≤ 0,

which tells us, at least, that the solution lies in L∞((0, T );L2(RN × RN ,M−1 dξ dx)).
We can also consider the Fokker-Planck operator

Q(f) = ∇ξ · (v(ξ)f +∇ξf) = divξ

[
M∇ξ

( f

M

)]
(1.10)

which is of differential nature. It verifies∫
RN

Q(f)
f

M
dξ = −

∫
RN

∣∣∣∇ξ

( f

M

)∣∣∣2 M dξ ≤ 0.
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A relevant example of non linear operator is given by

Q(f) =

∫
RN

b(ξ, ξ′)
(
M(ξ)f(ξ′)(1− f(ξ))− f(ξ)(1− f(ξ′))M(ξ′)

)
dξ′, (1.11)

which takes into account Fermi exclusion principles. It vanishes when

(1− f)M

f
(ξ) = µ is constant

that is when f is the Fermi-Dirac distribution

f(ξ) =
M(ξ)

µ+M(ξ)
.

It verifies the charge conservation too and the dissipative properties have been analyzed in [78].
For considering further non linear operators, let us restrict to the simple case where

v(ξ) = ξ, E(ξ) = ξ2/2.

A non linear version of (1.8) is then the BGK operator

Q(f) =
n

(2πΘ)N/2
exp

(
− |ξ − u|2

2Θ

)
− f(ξ). (1.12)

where n, u and Θ, considered as the charge, the bulk velocity and the temperature of the cloud of
particles, are associated to f by the relations

n =

∫
RN

f dξ, nu =

∫
RN

ξ f dξ, nu2 +NΘ =

∫
RN

ξ2 f dξ.

Therefore, when using these definition into (1.5), the macroscopic quantities n, u,Θ depend on
(t, x). Similarly, we can define the non linear Fokker-Planck operator

Q(f) = ∇ξ ·
(
(ξ − u)f + Θ∇ξf

)
. (1.13)

Both the BGK and the Fokker-Planck operator conserve charge, momentum and energy since, by
construction ∫

RN

 1
ξ
ξ2

Q(f) dξ = 0

which yields the conservation laws

∂t

∫
RN

 1
ξ
ξ2

 f dξ +∇x

∫
RN

ξ

 1
ξ
ξ2

 f dξ +
q

m
∇xV ·

∫
RN

 0
I
2ξ

 f dξ = 0. (1.14)
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Note however that (1.14) is not a closed system of equations since the equation for the kth moment
involves the moment of order k+1. Equilibrium states for the BGK and the Fokker-Planck operators
are the Maxwellian distributions

f(ξ) =
n

(2πΘ)N/2
exp

(
− |ξ − u|2

2Θ

)
(1.15)

which are parametrized by total charge, momentum and temperature. The dissipative properties
of these operators are summarized in the so–called “H-Theorem” which consists in observing that∫

RN

Q(f) ln(f) dξ =

∫
RN

Q(f) ln
( f

(2πΘ)−N/2e−|ξ−u|2/(2Θ)

)
dξ

=



∫
RN

(e−|ξ−u|
2/(2Θ)

(2πΘ)N/2
− f

)
ln

( f

(2πΘ)−N/2e−|ξ−u|2/(2Θ)

)
dξ

for the BGK operator∫
RN

∣∣∣∣∇ξ

( f

(2πΘ)−N/2e−|ξ−u|2/(2Θ)

)∣∣∣∣2 (2πΘ)−N/2e−|ξ−u|
2/(2Θ)

f
dξ

for the Fokker-Planck operator
≤ 0.

1.3 Macroscopic models

Eventually, we can adopt a fully macroscopic or hydrodynamic picture of the electrons describing
their motion by the evolution of their macroscopic density n, current J and temperature Θ. The
simplest model relies on drift-diffusion PDE: starting from the charge conservation

∂tn+ divxJ = 0

we postulate the following relation between the current and the density

J = −qn∇xΦ− κ∇xn.

The last term is reminiscent to the standard Fick law and induces diffusion of the particles. The
first term means that particles are convected with −q∇xΦ as velocity field. Taking into account
the coupling with (1.2), the convection depends on the distribution of particles itself. We shall
see below that such model can be derived from (1.5), considering suitable asymptotic regimes and
conservative linear collision operator like (1.8) or (1.10). The interesting question in such derivation
is the identification of the diffusion matrix κ. In the same spirit, non linear models can be obtained
from (1.11). Dealing with more involved operators that conserve also the energy, we are led to the
so-called Energy-Transport models where the unknown is the pair (n,Θ). We can also describe the
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plasma by the standard equations of fluid mechanics. For instance, we can use the Euler system
∂tn+ divx(nu) = 0,

∂t(nu) + Divx(nu⊗ u+ p) = − q

m
n∇xV,

∂t(nE) + Divx
(
(nE + p)u

)
= − q

m
n∇xV · u

(1.16)

where E = e + u2/2 is the total energy and e ≥ 0 is the internal energy. The latter is related to
the temperature Θ, while the pressure is determined by a state law. For instance, we can complete
the problem by using the perfect gas law:

e =
p

(γ − 1)ρ
≥ 0, p = RρΘ.

The set of equations (1.16) can be obtained from the kinetic picture (1.5), endowed with, say
the BGK operator (1.8). Let us assume that the relaxation time is small 0 < τ � 1: τ can be
interpreted as the typical time between collision events. When these events become very frequent,
it is natural to expect a description with a model of continuum mechanics type. Indeed, the
penalization of the collision term forces Q(f) = 0 so that we guess in this regime that f relaxes to
a Maxwellian distribution

f ' n

(2πΘ)N/2
exp

(
− |ξ − u|2

2Θ

)
= Mn,u,Θ(ξ).

We obtain a closed system of equations for the macroscopic quantities (n, u,Θ)(t, x) by inserting
this ansatz into (1.14). We get

∂t

∫
RN

 1
ξ
ξ2/2

Mn,u,Θ dξ +∇x

∫
RN

ξ

 1
ξ
ξ2/2

Mn,u,Θ dξ +
q

m
∇xV ·

∫
RN

 0
I
ξ

Mn,u,Θ dξ = 0

∂t

 n
nu
nu2/2 +NnΘ/2

 +∇x

 nu
nu⊗ u+ nΘI
(nu2/2 +NnΘ/2 + nΘ)u

 +
q

m

 0
n∇xV
n∇xV · u

 =

 0
0
0

 .

This is an adaptation of the “hydrodynamic limit” in gas dynamics. Similarly, we can also derive
models that include viscous corrections. We refer e. g. to [22, 45, 46, 92] and for specific aspects
for plasmas to [30]. For details on the equations of compressible gas dynamics we refer [68].

A further approximation consists in assuming that the gas is isentropic or isothermal. Then,
we get rid of the energy equation and the flow is simply described by the coupled PDE{

∂tn+ divx(nu) = 0,

∂t(nu) + Divx(nu⊗ u+ p) = −− q

m
n∇xV

(1.17)

where now the pressure is determined by

p = ργ, γ ≥ 1
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(the isothermal case corresponds to γ = 1). Even with such simplifications the analysis of the PDE
system remains tough: it relies on the theory of hyperbolic systems, with additionaly the difficulty
of dealing with the coupling that defines the potential. Such details are beyond the scope of these
notes, we refer instead to [70, 80] or [27].

Remark 1 Here, we present the equation set on the whole space. Discussion of the boundary
conditions remains a tough questions, even for the modeling viewpoint. Furthermore, the influence
of the boundary conditions on the dissipation properties and the underlying estimates needs some
care, as pointed out in [28] for kinetic models.

Remark 2 A more detailed coupling involved, instead of the mere Poisson equation (1.2) for defin-
ing the electric field, the complete set of Maxwell equations. To be more specific, the kinetic equation
reads

∂tf + ξ · ∇xf +∇ξ · (Ff) = 0

where the force acting on the particles reads

F (t, x, ξ) = qE(t, x) + ξ ∧B(tx)

where the electric field E and the magnetic field B verify
∂tE − c2curlxB = −qJ(t, x)

ε0

, ∂tB + curlxE = 0,

divxE = q
ρ(t, x)

ε0

, divxB = 0,
(1.18)

with c the speed of light, ε0 the vaccuum permittivity. The system of PDEs which couples the kinetic
equation (1.5) to (1.2) can be derived from (1.5) coupled to (1.18) by investigating the limit c→∞
(up to a suitable choice of units...): we refer to [29, 84] or [14] for the specific case of time-periodic
solutions. Similar problems can be addressed with magnéto-hydrodynamic equations.

Remark 3 The situation where we look at the evolution of the electrons only is already a simplified
framework. Actually, electrons interact with positive charges, or with “holes” in semiconductors
theory, so that we should deal with coupled system of PDEs like (1.1), or (1.5) or (1.16) or (1.17),
with q = ±1; the coupling arises from the definition of the electric potential in (1.2) which then
reads

−λ∆xVs = (nnegative − npositive)

instead of having a given background. In what follows we shall neglect this additional difficulty and
deal with one species of charged particles only.

The mathematical questions concerning these PDEs can be summarized as follows:

• Mathematical analysis of the equations: well posedness of the Cauchy problem, qualitative
properties of the solutions...

• Asymptotic analysis: identification of physical paramaters and asymptotic regimes which
allow to derive relations between the different levels of modeling.

• Numerical analysis: design of performing numerical schemes.
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2 Semi-classical limit: from quantum to classical mechan-

ics

2.1 From Schrödinger to Liouville

The first goal consists in obtaining the models of classical mechanics from models describing the
transport of charge at the quantum level. The derivation relies on asymptotic analysis arguments,
letting (a dimensionless version of) the Planck constant ~ go to 0 in (1.1). The mathematical
analysis of these questions has been performed by P.L. Lions-Th. Paul [65]. The main ingredient
is the introduction of the Wigner transform [93] of a function ψ : (0, T )× RN → C.

In what follows, we denote indifferently by F (f) or by f̂ the Fourier transform given by

f̂(y) =

∫
RN

e−iy·ξf(ξ) dξ,

and F−1(f)(ξ) =
∫

RN e+iy·ξf(y) dy/(2π)N . We recall that these formulae make sense when both f

and f̂ belong to L1(RN), but the Fourier transform and its inverse are extended to L2(RN) or to
the Schwartz class S (RN) by density, and then by duality to S ′(RN).

Definition 1 Let ψ ∈ L2(RN). The Wigner transform of ψ is the real valued L2(RN×RN) function
defined by

W [ψ](x, ξ) =

∫
RN

ψ(x− y/2) ψ(x+ y/2) eiy·ξ dy

(2π)N
.

The change of variable y → −y yields

W [ψ](x, ξ) =

∫
RN

ψ(x+ y/2) ψ(x− y/2) e−iy·ξ dy

(2π)N
= W [ψ](x, ξ)

so that W [ψ](x, ξ) ∈ R. Next, it is convenient to rewrite

W [ψ](x, ·) = F−1
y→ξ

[
ψ(x− y/2) ψ(x+ y/2)

]
.

The change of variables (x′, y′) = (x− y/2, x+ y/2) shows that∫
RN×RN

|ψ(x− y/2) ψ(x+ y/2)|2 dy dx = 22N

∫
RN×RN

|ψ(x′) ψ(y′)|2 dy′ dx′ = 22N‖ψ‖2
L2

and the Plancherel formula implies that W [ψ](x, ξ) belongs to L2(RN × RN). We shall describe
below further functional spaces adapted for studying the properties of the Wigner transform.

The point is that the Wigner transform changes the Schrödinger equation into a transport
equation, where the Fourier variable ξ plays the role of velocity. The potential term is transformed
into a pseudo-differential operator.
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Proposition 1 Let ψ be the solution of the Schrödinger equation{
i∂tψ = −1

2
∆Ψ + V ψ,

ψ|t=0 = ψInit ∈ L2(RN),
(2.19)

with a smooth and real valued potential, say V ∈ C∞
c (RN). Then, W [ψ] verifies the following

Wigner (or ”quantum Liouville”) equation

∂tf + ξ · ∇xf = Θ(V )(f) in R+
t × RN

x × RN
ξ , (2.20)

with initial data f|t=0 = W [ψInit] and where the right hand side is defined by the pseudo-differential
operator

Θ(V )(f) = iF−1
y→ξ

(
(V (x+ y/2)− V (x− y/2))f̂(t, x, y)

)
. (2.21)

Proof. We compute the time derivative of the Wigner transform

∂tW [ψ](t, x, ξ) =

∫
RN

(
∂tψ(x− y/2) ψ(x+ y/2) + ψ(x− y/2) ∂tψ(x+ y/2)

)
eiy·ξ dy

(2π)N

=

∫
RN

(1

i

(
− 1

2
∆x + V (x− y/2)

)
ψ(x− y/2) ψ(x+ y/2)

+ψ(x− y/2)
(1

i

) (
− 1

2
∆x + V (x+ y/2)

)
ψ(x+ y/2)

)
eiy·ξ dy

(2π)N

= i

∫
RN

(
V (x+ y/2)− V (x− y/2)

)
ψ(x− y/2) ψ(x+ y/2) eiy·ξ dy

(2π)N

+
i

2

∫
RN

(
∆xψ(x− y/2) ψ(x+ y/2)− ψ(x− y/2) ∆xψ(x+ y/2)

)
eiy·ξ dy

(2π)N
.

The first integral is nothing but Θ(V )(W [ψ]). Let us now integrate by part in the second term,
remarking that

∇y

[
ψ(x± y/2)

]
= ±1

2
(∇ψ)(x± y/2), ∆xψ(x± y/2) = 4∆y

[
ψ(x± y/2)

]
.

We get

−2i

∫
RN

(
∇y

[
ψ(x− y/2)

]
·
(
∇y + iξ

)[
ψ(x+ y/2)

]
−

(
∇y + iξ

)[
ψ(x− y/2)

]
· ∇y

[
ψ(x+ y/2)

]
eiy·ξ dy

(2π)N

= −ξ ·
∫

RN

(
∇ψ(x− y/2)ψ(x+ y/2) + ψ(x− y/2)∇ψ(x+ y/2)

)
eiy·ξ dy

(2π)N

= −− ξ · ∇xW [ψ](t, xξ),

which ends the proof.

In fact, for our purposes, we need a definition that takes into account the Planck scale ~. To
this end, we adapt Definition 1.
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Definition 2 Let
(
ψ~

)
~>0

be a sequence bounded in L2(RN). We associate the following sequence
of Wigner transform

W~[ψ~](x, ξ) =

∫
RN

ψ~(x− ~y/2) ψ~(x+ ~y/2) ei~y·ξ dy

(2π)N
.

We notice that the L2 norm of W~[ψ~] is now of order O(~−N). Since we aim at extracting
convergent subsequences, this is not a useful information. To go further, we introduce the space

A =
{
φ ∈ C0(RN × RN), Fξ→yφ(x, y) ∈ L1(RN

y ;C0 ∩ L∞(RN))
}
,

endowed with the norm

‖φ‖A =

∫
RN

‖Fξ→yφ(·, y)‖L∞(RN ) dy =

∫
RN

sup
x∈RN

(
Fξ→y|φ(x, y)|

)
dy.

Clearly, A contains the space S of Schwartz functions on RN × RN . Hence, the dual A ′ embeds
into S ′. The starting point of the analysis relies in the following claim.

Proposition 2 Let
(
ψ~

)
~>0

be a sequence bounded in L2(RN). Then
(
W~[ψ~]

)
~>0

is bounded in
A ′. Accordingly, we can suppose that there exists a subsequence which converges (weakly-? in A ′)
in S ′

Proof. By definition we have∫
RN×RN

W~[ψ~] ϕ(x, ξ) dξ dx =
1

(2π)N

∫
RN×RN

Fξ→yϕ(x,−y) ψ~(x− ~y/2)ψ~(x+ ~y/2) dy dx

Hence, we get∣∣∣ ∫
RN×RN

W~[ψ~] ϕ(x, ξ) dξ dx
∣∣∣

≤
∫

RN

‖Fξ→yϕ(·, y)‖L∞(RN ) dy × sup
y∈RN

∫
RN

|ψ~(x− ~y/2)ψ~(x+ ~y/2)| dx

≤ ‖ϕ‖A sup
y∈RN

{( ∫
RN

|ψ~(x− ~y/2)|2 dx
)1/2( ∫

RN

|ψ~(x+ ~y/2)|2 dx
)1/2

}
≤ ‖ϕ‖A ‖ψ~‖2

L2(RN ).

Corollary 1 Let ψ~ be the solution of (1.1). Then, its Wigner transform f~ = W~[ψ~] verifies

∂tf~ + ξ · ∇xf~ = Θ~(V )(f~) in R+
t × RN

x × RN
ξ , (2.22)

with initial data f~,|t=0 = W~[ψ
Init
~ ] and where the right hand side is defined by the pseudo-differential

operator

Θ~(V )(f) =
i

~
F−1
y→ξ

(
(V (x+ ~y/2)− V (x− ~y/2))f̂(t, x, y)

)
. (2.23)

13



The connection with the classical Liouville equation can be understood with the following formal
ansatz

V (x+ ~y/2)− V (x− ~y/2)

~
' ∇xV (x) · y

so that as ~ → 0

Θ~(V )(f) ' ∇xV (x) · i
∫

RN

y f̂(y)ei~y·ξ dy

(2π)N

' ∇xV (x) ·F−1
y→ξ(iyf̂) = ∇xV (x) · ∇ξf(ξ).

Making the argument rigorous leads to the following claim.

Theorem 1 Let ψ~ be the solution of (1.1) with a smooth given potential V ∈ C1 ∩W 1,∞(RN).
Then, up to a subsequence, as ~ → 0, the Wigner transform W~[ψ~] = f~ tends to f in C0([0, T ],A ′−
weak − ?), solution of the Liouville equation (1.5) with initial data f Init the limit, in the weak-?
sense in A ′ of W~[ψ

Init
~ ].

Obtaining (1.5) by using the Wigner transform might sound strange since when introducing
(1.5), we said that the unknown f is interpreted as a density and is therefore non negative while
there is no reason that give a sign to W~[ψ~]. Nevertheless, the limit when ~ → 0 has indeed the
required sign (which motivates the terminology of “Wigner measure”).

Proposition 3 If the sequence of Wigner transform W~[ψ~] associated to a sequence ψ~ ∈ L2(RN)
converges in S ′ to some W , then W ≥ 0.

Proof. We aim at proving that

lim
~→0

∫
RN×RN

W~[ψ~] φ(x, ξ) dξ dx ≥ 0

holds for any non negative φ ∈ S . It suffices to establish the result for φ = |ϕ̂|2 = ϕ̂ϕ̂. We start
by remarking∫

RN×RN

W~[ψ~] |ϕ̂|2(x, ξ) dξ dx =

∫
RN×RN

ψ~(x− ~y/2)ψ~(x+ ~y/2)F−1
ξ→y|ϕ̂|

2(x, y) dy dx.

Then, the standard rules of the Fourier transform yield

F−1
ξ→yab(y) =

1

(2π)N
â ? b̂(−y)

=
1

(2π)N

∫
RN

â(z)̂b(−y − z) dz =
1

(2π)N

∫
RN

â(−z)̂b(z − y) dz

= (2π)N
∫

RN

F−1a(z)F−1b(y − z) dz.

14



Furthermore, we have

F−1b(y) =
1

(2π)N

∫
RN

eiy·ξb(ξ) dξ =
1

(2π)N

∫
RN

e−iy·ξb(ξ) dξ = F−1b(−y).

It follows that

F−1
ξ→y|ϕ̂|

2(x, y) = F−1
ξ→yϕ̂ϕ̂(x, y)− (2π)N

∫
RN

ϕ(x, z)ϕ(x, z − y) dz.

Thus, we arrive at∫
RN×RN

W~[ψ~] |ϕ̂|2(x, ξ) dξ dx

= (2π)N
∫

RN×RN×RN

ψ~(x− ~y/2)ψ~(x+ ~y/2)ϕ(x, z)ϕ(x, z − y) dz dy dx

= (2π)N
∫

RN×RN×RN

ψ~(x
′ − ~z)ψ~(x− ~y′)ϕ(x′ − ~(z + y′)/2, z)ϕ(x′ − ~(z + y′)/2, y′) dz dy′ dx′

with the change of variables (x, y) = (x′ − ~(z + y′)/2, z − y′) (having jacobian 1). The leading
term is obtained by replacing ϕ(x− ~(z + y′)/2, ·) by ϕ(x, ·); that is∫

RN×RN

W~[ψ~] |ϕ̂|2(x, ξ) dξ dx

' (2π)N
∫

RN×RN×RN

ψ~(x
′ − ~z)ψ~(x′ − ~y′)ϕ(x′, z)ϕ(x′, y′) dz dy′ dx′

'
∫

RN

( ∫
RN

ψ~(x′ − ~y′) ϕ(x′, y′) dy′
)( ∫

RN

ψ~(x
′ − ~z) ϕ(x′, z) dz

)
dx′

'
∫

RN

∣∣∣ ∫
RN

ψ~(x
′ − ~y′) ϕ(x′, y′) dy′

∣∣∣2 dx′ ≥ 0.

The remainder terms which have been neglected can been shown to be of order O(~).

Proof of Theorem 1. We multiply (2.22) by a test function φ ∈ S such that φ̂ ∈ C∞
c . Set

DV (x, y) = V (x+ y/2)− V (x− y/2). Note that∫
RN

Θ[V ](f) φ dξ =
1

(2π)N

∫
RN

∫
RN

eiy·ξDV (x, y)f̂(y) φ(ξ) dy dξ

= − 1

(2π)N

∫
RN

DV (x,−y)f̂(y)φ̂(−y) dy = − 1

(2π)N

∫
RN

DV (x, y)f̂(−y)φ̂(y) dy

= −
∫

RN

F−1
ξ→yf(y)DV (x, y)φ̂(y) dy = −

∫
RN

f Θ[V ](φ) dξ.

Hence, we get

d

dt

∫
RN×RN

f~ φ dξ dx =

∫
RN×RN

f~ v · ∇xφ dξ dx−
∫

RN×RN

f~Θ~[V ]φ dξ dx

15



since the operator (2.23) is skew-adjoint. Then, we first show that
(
Θ~[V ]φ

)
~>0

remains in a

bounded set of A . This is guaranteed for V ∈ C1 ∩W 1,∞(RN) and φ ∈ S . This already proves,
by applying the Arzela-Ascoli theorem that

{ ∫
RN×RN f~ φ dξ dx, ~ > 0

}
lies in a compact set of

C0([0, T ]). Second, we establish the convergence

Θ~[V ]φ −−→
~→0

∇xV · ∇vφ in A ,

as a consequence of the fact

Fξ→yΘ~[V ]φ = iφ̂(x, y)
V (x+ ~y/2)− V (x− ~y/2)

~
−−→
~→0

iy · ∇xV in L1(RN
x ;C0

b (RN)).

Let us comment this result:

• With the regularity assumptions made here, namely V ∈ C1 ∩W 1,∞(RN), we can show the
uniqueness of the solution of (1.5) in C0(R+;M1(RN × RN) − weak − ?) by appealing to
the characteristics, which are indeed well defined under such conditions, see e. g. [13, 65].
Accordingly, assuming the convergence of the initial data, we can conclude that the statement
hold for the entire sequence f~.

• The regularity assumptions on V can be slightly relaxed, but in such a case the uniqueness
of the limit equation might not be guaranteed. Conversely, assuming more regularity on V
and the initial data, we can obtain sharp ansatz, with estimates on the solutions like O(~m).

• Non linear situations where the potential is defined by a convolution formula Vs = U ?n(t, x)
can be dealt with, including the singular kernels corresponding to (1.2).

• For some hints on the numerical treatment of the semi–classical scale, we mention [87], [48]
and references therein.

2.2 Interaction between the semi-classical scale and the periodicity of
the medium

As said above, the potential due to the environment has naturally a periodic structure, according
to the structure of the crystal in which the electrons are embodied. New difficulties appear when
the typical length scale of the crystal lattice coincides with the Planck scale. Keeping ~ as notation
for the common value of the parameter, we are interested in the limit ~ → 0 in the Schrödinger
equation

i~∂tψ~ = −~2

2
∆xψ~ + Vp(x/~)ψ~ (2.24)

where Vp is periodic:
Vp(x+ γ) = Vp(x)
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for any γ ∈ Γ, the lattice of the crystal. The asymptotic analysis of (2.24) combines the semi-
classical limit with homogenization aspects and the framework designed above is not well designed
to take into account the specific periodicity of the medium embodied into the potential Vp and the
scales interactions. Following [71], the analysis relies on the combination of two ingredients: a suit-
able spectral decomposition of the solutions, the so–called Bloch decomposition, and an adaptation
of the Wigner formalism to the periodic setting.

The starting point relies in the following remark: changing x into x/~ = y, one changes
H~ψ(x) = −~2

2
∆xψ + Vp(x/~)ψ into Hψ(y) = −1

2
∆yψ + Vp(y)ψ. Hence, we shall concentrate

on the spectral properties of the operator H where we get rid of the small scale. We shall see also
below that passing from H~ to H, we can also reduce the space domain, exchanging the whole
space RN to a bounded domain C, with suitable boundary conditions. This considerably simplifies
the spectral structure of the operator. Let us introduce a few notation:

- we denote by C ⊂ RN the period cell of Γ,
- we define the dual lattice

Γ? =
{
γ? ∈ RN , for any γ ∈ Γ, one has γ · γ? ∈ 2πZ

}
,

- finally B stands for the period cell of Γ?: this bounded set of RN is the so–called Brillouin
zone.

Lemma 1 Let ψ ∈ L2(RN); we set

u(x, k) =
∑
γ∈Γ

ψ(x+ γ) e−ik·γ

for x ∈ RN and k ∈ B. Clearly, k 7→ u(x, k) is B−periodic: for any γ? ∈ Γ? we have u(x, k+γ?) =
u(x, k). Furthermore, x 7→ u(x, k) is k−quasiperiodic, that is for any γ′ ∈ Γ, we have

u(x+ γ′, k) = eik·γ′u(x, k).

Eventually we have

ψ(x) =

∫
B

u(x, k) dk

where dk stands for the normalized Lebesgue measure on B.

Now, consider ψ, solution of the Schrödinger equation

i∂tψ = −1

2
∆xψ + Vpψ

with Vp a C−periodic potential. Then,

u(t, x, k) =
∑
γ∈Γ

ψ(t, x+ γ)e−ik·γ

17



verifies

i∂tu = −1

2
∆xu+ Vpu

endowed with the k−quasiperiodic boundary condition:

u(x+ γ′, k) = eik·γ′u(x, k).

This remark permits to consider the problem in a bounded domain, and thus to use the spectral
decomposition associated to the operator

−1

2
∆x + Vp

with k−quasiperiodic boundary condition (see [86]).

Lemma 2 The operator H = −1
2
∆x + Vp on C with k−quasiperiodic boundary condition is sym-

metric and admits a compact resolvant; hence, for any fixed k ∈ B, there exists a sequence of real
eigenvalues

{
En(k), n ∈ N

}
and associated eigenfunctions

{
x 7→ un(x, k), n ∈ N

}
which define a

orthonormal basis of L2(C). The set {En(k), k ∈ B} is called the n−th energy band of H .

We now reintroduce the parameter ~ by using the following claim, see [86].

Proposition 4 For ψ ∈ L2(RN), we set

ψ̃~(n, k) =

∫
RN

ψ(x)
1

~N/2
un(x/~, k) dx.

Then

• ψ(x) =
∑
n∈N

∫
B

ψ̃~(n, k)
1

~N/2
un(x/~, k) dk,

• H̃~ψ(n, k) = En(k)ψ̃~(n, k).

Proof. We only sketch the manipulations that lead to the second item. Indeed, for ~ = 1 and
ψ(x) =

∫
B
u(x, k) dk with u(x, k) = σ(k)un(x, k) we have

Hψ(x) = −1

2
∆xψ + Vp(x)ψ(x) =

(
− 1

2
∆x + Vp(x)

) ∫
B

u(x, k) dk

=

∫
B

H u(x, k) dk =

∫
B

En(k)u(x, k) dk

We introduce the Fourier coefficients

εn(γ) =

∫
B

En(k)e
−iγ·k dk, En(k) =

∑
γ∈Γ

εn(γ)e
iγ·k.
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The previous equality becomes

Hψ(x) =
∑
γ∈Γ

εn(γ)

∫
B

eik·γu(x, k) dk =
∑
γ,γ′∈Γ

εn(γ)

∫
B

eik·γe−ik·γ′ψ(x+ γ′) dk

=
∑
γ,γ′∈Γ

εn(γ)ψ(x+ γ′)δ(γ = γ′) =
∑
γ∈Γ

εn(γ)ψ(x+ γ).

Then, we multiply by un to obtain∫
RN

Hψ(x)un(x, k) dx =
∑
γ∈Γ

εn(γ)

∫
RN

ψ(x+ γ)un(x, k) dx

=
∑
γ∈Γ

εn(γ)

∫
RN

ψ(x)un(x− γ, k) dx

=
∑
γ∈Γ

εn(γ)

∫
RN

ψ(x) eik·γun(x, k) dx

=
∑
γ∈Γ

εn(γ))e
ik·γ ψ̃(n, k) = En(k)ψ̃(n, k).

The next step consists in defining the Wigner series associated to the corresponding solution of
(2.24):

W S
~ [ψ~](x, k) =

∑
γ∈Γ

ψ~(x− ~γ/2)ψ~(x+ ~γ/2) eik·γ

Again, we observe that W S
~ [ψ~] is real valued; we can show boundedness in appropriate functional

space and establish that cluster points (defined in S ′) are non negative. Let us detail the basic
asymptotic result.

Proposition 5 Assume that initially ψInit
~ belongs to the n−th band space that is

ψInit
~ (x) =

∫
u(k)

1

~N/2
un(x/~, k) dk

for some u ∈ L2(B). Then, the solution ψ~ of (2.24) has the same property and we get

i~∂tψ~ =
∑
γ∈Γ

εn(γ) ψ~(x+ ~γ)

where the εn(γ)’s stand for the Fourier coefficients of En(k). Furthermore, the associated Wigner
series satisfies

∂tW
S
~ [ψ~](t, x, k) +

i

~
∑
γ∈Γ

εn(γ)e
iγ·k(W S

~ [ψ~](t, x+ ~γ/2, k)−W S
~ [ψ~](t, x− ~γ/2, k)

)
= 0.
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Proof. We only detail the equation for the Wigner series. Of course, we have

∂tW
S
~ [ψ~] = − i

~
∑
γ∈Γ

eik·γ
(
H~ψ~(x− ~γ/2)ψ~(x+ ~γ/2)− ψ~(x− ~γ/2)H~ψ~(x+ ~γ/2)

)
.

We make use of the following identities:
- since ψ~ remains in the n−band space, we get

H~ψ~(x) =
∑
γ∈Γ

εn(γ)ψ~(x+ ~γ),

- and we have clearly εn(γ) = εn(−γ).
Hence, we can write

∂tW
S
~ [ψ~] = − i

~
∑
γ,γ′∈Γ

eik·γ
(
εn(γ

′)ψ~(x− ~γ/2 + ~γ′)ψ~(x+ ~γ/2)

−εn(−γ′)ψ~(x− ~γ/2)ψ~(x+ ~γ/2 + ~γ′)
)

= − i

~
∑
γ′∈Γ

εn(γ
′)

∑
γ∈Γ

eik·γ
(
ψ~(x− ~γ/2 + ~γ′)ψ~(x+ ~γ/2)− ψ~(x− ~γ/2)ψ~(x+ ~γ/2− ~γ′)

)
= − i

~
∑
γ′∈Γ

εn(γ
′)eikγ̇′

∑
γ∈Γ

eik·γ
(
ψ~(x− ~(γ − γ′)/2)ψ~(x+ ~(γ + γ′)/2)

−ψ~(x− ~(γ + γ′)/2)ψ~(x+ ~(γ − γ′)/2)
)

by using the change of variables γ → γ + γ′. We recognize the asserted formula.

When ~ → 0 we guess that

i

~
∑
γ∈Γ

εn(γ)e
iγ·k(f(t, x+ ~γ/2, k)− f(t, x− ~γ/2, k)

)
' i

∑
γ∈Γ

εn(γ)e
iγ·k∇xf(t, x, k) · γ

' ∇k

( ∑
γ∈Γ

εn(γ)e
iγ·k

)
· ∇xf(t, x, k)

' ∇kEn(k) · ∇xf(t, x, k).

Theorem 2 Assume that the initial data for (2.24) belongs to the n−th band space. Then, up to
a subsequence, the Wigner series converges (in a appropriate weak sense...) to f ≥ 0 solution of
the transport equation

∂tf + vn(k) · ∇xf = 0,

with velocity vn(k) = ∇kEn(k).

Of course, by using orthogonality properties, we can consider sums of functions belonging to
different band spaces. It works as soon as there is no band crossing. The situation is definitely
much more intricate when we consider mixed states and possible band crossing: En(k) = Em(k) for
some k. The ultimate breakthrough can be found in [5] where the analysis includes external and
self-consistent potentials. Finally, it is worth mentioning that the Wigner formalism has became a
powerful and general tool for studying oscillations in PDEs, according to [44].
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2.3 From Schrödinger to Boltzmann: homogenization aspects

Let us now describe another amazing question involving the semi-classical regime. Classical par-
ticles subject to a random potential, under a suitable time-space rescaling, can be described by a
Brownian motion. This classical question has been treated in full details in the reference paper [63].
Surprinsingly enough, the similar scaling when adapted to the quantum picture leads to a linear
Boltzmann equation. The analysis is due to [40], at the price of a highly technical proof. Recently,
Poupaud and Vasseur revisted the problem and proposed an alternative approach. Actually, they
changed the problem since they introduce a somehow artificial time-dependence of the potential.
Compared to [40], the result might be questionable since the physical model has been changed
drastically by introducing randomness with respect to time. Indeed, in the standard problem, the
coefficients oscillates randomly with respect to space and the decorrelation properties should be
analyzed along the trajectories, which makes the analysis particularly tough, see e. g. [63]. Any-
way, the analysis of [82] provides a statement with the same flavor, with a smart and quite simple
proof. Besides, the method introduced by [82] is very flexible and it can be readily adapted to
various physical situations where the time decorrelation appears naturally, see [17, 64, 54, 55, 21].
We shall now detail this approach.

We start with a toy model, inspired by [77]. Let us consider the simple ODE

d

dt
uε(t) = i

1

ε
a(t/ε2)uε(t) (2.25)

where a(t) : Ω → R is a random variable with zero mean

Ea = 0. (2.26)

We also suppose it has finite variance, and fulfils the following stationarity property

Ea(t)a(s) = R(t− s) (2.27)

As a preliminary remark, note that the equation preserves the modulus:

|uε(t)| =
∣∣∣ exp

(
i

∫ t

0

a(s/ε2) ds
)∣∣∣ |u(0)| = |u(0)|.

We assume that the initial data is deterministic (it does not depend on the alea variable ω ∈ Ω).
We wish to determine the asymptotic behavior of the expection value Euε(t) as ε goes to 0. The
crucial assumption consists in the following finite time decorrelation hypothesis:{

a(t) and a(s) decorrelate when |t− s| ≥ 1:
E

(
a(t) a(s)

)
= 0 for |t− s| ≥ 1.

(2.28)

The analysis is based on the Duhamel formula:

uε(t) = uε(s) +
1

ε

∫ t

s

ia(σ/ε2)uε(σ) dσ. (2.29)
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It has two immediate consequences:
a) first of all, with s = 0 and bearing in mind that u(0) is deterministic, we realize that uε(t)

depends only on realization of a(s/ε2) for 0 ≤ s ≤ t; hence due to (2.28), uε(t) and a(t′/ε2) are
independent when t− t′ ≥ ε2;

b) second of all, it already provides the estimate

uε(t)− uε(s) = O
( |t− s|

ε

)
. (2.30)

Then, let us specialize (2.29) to s = t− ε2, which involves the decorrelation time scale:

uε(t) = uε(t− ε2) +
1

ε

∫ t

t−ε2
ia(σ/ε2)uε(σ) dσ (2.31)

It allows to rewrite

a(t/ε2)

ε
uε(t) =

a(t/ε2)

ε
uε(t− ε2) +

1

ε2

∫ t

t−ε2
ia(t/ε2)a(σ/ε2)uε(σ) dσ.

In the right hand side, due to (2.26) and the decorrelation, the expectation of the first term vanishes

E
(a(t/ε2)

ε
uε(t− ε2)

)
= E

a(t/ε2)

ε
Euε(t− ε2) by decorrelation

= 0 by (2.26),

while the second term is of order

(
1

ε2
× length of the integration interval) = (

1

ε2
× ε2) = O(1).

In particular, we get

d

dt
Euε(t) = iE

a(t/ε2)

ε
uε(t) = −E

1

ε2

∫ t

t−ε2
a(t/ε2)a(σ/ε2)uε(σ) dσ = O(1)

which already tells us, by applying the Arzela-Ascoli theorem. that Euε belongs to a compact set
of C0([0, T ]). The next step consists in replacing in the last integral uε(s) by Euε(t). The error can
indeed be controlled and vanishes as ε goes to 0, as a consequence of (2.28) and (2.30). To this
end, we write

E
1

ε2

∫ t

t−ε2
a(t/ε2)a(σ/ε2)uε(σ) dσ = E

1

ε2

∫ t

t−ε2
a(t/ε2)a(σ/ε2) dσ Euε(t)

+E
1

ε2

∫ t

t−ε2
a(t/ε2)a(σ/ε2)

(
uε(σ)− uε(t− 2ε2)

)
dσ

+E
1

ε2

∫ t

t−ε2
a(t/ε2)a(σ/ε2)

(
uε(t− 2ε2)− Euε(t− 2ε2)

)
dσ

+E
1

ε2

∫ t

t−ε2
a(t/ε2)a(σ/ε2)

(
Euε(t− 2ε2)− Euε(t)

)
dσ.
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Since, by (2.28), uε(t − 2ε2) is independent of {a(σ/ε2), t − ε2 ≤ σ ≤ t}, the third term can be
recast as

1

ε2

∫ t

t−ε2
E

(
a(t/ε2)a(σ/ε2)

)
E

(
uε(t− 2ε2)− Euε(t− 2ε2)

)
dσ = 0

and it vanishes. The second term is estimated by using (2.30): for any t − ε2 ≤ σ ≤ t, we have
|uε(σ)− uε(t− 2ε2)| ≤ |σ − (t− 2ε2)|/ε ≤ Cε hence we dominate the second term by

1

ε2
× Cε× ε2 = Cε.

A similar estimate holds for the last term. We thus have

d

dt
Euε(t) = iE

(a(t/ε2)

ε
uε(t)

)
= −E

(
1

ε2

∫ t

t−ε2
a(t/ε2)a(σ/ε2) dσ

)
Euε(t) + rε, rε −−→

ε→0
0.

(2.32)
We end up with the following statement.

Theorem 3 The expectation Euε converges uniformly on [0, T ] to u, solution of the ODE

d

dt
u = −λu

where the effective coefficient is

λ =
1

2

∫ +∞

−∞
R(τ) dτ ≥ 0.

Proof. It only remains to identify the coefficient λ. First, let us check the positivity of λ which is
not completely direct. The proof relies on the following observation: for any F ∈ L1(R), we have∫

R
F (τ) dτ = lim

R→∞

1

2R

∫ +R

−R

∫ +R

−R
F (σ − τ) dσ dτ. (2.33)

Therefore, λ becomes

λ = lim
R→∞

1

4R

∫ +R

−R

∫ +R

−R
R(σ − τ) dσ dτ = lim

R→∞

1

4R

∫ +R

−R

∫ +R

−R
E

(
a(σ)a(τ)

)
dσ dτ

= lim
R→∞

E
(

1

4R

∫ +R

−R
a(σ) dσ

)2

≥ 0.

Consequently, note that the modulus of the limit u is not conserved anymore, but it decays as time
grows. It indicates that the passage to the limit and the stochasticity effects have induced a loss
of irreversibility. We prove (2.33) by writing∫

R
F (s) ds =

1

2R

∫ +R

−R

∫
R
F (s) ds dt =

1

2R

∫ +R

−R

(∫
R
F (σ − t) dσ

)
dt.
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Therefore, it suffices to show that

lim
R→∞

1

2R

(∫ +R

−R

∫
|σ|≥R

|F (σ − t)| dσ
)

dt = 0.

Changing variables again, we reduce the problem to investigating the behavior of

1

2R

(∫ +R

−R

∫
s+t≥R

|F (s)| ds
)

dt,

for large R’s, and similarly for the quantity obtained by replacing s + t ≥ R by s + t ≤ −R. The
Fubini theorem yields

1

2R

∫ ∞

0

|F (s)|
(∫

R
11−R≤t≤R11R−s≤t dt

)
ds

=
1

2R

∫ 2R

0

|F (s)|
(∫ R

R−s
dt

)
ds+

1

2R

∫ 2R

0

|F (s)|
(∫ R

−R
dt

)
ds

=

∫ 2R

0

|F (s)| s
2R

ds+

∫ ∞

2R

|F (s)| ds,

and we conclude by applying the Lebesgue theorem.
Then, we go back to the definition of the effective coefficient. In (2.32), we make the following

quantity appear

1

ε2
E

∫ t

t−ε2
a(t/ε2)a(s/ε2) ds =

∫ t

t−ε2
R

(t− s

ε2

)
ds =

∫ 1

0

R(τ) dτ.

as a consequence of (2.27). Hence this quantity does not depend on ε anymore and it can be
rewritten as

E
∫ 1

0

a(τ)a(0) dτ = E
∫ 1

0

a(0)a(τ) dτ = E
∫ 1

0

R(−τ) dτ =
1

2

∫ +1

−1

R(τ) dτ =
1

2

∫ +∞

−∞
R(τ) dτ

due to the support property of the function R in (2.28).

We now apply this strategy for investigating the limit ~ → 0 in the following set of Schrödinger
equations

i~∂tψm,~ = −~2

2
∆xψm,~ +

√
~V (t/~, x/~)ψm,~

We suppose that the set initial data {ψm,~(t = 0), m ∈ N} is a deterministic orthonormal system
of L2(RN). Consequently for any t ≥ 0, the system {ψm,~(t), m ∈ N} is also orthonormal. We
associate to the index n an occupation probability λm,~. The particle is then described by the
mixed state

n(t, x) =
∑
m∈N

λm,~|ψm,~(t, x)|2.
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We suppose that

λm,~ ≥ 0,
∑
m∈N

λn,~ = 1,
∑
m∈N

|λn,~|2 ≤M hN .

(It is realized with a finite number N~ of states, with N~ = (1/~N) and λm,~ = 1/N~ if m ≤ N~, 0
otherwise.) Hence, the Wigner transfrom

W~(t, xξ) =
∑
n∈N

λn,~

∫
RN

ψm,~(t, x− ~y/2) ψm,~(t, x+ ~y/2) eiy·ξ dy

(2π)N

is bounded in L∞(0,∞;L2(RN × RN)). It satisfies

∂tW~ + ξ · ∇xW~ = Θ~(t)[W~] (2.34)

with

Θ~(t)[f ](x, ξ) =
i√
~

∫
RN

(
V (t/~, x/~ + y/2)− V (t/~, x/~− y/2)

)
f̂(x, y) eiy·ξds

dy

(2π)N
.

The requirements on the potential are the following
• V is a smooth random variable,
• For any t, x, V is centered: EV (t, x) = 0,
• EV (t, x)V (s, y) = R(t− s, x− y) with furthermore R(τ, ·) = 0 when |τ | ≥ 1.

Theorem 4 Up to a subsequence, W~ converges, as ~ → 0 to f ≥ 0 in C0([0, T ];L2(RN × RN)−
weak), which is solution of the following linear Boltzmann equation

∂tf + ξ · ∇xf =

∫
RN

b(ξ, ξ?)f(ξ?) dξ? − Λ(ξ)f(ξ)

with

b(ξ, ξ?) =
1

(2π)N
R̂

(ξ2
? − ξ2

2
, ξ − ξ?

)
, Λ(ξ) =

∫
RN

b(ξ, ξ?) dξ?,

where

R̂(σ, ξ) =

∫
R×RN

R(t, y) e−i(σt+y·ξ) dy dt.

Proof. We sketch the adaptations of the steps described for the toy model, skipping the tedious
functional details. We see (2.34) as a perturbation of the free transport equation by the source term
Θ~(W~). Therefore, integrating along the characteristics x+ tξ, we obtain the Duhamel formula

W~(t, x, ξ) = W~(s, x− (t− s)ξ, ξ) +

∫ t

s

Θ~(σ)[W~(σ)](x− (t− σ)ξ, ξ) dσ. (2.35)

It provides the basic estimate and the decorrelation property, analog of a) and b) for the toy model.
It is convenient to introduce the operator

Stf(x, ξ) = f(x− tξ, ξ)
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the adjoint being
S?t = S−t.

Then, (2.35) recasts with the shorthand notation as

W~(t, x, ξ) = St−sW~(s)(x, ξ) +

∫ t

s

St−σΘ~(σ)[W~(σ)](x, ξ) dσ. (2.36)

(Roughly speaking passing form the toy model to (2.34), ∂t + ξ · ∇x replaces the derivation d
dt

,
integration along the characteristics involving the operator St replaces the standard integration
on time intervals while Θ~(t) replaces multiplication by a(t).) Reasoning as above, we reduce to
investigating the limit ~ → 0 in

∂tEW~ + ξ · ∇xEW~ = E
∫ t

t−~
Θ~(t)St−σΘ~(σ)[W~(σ)](x, ξ) dσ

= E
∫ t

t−~
Θ~(t)St−σΘ~(σ)Sσ−t[EW~(t)](x, ξ) dσ + r~

where the remainder r~ can be shown to tend to 0 as ~ goes to 0, in some appropriate functional
space. It is easier to derive the limit operator by reasoning by duality. Namely, multiplying the
leading term in the right hand side by a trial function ϕ ∈ C∞

c (RN × RN), we obtain∫
RN×RN

EW~(t, x, ξ) E
(∫ t

t−~
St−σΘ~(σ)Sσ−tΘ~(t)[ϕ](x, ξ) dσ

)
dξ dx

:=

∫
RN×RN

EW~ L~[ϕ](t, x, ξ) dξ dx.

More precisely, the operator L~ reads

L~[ϕ](x, ξ) = −E
1

~

∫ ∫ t

t−~
eiy·ξ

[
V

(σ
~
,
x− (t− σ)ξ + ~y/2

~

)
− V

(σ
~
,
x− (t− σ)ξ − ~y/2

~

)]
×e−iy·ξ?eiz·ξ?

[
V

( t
~
,
x− (t− σ)(ξ − ξ?) + ~z/2

~

)
− V

( t
~
,
x− (t− σ)(ξ − ξ?)− ~z/2

~

)
×Fζ→zϕ(x− (t− σ)(ξ − ξ?), z)

dz

(2π)N
dξ?

dy

(2π)N
dσ.

(Note that we multiply 1/~ by an integral over a time interval of size ~.) By using the self-correlation
function, we obtain

L~[ϕ](x, ξ) = −
∫ ∫ t

t−~
ei(y·ξ−y·ξ?+z·ξ?)Fζ→zϕ(x− (t− σ)(ξ − ξ?), z)

×
[
R

(σ − t

~
,
σ − t

~
ξ? +

y − z

2

)
+R

(σ − t

~
,
σ − t

~
ξ? −

y − z

2

)
−R

(σ − t

~
,
σ − t

~
ξ? −

y + z

2

)
−R

(σ − t

~
,
σ − t

~
ξ? +

y + z

2

)] dz

(2π)N
dξ?

dy

(2π)N
dσ

~
.
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and with the change of variables τ = (σ − t)/~, y? = (σ − t)ξ?/~± (y ± z)/2, we arrive at

L~[ϕ](x, ξ) =

∫ ∫ 1

0

eiz·ξ?Fζ→zϕ(x+ ~τ(ξ − ξ?), z) R(τ, y?)

×
(
− e−i2τξ?·(ξ−ξ?)ei(2y?+z)·(ξ−ξ?) − e+i2τξ?·(ξ−ξ?)ei(−2y?+z)·(ξ−ξ?)

+e+i2τξ?·(ξ−ξ?)ei(−2y?−z)·(ξ−ξ?) + e−i2τξ?·(ξ−ξ?)ei(2y?−z)·(ξ−ξ?)
) dz

(2π)N
dξ?

2N dy?
(2π)N

dτ.

From now on, we approach ϕ(x+~τξ?, ·) by ϕ(x, ·) (which induces a new error term of order O(~),
owing to the regularity of the test function) and we get

L~[ϕ](x, ξ) ' −
∫

eiz·ξFζ→zϕ(x, z)
dz

(2π)N

×
∫ 1

0

∫
R(τ, y?)

(
e−i2τξ?·(ξ−ξ?)ei2y?·(ξ−ξ?) + e+i2τξ?·(ξ−ξ?)e−i2y?·(ξ−ξ?)

)
dξ?

2N dy?
(2π)N

dτ

+

∫ ∫ 1

0

eiz·(2ξ?−ξ)Fζ→zϕ(x, z) R(τ, y?)

×
(
e+i2τξ?·(ξ−ξ?)e−i2y?·(ξ−ξ?) + e−i2τξ?·(ξ−ξ?)ei2y?·(ξ−ξ?)

) dz

(2π)N
dξ?

2N dy?
(2π)N

dτ

' −ϕ(x, ξ)

∫ ∫ 1

0

R(τ, y?)
(
e−iτ(ξ2−ζ2)/2eiy?·(ξ−ζ) + e+iτ(ξ2−ζ2)/2e−iy?·(ξ−ζ)

)
dζ

dy?
(2π)N

dτ

+

∫ ∫ 1

0

ϕ(x, ζ) R(τ, y?)
(
e−iτ(ξ2−ζ2)/2eiy?·(ξ−ζ) + e+iτ(ξ2−ζ2)/2e−iy?·(ξ−ζ)

)
dζ

dy?
(2π)N

dτ

by using the change of variable ζ = 2ξ? − ξ. Now we make use of symmetry properties satisfied by
the function R, precisely, we have

R(t, y) = EV (t, y)V (0, 0) = EV (0, 0)V (t, y) = R(−t,−y)
which implies∫

RN

e−iy·ξR(τ, y) dy := Q(τ, ξ) =

∫
RN

e−iy·ξR(−τ,−y) dy =

∫
RN

eiy·ξR(−τ, y) dy = Q(−τ,−ξ).

Accordingly, we observe that

L~[ϕ](x, ξ) ' −ϕ(x, ξ)

∫ ∫ 1

0

(
e−iτ(ξ2−ζ2)/2Q(τ, ζ − ξ) + e+iτ(ξ2−ζ2)/2Q(τ, ξ − ζ)

) dζ

(2π)N
dτ

+

∫ ∫ 1

0

ϕ(x, ζ)
(
e−iτ(ξ2−ζ2)/2Q(τ, ζ − ξ)) + e+iτ(ξ2−ζ2)/2Q(τ, ξ − ζ)

dζ

(2π)N
dτ

' −ϕ(x, ξ)

∫ ∫ 0

−1

(
eiτ(ξ2−ζ2)/2Q(−τ, ζ − ξ) + e−iτ(ξ2−ζ2)/2Q(−τ, ξ − ζ)

) dζ

(2π)N
dτ

+

∫ ∫ 0

−1

ϕ(x, ζ)
(
eiτ(ξ2−ζ2)/2Q(−τ, ζ − ξ)) + e−iτ(ξ2−ζ2)/2Q(−τ, ξ − ζ)

dζ

(2π)N
dτ

' −ϕ(x, ξ)
1

2

∫ ∫ +∞

−∞

(
eiτ(ξ2−ζ2)/2Q(τ, ξ − ζ) + e−iτ(ξ2−ζ2)/2Q(τ, ζ − ξ)

) dζ

(2π)N
dτ

+
1

2

∫ ∫ +∞

−∞
ϕ(x, ζ)

(
eiτ(ξ2−ζ2)/2Q(τ, ξ − ζ) + e−iτ(ξ2−ζ2)/2Q(τ, ζ − ξ)

dζ

(2π)N
dτ
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by using the fact that τ → R(τ, y) is supported in (−1,+1). Using again that (τ, ξ) 7→ Q(τ, ξ) is
even, we arrive at

L~[ϕ](x, ξ) ' −ϕ(x, ξ)

∫ ∞

−∞

∫
RN

Q(τ, ξ − ζ) eiτ(ξ2−ζ2)/2 dζ

(2π)N
dτ

+

∫
RN

ϕ(x, ζ)

∫ ∞

−∞

∫
RN

Q(τ, ξ − ζ) eiτ(ξ2−ζ2)/2 dζ

(2π)N
dτ dζ,

which is exactly the linear Boltzmann operator with collision kernel given by

b(ξ, ζ) =
1

(2π)N
F(τ,y)→(ω,ξ)R

(ζ2 − ξ2

2
, ξ − ζ

)
.

The kernel is indeed symmetric since

b(ξ, ζ) =
1

(2π)N

∫ +∞

−∞
Q(τ, ξ − ζ)eiτ(ξ2−ζ2)/2 dτ

=
1

(2π)N

∫ +∞

−∞
Q(−τ, ξ − ζ)e−iτ(ξ2−ζ2)/2 dτ by changing τ 7→ −τ

=
1

(2π)N

∫ +∞

−∞
Q(τ, ζ − ξ)eiτ(ζ2−ξ2)/2 dτ since (τ, ξ) 7→ Q(τ, ξ) is even

= b(ζ, ξ).

It only remains to check that b ≥ 0.
The proof follows those of Proposition 3. Indeed, up to some irrelevant constant showing b ≥ 0

reduces to show
F−1

(τ,y)→(ω,ξ)R(ω,−ξ) ≥ 0.

To this end it suffices to justify that∫
R×RN

F−1
(τ,y)→(ω,ξ)R(ω, ξ)

∣∣F(τ,y)→(ω,ξ)φ(ω, ξ)
∣∣2 dω dξ ≥ 0

holds for any φ ∈ S (R× RN). However, the latter can be recast as∫
R×RN

∫
R×RN

R(τ, y) φ(σ, z)φ(σ − τ, z − y) dz dσ dy dω

=

∫
R×RN

∫
R×RN

R(σ − τ − σ, z − y − z) φ(σ, z)φ(σ − τ, z − y) dz dσ dy dω

= E
∫

R×RN

∫
R×RN

V (σ − τ, z) V (σ, z) φ(σ, z)φ(σ − τ, z − y) dz dσ dy dω

= E
∣∣∣∣∫

R×RN

∫
R×RN

V (σ, z) φ(σ, z) dz dσ

∣∣∣∣2 ≥ 0.
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3 Analysis of the Vlasov-Poisson system

This Section is devoted to the analysis of the PDE

∂tf + v · ∇xf −∇xΦ · ∇vf = 0 (3.37)

where the potential is defined by

−∆xΦ = n(t, x) =

∫
RN

f(t, x, v) dv.

As said above, see (1.3), the latter equation should actually be understood as the convolution
formula

Φ(t, x) =

∫
RN

EN(x− y)n(t, y) dy =

∫
RN

EN(x− y)f(t, y, v) dy dv (3.38)

where EN stands for the elementary solution of −∆ (and one has to care about formal integration
by parts that would use directly the Poisson equation). Of course the difficulty comes from the
quadratic non linearity in ∇xΦ · ∇vf . In fact the difficulty is two–fold: first, we should discuss the
relevant functional framework and determine how this acceleration term makes sense (this is not
so clear since the kernel EN has some singularity at the origin); and second we need to establish
some compactness property which will be necessary for proving the existence of solutions through
a suitable approximation procedure.

3.1 A priori estimates and sketch of the existence proof

Of course, the keypoint relies on the derivation of a priori estimates satisfied by the solution. The
first obvious estimate is nothing but the charge conservation

d

dt

∫
RN

∫
RN

f dv dx = 0,

which offers the L1 estimate. Next, neglecting any difficulty related to a possible lack of regularity
of the field (which can be fixed by a regularization step), we can write

f(t, x, v) = f Init(X(0; t, x, v), V (0; t, x, v)),

where the characteristics (X(s; t, x, v), V (s; t, x, v)) are defined by the ODE system{
d

ds
X(s) = V (s),

d

ds
V (s) = −∇xΦ(s,X(s)),

X(t) = x V (t) = v.

Hence, we also obtain
‖f(t)‖L∞(RN×RN ) ≤ ‖f Init‖L∞(RN×RN ).

The last “easy” estimate comes from energy conservation. Indeed, define the kinetic energy as

Ec(t) =

∫
RN

∫
RN

v2

2
f dv dx
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and the potential energy as

Ep(t) =
1

2

∫
RN

∫
RN

Φf dv dx =
1

2

∫
RN

Φn dx =
1

2

∫
RN

∫
RN

EN(x− y)n(t, y)n(t, x) dy dx.

It is worth pointing that Ep is non negative when N ≥ 3. Then, by using integration by parts, we
compute

d

dt
(Ec(t) + Ep(t)) = −

∫
RN

∫
RN

v · ∇xΦf dv dx+

∫
RN

∫
RN

EN(x− y)n(t, y) ∂tn(t, x) dy dx

where in the last term we have used the symmetry of the kernel EN(z) = EN(−z). Precisely, the
last integral reads

−
∫

RN

∫
RN

∫
RN

EN(x− y)n(t, y) v · ∇xf(t, x, v) dv dy dx

=

∫
RN

∫
RN

vf · ∇x

( ∫
RN

EN(x− y)n(t, y) dy
)

dv dx

=

∫
RN

∫
RN

vf · ∇xΦ dv dx.

We conclude that the total energy is conserved

d

dt
(Ec(t) + Ep(t)) = 0.

The discussion of further a priori estimates will make use of the following claim, referred to as the
Hardy-Litelwood-Sobolev inequality [86].

Lemma 3 Let 1 < α <∞ and consider the operator

T : f 7→
∫

RN

f(y)

|x− y|N/α
dy.

Then, T is a bounded operator from Lp(RN) to Lq(RN) for

1 < p < α′ =
α

α− 1
,

1

q
=

1

p
+

1

α
− 1.

Remark 4 It would be tempting to perform some integration by parts and to write potential energy
as the integral of |∇xΦ|2. However, such a computation is misleading. This is the case in dimension
2. Indeed, let n ∈ L1(R2), with n ≥ 0 and let Φ be a solution of −∆Φ = n in R2. Then ∇Φ belongs

to L2(R2) iff n = 0. This is clear by Fourier transform since we know that ξ2Φ̂(ξ) = n̂(ξ) ∈ L∞(R2).

Then, we get |∇̂xΦ(ξ)| = |ξ| |Φ̂(ξ)| = |ξ|
ξ2
|n̂(ξ)|, which is non square integrable in the neighborhood

of the origin where this quantity behaves like |n̂(0)|/|ξ|, with n̂(0) =
∫
ρ(x) dx > 0 by assumption.

Coming back to Lemma 3

∇xΦ(x) =

∫
RN

x− y

|x− y|
n(y)

|x− y|N−1
dy

30



corresponds to set α = N/(N − 1) ∈ (1,∞). Hence obtaining ∇xΦ ∈ L2 is not affordable in
dimension 1 and 2 (we find p = 2/3 and p = 1 respectively which are not amissible); in dimension
3 it requires p = 6/5.

Let us make a short break by mentioning the twin situation where the sign in the Poisson
equation is changes, namely, the potential is defined by

+∆xΦ = n

and thus instead of (3.38) we get

Φ(t, x) = −
∫

RN

EN(x− y)n(t, y) dy = −
∫

RN

EN(x− y)f(t, y, v) dy dv. (3.39)

The model is physically relevant and it arises in astrophysics: the self-consistent force field now
corresponds to the gravitational attractive force exerted by the particles instead of the repulsive
electric forces between charges of similar sign. (But we are not aware of a similar relevant quantum
model.) From the view point of mathematical analysis, the attractive case is more difficult than
the repulsive one. For the time being, let us only use the attractive case to illustrate by a simple
computation why the singularity of the kernel EN is not completely harmless. We can indeed show
that solutions can develop singularities in finite time.

Theorem 5 Consider N = 4 and the attractive potential (3.39). Then there exists initial data
f Init ∈ C2

c (R4 × R4) such that the solution does not remain of class C2 for any positive time.

Proof. We remind that E4(x) = C/|x|2. Let us compute

d

dt

∫
R4×R4

x2

2
f dv dx =

∫
R4×R4

v · xf dv dx

and next
d2

dt2

∫
R4×R4

x2

2
f dv dx =

∫
R4×R4

v2f dv dx−
∫

R4×R4

∇xΦ · xf dv dx.

However, the last integral recasts as∫
R4×R4

∇xΦ · xf dv dx = −2C

∫
R4×R4

x− y

|x− y|4
n(t, y) · xn(t, x) dy dx

= −C
∫

R4×R4

1

|x− y|3
n(t, y)n(t, x)

x− y

|x− y|
· (x− y) dy dx

= −C
∫

R4×R4

1

|x− y|2
n(t, y)n(t, x)

x− y

|x− y|
· (x− y) dy dx = −

∫
R4

nΦ dx.

Hence, we arrive at

d2

dt2

∫
R4×R4

x2

2
f dv dx = 2(Ec + Ep)(t) = 2× (Initial Total Energy E0).
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In the attractive case, the potential energy contributes negatively and E0 can be negative. In such
a situation we are led to a contradiction since the previous manipulations lead to∫

R4×R4

x2

2
f dv dx = E0t

2 + I1t+ I0

where the right hand side vanishes and becomes negative for a finite time T?, while, of course, the
second moment of the density f should remain non negative. The contradiction comes from the
fact that the computations above, and in particular the formal integrations by parts we made, are
not licit when f becomes singular.

For obtaining a smooth data with negative energy, we proceed as follows: pick a non negative
f0 ∈ C∞

c (R4 × R4) and compute

Ec(f0) =

∫
R4×R4

v2

2
f0 dv dx, Ep(f0) =

∫
R4×R4

C

|x− y|2
f0(x, v)f0(y, w) dw dy dv dx

which are both positive. In the attractive case, the total energy reads

E0 = Ec(f0)− Ep(f0).

Set fλ0 = λf0 for some λ > 0 and remark that the associated total energy is

Ec(λf0)− Ep(λf0) = λEc(f0)− λ2Ep(f0)

which becomes negative for large enough λ’s.

The one-dimension case is interesting since it allows to perform a proof that uses only elementary
tools (and works for both the attractive and the repulsive potential). In this case we can indeed
take advantage of the simple expression of the force

F (t, x) = ∂xΦ(t, x) = −1

2

( ∫ x

−∞
n(t, y) dy −

∫ +∞

x

n(t, y) dy
)
.

In particular, the L1 bound on n immediatly imply that F is continuous and bounded. Furthermore
when n belongs to L∞, F is uniformly lipschitizian. Then the proof uses the a priori estimates,
sharp estimates on the characteristics and the preservation of support properties (which provides
the L∞ estimate on n on finite time interval...).

Theorem 6 Let f Init : R × R → R, f Init ≥ 0 be an integrable and bounded function, compactly
supported. Then there exists a unique weak solution f ∈ C0([0,∞);Lp(R2)), for any 1 ≤ p < ∞
solution o the Vlasov-Poisson ystem with initial data f Init. For any 0 ≤ t ≤ T <∞, the support of
f(t) is compact in R2, f belongs to L∞((0,∞)×R2) and the total energy is conserved. Furthermore,
if f Init belongs to Ck, the solution is Ck too.
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Let usrather focus on the 3-dimensional case for the repulsive potential. The first step consists
in replacing the singular kernel E3(x) = 1

4π |x| by a smooth approximation in the definition of the
potential. Introduce a sequence of mollifiers

ζε ∈ C∞
c (R3), 0 ≤ ζε(x) ≤ 1,

∫
R3

ζε(x) dx = 1.

We set
Uε(x) = ζε ? E3(x).

We note that, for any 0 < R <∞,

E3 ∈ Lq(B(0, R)), for 1 ≤ q < 3, ∇xE3(x) = − 1

4π

x

|x|3
∈ Lq(B(0, R)), for 1 ≤ q < 3/2

and we check readily that Uε and ∇xUε converge to E3 and ∇xE3 in these spaces, respectively.
Owing to a fixed point argument we construct a sequence of solutions to the following non linear

problem 
∂tfε + v · ∇xfε −∇xΦε · ∇vfε = 0,

Φε = Uε ?x nε, nε(t, x) =

∫
R3

fε(t, x, v) dv,

fε,|t=0 = f Init ≥ 0

(3.40)

The solutions verify

• fε ≥ 0,

• ‖fε(t)‖Lp(R3×R3) = ‖f Init‖Lp(R3×R3), for any 1 ≤ p ≤ ∞,

• and the energy conservation∫
rit3

∫
R3

v2

2
fε dv dx+

1

2

∫
rit3

∫
R3

Φεfε dv dx = Ec(0) + Ep(0) <∞.

Note again that the both the kinetic and the potential energy are non negative, a specific feature
of the repulsive case for dimension N ≥ 3. Thanks to these estimates, we can suppose, possibly at
the price of extracting a subsequence, that

fε ⇀ f weakly in Lp((0, T )× R3 × R3)

for finite 1 ≤ p <∞ and weakly -?in L∞((0, T )×R3×R3). and we wish to pass to the limit ε→ 0
in the weak formulation

−
∫

R3

∫
R3

f Initϕ(0, x, v) dv dx−
∫ ∞

0

∫
R3

∫
R3

fε (∂t + v · ∇x)ϕ(t, x, v) dv dx dt

+

∫ ∞

0

∫
R3

∫
R3

fε ∇xΦε · ∇vϕ(t, x, v) dv dx dt = 0
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which holds for any ϕ ∈ C∞
c ([0,∞)×R3×R3). Clearly, the difficulty concentrates on the last term.

For constructing solutions of (3.40), we remark that for any n ∈ L1(RN), the potential Uε ? n ∈
C2(RN) with ∇x(Uε ? n) uniformly lipschitzian on RN (but with a Lipschitz constant that blows
up when ε goes to 0). Therefore, we define the mapping

T : g 7→ f

so that

∂tf + v · ∇xf = ∇xΦg · ∇vf, Φg(t, x) = Uε ?

∫
RN

g(t, x, v) dv, f|t=0 = f Init.

The regularity of Φg, for g given in C0([0,∞);L1(R×RN)) allows to define the associated character-
istics, and thus we obtain the solution f by integrating the kinetic equation along characteristics.
It remains to show that T is a contraction mapping on C0([0, T ];L1(RN×RN)) for any initial data
f Init ∈ C1

c (RN × RN) (but more general data can then be considered by a regularizing argument).

It is necessary now to make precise the estimates on the force field. To this end, we need an
interpolation lemma which will allow to take advantage of the energy conservation.

Lemma 4 Let f : RN × RN → R such that, for some m > 0,

f ∈ L∞(RN × RN) and

∫ ∫
|v|m |f(x, v)| dv dx <∞.

Then n(x) =
∫

RN f(x, v) dv belongs to Lp(RN) for p = (N +m)/N .

Proof. We split as follows

|n(x)| ≤
∫

RN

|f(x, v)| dv ≤
∫
|v|≤R

|f(x, v)| dv +

∫
|v|≥R

|f(x, v)| dv

≤ ‖f‖L∞(RN×RN )meas(BRN (0, R)) +
1

Rm

∫
RN

|v|m |f(x, v)| dv

≤ CN‖f‖L∞(RN×RN )R
N +

1

Rm

∫
RN

|v|m |f(x, v)| dv.

Optimizing with respect to R yields

|n(x)| ≤ CN ‖f‖m/(m+N)

L∞(RN×RN )

(∫
RN

|v|m |f(x, v)| dv
)N/(N+m)

.

Therefore, we end up with∫
RN

|n(x)|(N+m)/N dx ≤ CN ‖f‖m/NL∞(RN×RN )

∫
RN

∫
RN

|v|m |f(x, v)| dv dx <∞.

With m = 2 and N = 3 one gets that the macroscopic density n lies in L5/3(R3). The en-
ergy conservation tells us that

∫
R3×R3 v

2fε dv dx is bounded and we deduce the following a priori
estimates.
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Corollary 2 The sequence
(
nε

)
ε>0

is bounded in L∞(0,∞;L5/3(R3)).

Corollary 3 The sequence
(
∇xΦε

)
ε>0

is bounded in L∞(0,∞;Lq(R3)), for 3/2 < q < 15/4.

Proof. Clearly we have

‖∇xΦε‖Lq ≤ ‖ζε‖L1 ‖∇xE3 ? nε‖Lq ≤ 1

4π

∥∥∥∫
R3

nε(t, y)

|x− y|2
dy

∥∥∥
Lq
.

Hence, we apply the Hardy-Littlewood-Sobolev inequality with α = 3/2 and we obtain 1/q =
3/5 + 2/3− 1 = 4/15. Since all moments 0 ≤ m ≤ 2 are bounded, we obtain estimates on a family
of Lq spaces.

In particular, we remark that m = 3/5 gives nε(t, x) bounded in L∞(0,∞;L6/5(R3)) and thus
∇xΦε bounded in L2(R3).

Consequently the product fε∇xΦε is bounded in L∞(0,∞;Lq(R3)), for 3/2 < q < 15/4, and we
can suppose that it admits a limit. It remains to establish that

fε∇xΦε ⇀ f∇xΦ, Φ = E3 ?

∫
R3

f dv.

It requires improved compactness properties, that is to show some strong convergence property.
To this end, a first attempt would be to exploit the smoothing effects of the Poisson equation,
and precisely use that n 7→

∫
RN

n(y)
|x−y|α dy is a compact operator from Lp(RN) into Lqloc(RN) for

convenient pairs (p, q). This argument needs additionally some care concerning the treatment of
the time variable. Hence, we shall use instead “Average Lemma” techniques which have became
a very standard tool in the theory of kinetic equations. In particular, the argument is necessary
for proving the existence of solutions for the more complete Vlasov-Maxwell model, see [33, 83].
The flavor of the argument can be summarized by saying that if f and (∂t + v · ∇x)f belong to
Lp, p > 1, then average with respect to the v variable are smoother. It translates into stronger
compactness properties when dealing with bounded sequences. We shall detail below the Average
Lemma approach, which allows to finish the proof of the following claim.

Theorem 7 Let N = 3 and let f Init ∈ L1 ∩ L∞(R3 × R3), f Init ≥ 0, such that

v2f Init ∈ L1(R3 × R3)
1

|x|2
?

∫
R3

f Init ∈ L2(R3).

Then, there exists f ∈ C0([0,∞);L∞(R3 ×R3)−weak− ?), solution of the Vlasov-Poisson system
with initial data f Init. Furthermore, we have

‖f(t)‖Lp(R3×R3) ≤ ‖f Init‖Lp(R3×R3), (Ec + Ep)(t) ≤ (Ec + Ep)(0).
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3.2 Average lemma

The average lemma is a useful and powerful tool for obtaining compactness on solutions of kinetic
equations. Roughly speaking the statement tells us that macroscopic quantities are smoother
than the microscopic ones, which in turn leads to improved compactness properties for quantities
involving averages on the velocity variable. The basic statement reads as follows.

Theorem 8 Let f(x, v) ∈ L2(RN × RN) verifying

v · ∇xf = g ∈ L2(RN × RN). (3.41)

Let ψ ∈ L∞(RN
v ) with compact support in RN

v . Then the macroscopic quantity

ρψ(x) =

∫
V

ψ(v) f(x, v) dv

belongs to the Sobolev space H1/2(RN). More precisely, we have∫
R×RN

|ξ| |ρ̂ψ(ξ)|2 dξ ≤ C(ψ)‖f‖L2(RN×V ) ‖g‖L2(RN×V ), (3.42)

where φ̂ stands for the Fourier transform

φ̂(ξ) =

∫
RN

φ(t, x)e−ix·ξ dx

for ξ ∈ RN .

Remark 5 The support assumption on ψ can be relaxed when we have estimates on high order
moments (wrt v) of f . More generally we can deal with a set V ⊂ RN endowed with a measure
dµ(v), but it is crucial to require that{

for any R > 0 there exists CR > 0 and ε0 > 0 such that for any ε0 ≥ ε > 0 we have
sup

ξ∈SN−1

µ
({
v ∈ B(0, R), |v · ξ| ≤ ε

})
≤ CRε. (3.43)

Note that (3.43) excludes discrete models (for example, V = {v1, ..., vM), dµ(v) =
∑M

i=1 δ(v = vi)
and pick ξ orthogonal to one of the vi’s in V ). Roughly speaking (3.43) means that we need “enough
directions” v to make the information on v · ∇xf useful.

Remark 6 Of course, analogous results are available for the non stationary case. There are refined
(and useful!) versions of this statement, see in particular [34], [12], [42], [43], [75]...: on the one
hand we can relax the regularity required on the right hand side g and in particular we can deal
with derivatives and on the other hand we can replace v by more general functions a(v)... This
tool has been successfully applied to justify the Rosseland approximation in radiative transfer [3].
It is also a key ingredient in the proof of existence (in a suitable weak sense...) for the Boltzmann
equation of gas dynamics [32], [66]. Further developments and applications can be found in the
lecture notes [13]... Note however that some non linear hydrodynamic limit problems can be treated
without average lemma techniques, but using instead a compensated compactness argument which
allow to deal with discrete velocity models [67, 50, 31].
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Proof. We suppose that supp(ψ) ⊂ B(0, R). Clearly ρψ belongs to L2(RN). The remarkable fact
lies in the improved regularity, while the microscopic quantity f belongs only to L2. Applying the
Fourier transform to (3.41) yields

v · ξ f̂(ξ, v) = −iĝ(ξ, v).

When |ξ · v| ≥ δ|ξ| > 0, this relation allows to estimate |ξ|f̂ nicely, while the “bad” set on which
|ξ · v|ξ| is small has only a “small” contribution thanks to (3.43). Let us make this idea precise.
We split the integral∫

RN

ψ(v)f̂(ξ, v) dv =

∫
|ξ·v|≤δ|ξ|

ψ(v)f̂(ξ, v) dv +

∫
|ξ·v|≥δ|ξ|

ψ(v)f̂(ξ, v) dv.

We estimate the second integral by using (3.41):∣∣∣∣∫
|ξ·v|≥δ|ξ|

ψ(v)f̂(ξ, v) dv

∣∣∣∣ =

∣∣∣∣∫
|ξ·v|≥δ|ξ|

ψ(v)f̂(ξ, v)
ξ · v
ξ · v

dv

∣∣∣∣
≤ ‖ψ‖L∞

(∫
RN

|ĝ(ξ, v)|2 dv

)1/2 (∫
|ξ·v|≥δ|ξ|

1

|ξ · v|2
11B(0,R)(v) dv

)1/2

where ∫
|ξ·v|≥δ|ξ|

1

|ξ · v|2
11B(0,R)(v) dv =

C(R)

|ξ|2

∫ ∞

δ

dr

r2
=
C(R)

δ |ξ|2
.

Next, we estimate as follows∣∣∣∣∫
|ξ·v|≤δ|ξ|

ψ(v)f̂(ξ, v) dv

∣∣∣∣ ≤ ‖ψ‖L∞
(∫

RN

(f̂(ξ, v))2 dv

)1/2 (∫
|ξ·v|≤δ|ξ|

11B(0,R) dv

)1/2

where (see (3.43)) ∫
|ξ·v|≥δ|ξ|

11B(0,R) dv = C(R)

∫ δ

0

dr = C(R) δ.

Combining all the pieces, we obtain∣∣∣∣∫
RN

ψ(v)f̂(ξ, v) dv

∣∣∣∣ ≤ C(R)‖ψ‖L∞
(
F (ξ)

√
δ +

G(ξ)

|ξ|
√
δ

)
,

where G(ξ) = ‖ĝ(ξ, ·)‖L2(RN
v ) and F (ξ) = ‖f̂(ξ, ·)‖L2(RN

v ) belong to L2(RN
ξ ). Since this relation holds

for any δ, in particular we can choose δ = G(ξ)
|ξ| F (ξ)

which finally leads to∣∣∣∣∫
RN

ψ(v)f̂(ξ, v) dv

∣∣∣∣ ≤ C(R)‖ψ‖L∞
1√
|ξ|

√
FG(ξ).
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We can now finish the proof of the existence theorem for the Vlasov-Poisson system. The
delicate term can be recast as

Iε =

∫ ∞

0

∫
RN

∇xΦε ·
(∫

RN

fε∇vϕ dv

)
dx dt

which make naturally a velocity average appear. We can use the following refined version of the
average lemma [75, 13]

Theorem 9 Let fn and gαn satisfy

(∂t + v · ∇x)fn =
∑
|α|≤m

∂αv g
α
n

for some m ∈ N. Let Q be a open set in R×RN . We suppose that
(
fn

)
n∈N is bounded in Lp(Q×RN)

for some p > 1 and the
(
gαn

)
n∈N’s are bounded in L1(Q × RN). Then, for any φ ∈ C∞

c (RN), the

sequence defined by ρn(t, x) =
∫

RN fnφ dv is relatively compact in Lp(Q).

Accordingly, we obtain∫
RN

fε∇vϕ dv −−→
ε→0

∫
RN

f∇vϕ dv strongly in L2((0, T )× RN × RN).

Besides, owing to Corollary 3, we can suppose

∇xΦε ⇀ Ψ weakly in L2L2((0, T )× RN).

Therefore, we conclude that

Iε −−→
ε→0

∫ ∞

0

∫
RN

Ψ(t, x)

∫
RN

f∇vϕ dv dx dt.

Coming back to the Hardy-Littewood-Sobolev inequality, Φε is bounded in some Lp((0, T ) × RN)
space so that, still extracting subsequences if necessary, we obtain Φε ⇀ Φ and ∇xΦε ⇀ Ψ = ∇xΦ
while passing to the limit in the Poisson equation yields −∆xΦ = n =

∫
RN f dv. Remark that,

using the average lemma again, we can actually prove the strong convergence of Φε in Lp spaces.
Eventually, we justify compactness with respect to the time variable in order that the initial

data for the limit equation makes sense. Since

∂tfε = −divx(vfε) + divv(∇xΦεfε)

appears as derivatives with respect to x, v of functions bounded in L∞(0, T ;L1(B(0, R)), for any
0 < T,R <∞ we can indeed appeal to the following claim.

38



Lemma 5 Let nε : (0, T )× RD → R such that

sup
ε>0

‖nε(t)‖L∞((0,T )×RD) ≤M <∞.

Furthermore, suppose that

∂tnε =
∑
|α|≤k

∂αx g
(α)
ε ,

where, for any compact set K ⊂ RD,

sup
ε>0

{∫
E

∫
K

|g(α)
ε | dx dt

}
−→ 0 as |E| → 0.

Then, the sequence nε is compact in C0([0, T ];L∞(RD)− weak− ?).

Proof. Pick ϕ ∈ C∞
c (RD). At first, we remark that

sup
ε>0, 0≤t≤T

∣∣∣ ∫
RD

nε(t, x)ϕ(x) dx
∣∣∣ ≤M‖ϕ‖L∞(RD) <∞. (3.44)

Secondly, the estimate∣∣∣ ∫
RD

nε(t+ h, x)ϕ(x) dx−
∫

RD

nε(t, x)ϕ(x) dx
∣∣∣

≤
∑
|α|≤k

‖∂αϕ‖L∞(RD)

∣∣∣ ∫ t+h

t

∫
supp(ϕ)

|g(α)
ε | dx ds

∣∣∣,
proves that the family {∫

RD

nε(t, x)ϕ(x) dx, ε > 0

}
is equicontinuous on [0, T ]. Therefore, for a given test function ϕ, the family is compact in C0([0, T ]),
as a direct consequence of the Arzela-Ascoli theorem.

By density and using (3.44), the compactness property extends to any test function ϕ in L1(RD).
Since L1(RD) is separable, by using a diagonal argument, we can extract a subsequence such that∫

RD

ϕ(x)nε`
(t, x) dx −→

∫
RD

ϕ(x)n(t, x) dx as `→∞ (3.45)

in C0([0, T ]), for any test function ϕ in D, a demombrable dense subset of L1(RD). Coming
back to (3.44) and by density, we realize that the convergence (3.45) applies to any test function
ϕ ∈ L1(RD).

A natural and deep question consists in considering C1 solutions. so that the equations (1.5)
holds in a strong and pointwise sense. The question is clearly related to the possibility of defining
the characteristics, and therefore to control the second derivatives of the field. The key estimate in
this direction reads as follows.
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Lemma 6 Let n ∈ L1 ∩ L∞(R3) such that ∇xn ∈ L∞(R3). Set Φ = 1
|x| . Then D2Φ belongs to

L∞(R3) with

‖D2Φ‖L∞ ≤ C
(
1 + ‖n‖L1 + ‖n‖L∞

(
1 + ln(1 + ‖∇xn‖L∞)

))
.

By combining this claim to properties of transport equations we get

Corollary 4 Let f be a smooth solution of the Vlasov-Poisson system. We assume that for any
0 ≤ t ≤ T <∞, there exists a finite RT > 0 such that

f(t, x, v) = 0 for |v| ≥ RT .

Then, there exists a constant C depending on ‖f Init‖L1, ‖f Init‖L∞, ‖∇x,vf
Init‖L∞ and T such that

‖D2Φ‖L∞ ≤ C, ‖∇x,vf(t)‖L∞ ≤ C

holds.

Hence, the question reduces to a control of the expansion of the support of the solutions of
the Vlasov-Poisson system: the support should remain bounded on finite time intervals. Denoting
P (t) = sup

{
|v| such that there exists x ∈ RN verifying f(t, x, v) 6= 0

}
we can derive quite easily

an estimate on short time. Going further requires a very fine analysis; we refer to [85] and [69] for
ultimate results in that direction.

3.3 Attractive case (N = 3)

The proof can be adapted to treat the attractive potential (3.39) as well, despite the fact that
the energy has no definite sign a priori. Nevertheless, the methods detailed above allow to control
the kinetic energy, which is the crucial point in the proof. We start with a simple interpolation
inequality

Lemma 7 Let n : R3 → R. Then, we have∫
R3

|n|6/5 dx ≤
(∫

R3

|n| dx
)7/10 (∫

R3

|n|5/3 dx

)3/10

.

Proof. Write 6/5 = θ + (1− θ)5/3, that is θ = 7/10 and use the Hölder inequality on |n|θ ∈ L1/θ

and |n|(1−θ)5/3 ∈ L1/(1−θ).

Then, for ∇xΦ = − 1
4π

x
|x|3 ? n, where

∫
R3 n dx = 1, the Hardy-Littlewood-Sobolev yields

‖∇xΦ‖L2(R3) ≤ C‖n‖L6/5(R3) ≤ C‖n‖5/12

L5/3(R3)
.

We go back to Lemma 4 which imply for n(x) =
∫

R3 f(x, v) dv,∫
R3

|n|5/3 dx ≤ C‖f‖L∞(R3×R3)

∫
R3×R3

v2f(x, v) dv dx

40



and we end up with

‖∇xΦ‖L2(R3) ≤ C

(∫
R3×R3

v2f(x, v) dv dx

)1/4

where C depends on the L1 and L∞ norms of f . Consequently, the associated total energy verifies∫
R3×R3

v2f(x, v) dv dx−
∫

R3

|∇xΦ|2 dx ≥
∫

R3×R3

v2f(x, v) dv dx− C

(∫
R3×R3

v2f(x, v) dv dx

)1/2

.

Dealing with the sequence of solutions of approximated problems defined as above for the attractive
case, we show that

(
fε

)
ε>0

is bounded in L∞((0,∞)×R3×R3) and in L∞(0,∞;L1(R3×R3)), with
furthermore

sup
t≥0

∫
R3×R3

v2fε dv dx bounded uniformly wrt ε

(since this quantity satisfies an inequality looking like P (k) = k − C
√
k − E ≤ 0). Then, we can

follow the arguments developped for the repulsive case and extend Theorem 7 to the attractive
potential as well.

3.4 Dispersion inequalities

Let us finish by establishing some dispersion inequalities which provide interesting information on
the large time behavior of the particles. The result is in agreement with the physical intuition: due
to the repulsive effect of the self-consistent force, particles spread in space producing a decay of the
macroscopic density.

Theorem 10 Let (f,Φ) be a solution of the (repulsive) Vlasov-Poisson system. Then, there exists
C > 0 such that 

‖∇xΦ(t, ·)‖L2(R3) ≤
C√
1 + t

,∫
R3×R3

|x− tv|2f dv dx ≤ C(1 + t),

‖n(t)‖L5/3(R3) ≤
C

(1 + t)3/5
.

Proof. We follow the tricky proof proposed in [60]. The first step of the proof consists in remarking
that

d

dt

∫
R3×R3

|x− tv|2

2
f dv dx = −1

2

(
t2

d

dt
‖∇xΦ(t, ·)‖2

L2(R3) + t‖∇xΦ(t, ·)‖2
L2(R3)

)
. (3.46)

Indeed, integration by parts shows that

d

dt

∫
R3×R3

|x− tv|2

2
f dv dx =

∫
R3×R3

(
x− tv · v)− (x− tv) · (−t∇xΦ− (x− tv) · v

)
f dv dx

= t

∫
R3×R3

x · ∇xΦ f dv dx− t2
∫

R3×R3

v · ∇xΦ f dv dx.
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Besides, we have
d

dt

∫
R3

|∇xΦ|2

2
dx =

∫
R3×R3

v · ∇xΦ f dv dx.

Finally, we use the expression of the elementary solution E3 to obtain∫
R3×R3

x · ∇xΦ f dv dx = − 1

4π

∫
R3×R3

x · x− y

|x− y|3
n(t, x)n(t, y) dy dx

= − 1

8π

∫
R3×R3

n(t, x)n(t, y)

|x− y|
dy dx = −1

2

∫
R3

|∇xΦ|2 dx.

These relations finally lead to (3.46).
We set

Γ(t) =
t2

2

∫
R3

|∇xΦ|2 dx

which verifies
d

dt
Γ(t) = t

∫
R3

|∇xΦ|2 dx+
t2

2

d

dt

∫
R3

|∇xΦ|2 dx.

Therefore, we have

d

dt

( ∫
R3×R3

|x− tv|2

2
f dv dx+ Γ(t)

)
=
t

2

∫
R3

|∇xΦ|2 dx =
Γ(t)

t
.

Integration between, say 1 and t, yields∫
R3×R3

|x− tv|2

2
f dv dx+ Γ(t) = C1 +

∫ t

1

Γ(s)

s
ds ≥ Γ(t) ≥ 0

and the Gronwmall lemma allows us to deduce that

Γ(t) ≤ C1 exp
( ∫ t

1

Γ(s)

s
ds

)
= C1t

that is ‖∇xΦ(t)‖2
L2(R3) ≤ C1/t. Then it follows that∫

R3×R3

|x− tv|2

2
f dv dx ≤ C1 +

∫ t

1

C1 ds ≤ C1(1 + t).

Eventually, we write

0 ≤ n(t, x) =

∫
R3

f(t, x, v) dv =

∫
|x−tv|≤R

f(t, x, v) dv +

∫
|x−tv|≤R

f(t, x, v) dv

≤ ‖f‖L∞meas
({
v ∈ R3, |x/t− v| ≤ R/t

})
+

1

R2

∫
R3×R3

|x− tv|2f dv dx

≤ ‖f Init‖L∞(R3×R3)

4

3
π(R/t)3 +

1

R2

∫
R3×R3

|x− tv|2f dv dx.

Optimizing with respect to R we find

0 ≤ n(t, x) ≤ C t−6/5

(∫
R3×R3

|x− tv|2f dv dx

)3/5

,

which leads to the estimate on the L5/3 norm of n.
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4 Hydrodynamic limits: from kinetic equation to drift-

diffusion models

In this Section, we describe an example of hydrodynamic limit, obtaining drift-diffusion equations
from a kinetic model as the mean free path becomes small (compared to a length of reference).
The original point in the model devised below relies on the fact that the drift velocity depends on
the macroscopic concentration through the Poisson equation. To this end, we start from a kinetic
model which takes into account some collisional effects. Indeed, fluid approximation in collisionless
situation can be questionable, as indicated in the deep numerical investigation [9]. Therefore, the
Vlasov-Poisson system describes the evolution of electrons interacting through their self-consistent
electric field and we consider additionaly friction forces and Brownian effects, embodied into the
following linear Fokker-Planck operator

Lf = divv

(
vf +

kBTth
me

∇vf
)
.

Written in physical variables, the evolution of the particles density obeys

∂tf + v · ∇xf −
q

m e
∇xΦ · ∇vf =

1

τ
∇v ·

(
vf +

kBTth
me

∇vf
)
.

The electrons are thus subject to the force − q
me
∇xΦ with the coupling

−∆Φ =
q

ε0

∫
fdv.

4.1 Dimension analysis

The problem is driven by the following set of physical (positive) quantities:
- ε0, the vacuum permittivity,
- q, the elementary charge of the electrons,
- me the mass of the electrons,
- τe, the relaxation time characteristic of the interactions of the particles with the thermal bath,
- kB, the Boltzmann constant,
- Tth, the temperature of the thermal bath.
We introduce time and length units T, L, respectively. They define a velocity unit L/T which has
to be compared to the thermal velocity

V =
√
kBTth/me

like the time unit will be compared to the relaxation time τe. The quantity

`e = τe

√
kBTth
me
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is the mean free path of the particles: it is the typical distance travelled by the particles during the
time τe. The plasma is also characterized by N , the typical number of electrons. The quantity

Λ =

√
ε0kBTthL

q2N
L

defines the so–called Debye length, that is the typical length of perturbations of a quasi-neutral
plasma. We define dimensionless variables and unknowns by the following relations{

t = T t′, x = L x′, v = V v′,

f(t, x, v) =
N
L3V3

f ′(t/T, x/L, v/V).

Eventually, for the potential we set

Φ(t, x, v) = χ
kBTth
q

Φ′(t/T, x/L)

where χ > 0 is a dimensionless parameter. Accordingly, the dimensionless form of the equations
reads as follows (where the primes have been dropped),

∂tf +
VT

L
v · ∇xf −

qT

mLV
χ
kBTth
q

∇xΦ · ∇vf =
T

τ
∇v ·

(
vf +∇vf

)
,

= ∂tf +
VT

L
v · ∇xf − χ

VT

L
∇xΦ · ∇v

−ε0 χ
kBTth
q

L

qN
1

L2
∆xΦ = −χ ε0kBTthL

q2N
∆xΦ = −χ

(Λ

L

)2

∆xΦ =

∫
f dv.

Hence, we have at hand three free parameters χ,T,L corresponding to the physical quantities
N , Tth and τ which characterize the plasma. The scaling we consider assumes that

χ
(Λ

L

)2

= 1

which serves as a definition of χ. Next, since we consider hydrodynamic regimes where the micro-
scopic distribution relaxes to an equilibrium we have

τ � T.

Given 0 < ε� 1, we distinguish two relevant regimes:
- either, we set

τ

T
= ε2,

L

VT
= ε, χ fixed. (4.47)

Since ` = τV = τ
T

VT
L

L and Λ/L = 1/
√
χ it means

` = εL � L ' Λ;
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- or we set
τ

T
= ε,

L

VT
= 1, χ =

1

ε
, (4.48)

which means
` = εL � Λ =

√
εL � L.

These regimes has been identified in [81], where the former is analyzed, with complements in [49].
The latter regime has been investigated in [74] for the one-dimensional case, and then in [51] for
higher dimensions results. Similar investigations dealing with the non linear BGK or the Fermi-
Dirac collision operator are due to [8] and [6, 7]. For attempts with the Maxwell equations instead
of the electrostatic coupling, we refer to [15, 16].

4.2 Formal asymptotics: diffusive scaling

In what follows, we focus on the scaling (4.47). We are thus interested in the behavior as ε→ 0 of
the solution (fε,Φε) of the following Vlasov-Poisson-Fokker-Planck system (VPFP for short)

∂tfε +
1

ε
v · ∇xfε −

χ

ε
∇xΦε · ∇vfε =

1

ε2
Lfε for t ≥ 0, x ∈ RN , v ∈ RN ,

Lf = ∇v · (vf +∇vf),

−∆Φε = ρε, ρε(t, x) =

∫
RN

fε(t, x, v) dv.

(4.49)

The problem is supplemented with an initial data

fε,|t=0 = f Init
ε ≥ 0. (4.50)

As said above the Poisson equation should be understood as

Φε(t, x) =
(
EN ?x ρε(t, ·)

)
(x). (4.51)

The relaxation effect due to the collisions can be understood by writing

Lf = ∇v ·
(
e−v

2/2∇v(fe+v2/2)
)
,

the kernel of which is spanned by the Maxwellian distributions. Since the asymptotic ε→ 0 makes
the collision operator vanish (Lfε → 0), it would lead to

fε(t, x, v) ' ρ(t, x)
e−v

2/2

(2π)N/2
. (4.52)

The limit equation satisfied by the macroscopic density ρ(t, x) can be obtained by looking at the
evolution equations satisfied by the moments ρε and Jε =

∫
RN

v
ε
fε dv. We have{

∂tρε +∇x · Jε = 0,
ε2∂tJε + DivxPε = −χρε∇xΦε − Jε

(4.53)
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where furthermore

Pε(t, x) =

∫
RN

v ⊗ v fε dv.

Using (4.52) yields Pε(t, x) ' ρ(t, x) I, and thus, passing to the limit in nonlinearities, we are led
to {

∂tρ+∇x · J = 0,
J = −χρ∇xΦ−∇xρ,

(4.54)

coupled to the Poisson relation
−∆Φ = ρ. (4.55)

4.3 Analysis of the diffusive scaling when N = 2

The difficulty is two–fold:
- first we should establish a priori estimates, uniform with respect to ε; to this end, entropy

dissipation induced by collisions is crucial,
- then, we shall see that exploiting these estimates so that the non linear acceleration term

makes sense and passes to the limit can be a bit subtle.
The convergence of solutions of (4.49) to those of (4.54)-(4.55) is established in [81] on small enough
interval of time (0, T?), under a fast decay assumption on the initial data. Precisely, if, for some
p > N , e(p−1)v2/2f Init

ε is bounded in Lp(RN×RN), then, there exists T? > 0 such that a subsequence
satisfies 

ρε → ρ in Lq(0, T?;L
r(RN)), 1 ≤ r < p, 1 ≤ q <∞,

fε(t, x, v) → ρ(t, x) (2π)−N/2e−v
2/2 in Lq(0, T?;L

r(RN × RN))
2 ≤ r < p, 2 ≤ q <∞.

We shall describe below an alternative approach which applies to the specific case of dimension two
and gives the result without any restriction on the time interval nor on the data, considering only
bound on entropy and energy.

Theorem 11 Set N = 2. Let f Init
ε ≥ 0 satisfy

∫
R2

∫
R2

f Init
ε dv dx = 1,

sup
ε>0

∫
R2

∫
R2

f Init
ε (1 + v2 + |x|+ | ln(f Init

ε )|) dv dx = M0 <∞.
(4.56)

Let 0 < T <∞. Then, up to a subsequence, ρε converges in C0([0, T ];L1(R2)−weak) to ρ, solution
of the limit system (4.54-4.55).

Remind that for N = 2, we have

E2(x) = − 1

2π
ln(|x|).

A typical feature of the 2D case is that E2 has no definite sign. The starting point of the analysis
consists in establishing a priori estimates, the clue being the energy conservation already remarked
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when dealing with the collisionless Vlasov-Poisson equation. However, due to the collision, we
observe additionally for (4.49) a dissipation mechanism. The key computation reads

d

dt

{∫
R2

∫
R2

fε ln(fε) dv dx+

∫
R2

∫
R2

v2

2
fε dv dx+

χ

2

∫
R2

∫
R2

fεΦε dv dx

}
= − 1

ε2

∫
R2

∫
R2

(vfε +∇vfε)
2 1

fε
dv dx = − 1

ε2

∫
R2

∫
R2

(v
√
fε + 2∇v

√
fε)

2 dv dx

= − 4

ε2

∫
R2

∫
R2

∣∣∇v

√
fεev

2/2
∣∣2 e−v2/2 dv dx.

(4.57)

It clearly reveals the relaxation effects, in agreement to (4.52).
We will also need some control on the behavior of fε at infinity (with respect to the space

variable). To this end, we remark that

d

dt

∫
R2

∫
R2

|x|fε dv dx =
1

ε

∫
R2

∫
R2

v · x
|x|

fε dv dx

=
1

ε

∫
R2

∫
R2

(v
√
fε + 2∇v

√
fε) ·

x

|x|
√
fε dv dx

≤
(∫

R2

∫
R2

fε dv dx

)1/2 (∫
R2

∫
R2

∣∣∣v√fε + 2∇v

√
fε

ε

∣∣∣2dv dx

)1/2

.

(4.58)

Next, the macroscopic entropy can be estimated by means of the microscopic entropy.

Lemma 8 Let f : RN × RN 7−→ R, with f ≥ 0. Set ρ(x) =
∫

RN f(x, v) dv. Then, we have∫
RN

ρ ln(ρ) dx ≤
∫

RN

∫
RN

f ln(f) dv dx

+
N

2
ln(2π)

∫
RN

∫
RN

f dv dx+

∫
RN

∫
RN

v2

2
f dv dx.

Proof. The statement is a direct consequence of the Jensen inequality applied to the convex
function Ψ(s) = s ln(s) and the probability measure on RN (2π)−N/2e−v

2/2 dv = M(v) dv. We get

ρ ln(ρ) = Ψ(ρ) = Ψ
( ∫

RN

f

M
M dv

)
≤

∫
RN

Ψ
( f

M

)
M dv =

∫
RN

f(
v2

2
+ ln(f)) dv +

N

2
ln(2π)

∫
RN

f dv.

We conclude by integrating with respect to x.

Accordingly, integrating (4.57) with respect to time, we are led to∫
R2

ρε ln(ρε) dx+
χ

2

∫
R2

ρεΦε dx

+
4

ε2

∫ t

0

∫
R2

∫
R2

∣∣∇v

√
fεev

2/2
∣∣2 e−v2/2 dv dx ds ≤M0 +M ′

0 + ln(2π).
(4.59)

However, the potential energy has no sign. Nevertheless, it can be bounded from below, by using
the following statement.
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Lemma 9 Let ρ : R2 → R such that ρ ≥ 0. Then, for any k > e, we have∫
R2

ρΦ dx ≥ − ln(k)

π

[
1

2

(∫
R2

ρ dx

)2

+
1

k

∫
R2

ρ dx

∫
R2

|x|ρ dx

]
.

Proof. We follow a trick in [35] by introducing the parameter k > e. Since k 7−→ ln(k)
k

is non
increasing on (e,+∞), we obtain∫

R2

ρΦ dx = − 1

2π

∫ ∫
|x−y|≤k

ln(|x− y|)ρ(y)ρ(x) dy dx− 1

2π

∫ ∫
|x−y|≥k

ln(|x− y|)ρ(y)ρ(x) dy dx

≥ − ln(k)

2π

∫
R2

∫
R2

ρ(x)ρ(y) dy dx− ln(k)

2πk

∫
R2

∫
R2

|x− y|ρ(x)ρ(y) dy dx

≥ − ln(k)

2π

(∫
R2

ρ(x) dx

)2

− ln(k)

πk

∫
R2

ρ(x) dx

∫
R2

|x|ρ(x) dx.

Coming back to (4.59) leads to∫
R2

ρε ln(ρε) dx+
4

ε2

∫ t

0

∫
R2

∫
R2

∣∣∇v

√
fεev

2/2
∣∣2 e−v2/2 dv dx ds

≤M0 +M ′
0 + ln(2π) + χ

ln(k)

4π
+ χ

ln(k)

2πk

∫
R2

|x|ρε(x) dv dx.

Using (4.58), we obtain, for some ν > 0,∫
R2

ρε ln(ρε) dx+
(
ν − χ

ln(k)

2kπ

) ∫
R2

|x|ρ dx

+(1− ν/2)
4

ε2

∫ t

0

∫
R2

∫
R2

∣∣∇v

√
fεev

2/2
∣∣2 e−v2/2 dv dx ds

≤ (1 + ν)M0 +M ′
0 + χ

ln(k)

4π
+
νt

2
.

We pick 0 < ν < 2, and then k large enough so that ν > χ ln(k)/(2kπ).
We conclude by using a classical trick which will provide an estimate on the non negative

quantity ρε| ln(ρε)|. Let κ > 0. We have

ρ| ln(ρ)| = ρ ln(ρ)− 2ρ ln(ρ)χe−κ|x|≤ρ≤1 − 2ρ ln(ρ)χ0≤ρ≤e−κ|x|

≤ ρ ln(ρ) + 2κ|x|ρ+K
√
ρχ0≤ρ≤e−κ|x|

≤ ρ ln(ρ) + 2κ|x|ρ+Ke−κ|x|/2,

for some K > 0. Hence, we are led to∫
R2

ρε| ln(ρε)| dx+
(
ν − 2κ− χ

ln(k)

2kπ

) ∫
R2

|x|ρε dx

+
(
1− ν

2

) 4

ε2

∫ t

0

∫
R2

∫
R2

∣∣∇v

√
fεev

2/2
∣∣2 e−v2/2 dv dx ds

≤ (1 + ν)M0 +M ′
0 + χ

ln(k)

4π
+
νt

2
+K

∫
R2

e−κ|x|/2 dx.

Summarizing, we proved
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Proposition 6 Suppose (4.56). Let 0 < T <∞. Then,
i) ρε(1 + |x|+ | ln(ρε)|) is bounded in L∞(0, T ;L1(R2));

ii)
∣∣∇v

√
fεev

2/2
∣∣2 e−v2/2 is bounded in L1((0, T )× R2 × R2).

Corollary 5 Let the assumptions of Proposition 6 be fulfilled. Then v2fε is bounded in L1((0, T )×
R2 × R2).

Proof. We note that

0 ≤
∫ t

0

∫
R2

∫
R2

v2fε dv dx ds

=

∫ t

0

∫
R2

∫
R2

(
|v

√
fε + 2∇v

√
fε|2 − 4|∇v

√
fε|2 − 4v

√
fε · ∇v

√
fε

)
dv dx ds

≤
∫ t

0

∫
R2

∫
R2

|v
√
fε + 2∇v

√
fε|2 dv dx ds+ 0 + 4

∫ t

0

∫
R2

∫
R2

fε dv dx ds.

By Proposition 6, it is dominated by CT ε
2 + 4T , where CT depende only on T and the initial data.

We go back to the moments system (4.53), where as a consequence of Corollary 5, Jε and Pε
are bounded in L1((0, T )× R2). We go a step further by remarking

Pε =

∫
R2

v
√
fε ⊗ (v

√
fε + 2∇v

√
fε) dv − 2

∫
R2

v
√
fε ⊗∇v

√
fε dv

=

∫
R2

v
√
fε ⊗ (v

√
fε + 2∇v

√
fε) dv + ρε I = OL1(ε) + ρεI.

We can suppose that
ρε ⇀ ρ, Jε ⇀ J,

weakly in L1((0, T ) × R2) (by virtue of the Dunford-Pettis theorem, see [39]) and in the vague
topology for bounded measures on (0, T )×R2, respectively. Furthermore, we can use a convenient
adaptation of Lemma 5 and justify that ρε converges to ρ in C0([0, T ];L1(RN) − weak). Letting
ε→ 0 in (4.53) yields {

∂tρ+∇x · J = 0,
J + χ∇xρ = − lim

ε→0
ρε∇xΦε

in the D′((0, T )×R2) sense. It remains to identify the limit of the nonlinear term ρε∇xΦε, but we
point out that there is no direct argument providing a clear functional framework for the potential
by exploiting the available estimates.

The idea uses the symmetry properties of the Poisson kernel: for ϕ ∈
(
C∞
c (R2)

)2
, we write〈

ρε∇xΦε, ϕ
〉

=
−γ
2π

∫
R2

∫
R2

ρε(t, x)ρε(t, y)
x− y

|x− y|2
· ϕ(x) dy dx

=
−γ
4π

∫
R2

∫
R2

ρε(t, x)ρε(t, y)
x− y

|x− y|2
·
(
ϕ(x)− ϕ(y)

)
dy dx.
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This idea, which appears in [81], is reminiscient to the study of weak solutions of the two-dimensional
Euler equations by Schochet [88], and for further developpements we refer to [79]. The advantage
is that

R2 × R2 −→ R2

(x, y) 7−→ x− y

|x− y|2
·
(
ϕ(x)− ϕ(y)

)
belongs to L∞(R2×R2): (it is bounded by ‖∇ϕ‖L∞ and not well-defined on the diagonal {(x, x), x ∈
R2} which is a negligeable set of R2 × R2. Therefore, we obtain

lim
ε→0

〈
ρε∇xΦε, ϕ

〉
=
−γ
4π

∫
R2

∫
R2

ρ(t, x)ρ(t, y)
x− y

|x− y|2
·
(
ϕ(x)− ϕ(y)

)
dy dx,

for any time t ∈ [0, T ]. We conclude that ρ is a solution of (4.54-4.55) in the sense that

d

dt

∫
R2

ρ(t, x)ϕ(x) dx = χ

∫
R2

ρ(t, x)∆ϕ(x) dx

+
γ

4π

∫
R2

∫
R2

ρ(t, x)ρ(t, y)
x− y

|x− y|2
·
(
∇ϕ(x)−∇ϕ(y)

)
dy dx,∫

R2

ρ(t, x)ϕ(x) dx
∣∣∣
t=0

= lim
ε→0

∫
R2

∫
R2

f 0
ε (x)ϕ(x) dv dx.

(4.60)

holds in D′([0,+∞)) for any test function ϕ ∈ C∞
c (R2).

4.4 Attractive potential

It is interesting to look at the same problem in the in the attractive case that is by reversing the
sign in the Poisson relation: (4.49) is now coupled to

∆xΦε = ρε

that is

Φε(t, x) = −
∫

RN

EN(x− y)ρε(t, y) dy.

The asymptotic problem is detailed on physical grounds in [24], motivated by stellar physics mod-
elling. As ε→ 0 we are led to {

∂tρ− divx(χρ∇xΦ +∇xρ) = 0
∆xΦ = ρ.

(4.61)

which is referred to as the Smoluchowski system. Far later, the system (4.61) has also been proposed
as a model describing the evolution of certain biological systems subject to aggregation dynamics by
Keller-Segel [62]. The analysis of the system is amazing since the solution can exhibit concentration
as a Dirac mass in finite time. The singular behavior depends on a threshold involving the parameter
χ.
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Proposition 7 We suppose that the initial data for (4.61) is a smooth, say C1, normalized function∫
R2

ρ(0, x) dx = 1

with a finite second moment. Then, if χ > 8π, the solution does not remain smooth for any time.

Proof. Clearly, mass conservation holds∫
R2

ρ(t, x) dx =

∫
R2

ρ(0, x) dx = 1.

We compute the time derivative of the second order moment

d

dt

∫
R2

x2

2
ρ dx = −

∫
R2

x · (χρ∇xΦ +∇xρ) dx

= 2

∫
R2

ρ dx− χ

2π

∫
R2

∫
R2

x · x− y

|x− y|2
ρ(t, x)ρ(t, y) dy dx

= 2

∫
R2

ρ dx− χ

4π

∫
R2

∫
R2

(x− y) · x− y

|x− y|2
ρ(t, x)ρ(t, y) dy dx

= 2

∫
R2

ρ dx− χ

4π

∫
R2

∫
R2

ρ(t, x)ρ(t, y) dy dx = 2
(
1− χ

8π

)
.

When χ > 8π, it contradicts the fact that
∫

R2 x
2ρ dx is non negative for any time.

In dimension 2 χ = 8π splits really the behavior of the solutions, which are globally defined when
χ < 8π. We refer to [61, 41, 58] and to the crystal clean recent proof in [36]. The critical case is
detailed in [4] and for a suitable measure-valued framework we mention [79] and [37]. The situation
is more involved in higher dimensions or in bounded domains [59] As far as we are concerned with
the hydrodynamic aymptotics question, we can prove the following result which guarantees global
convergence provided there is no blow up in the limit equation.

Theorem 12 We suppose χ < 8π. Then Theorem 11 applies to the attractive case as well.

The difficulty relies on the estimation of the contribution of the potential energy. Hence, the
proof differs from the repulsive case by the replacement of Lemma 9 by the following claim, which
is a direct application of Theorem 2 of [10] (see also [19]).

Lemma 10 Let ρ : R2 → R such that ρ ≥ 0 and
∫

R2 ρ dx = 1. Then, there exists a constant
C∗ > 0 such that

−4

∫
R2

∫
R2

ρ(x)ρ(y) ln(|x− y|)dy dx ≤ C∗ + 2

∫
R2

ρ ln(ρ) dx.
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Accordingly, we get in the attractive case∫
R2

ρΦ dx ≥ −C∗
8π
− 1

4π

∫
R2

ρ ln(ρ) dx.

Then, using this inequality in the attractive version of (4.59), we get(
1− χ

8π

) ∫
R2

ρε ln(ρε) dx+
4

ε2

∫ t

0

∫
R2

∫
R2

∣∣∇v

√
fεev

2/2
∣∣2 e−v2/2 dv dx ds

≤M0 +M ′
0 + ln(2π) + χ

C∗
16π

where the threshold clearly appears. The other arguments can be repeated mutadis mutandis.

The scaling (4.48) leads to the same coupled system, up to the diffusion term. We refer to
[74, 51] for the asymptotic analysis and to [73] for the derivation of the transport equation from
the convection-diffusion system.
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