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Introduction Multiscale problems and methods

Multiscale problems

A broad range of scientific problems involve multiple scales and multi-scale
phenomena (material science, chemistry, fluid dynamics, biology...). These
involve different physical laws which govern the processes at different scales.

On the computational side, several important classes of numerical methods
have been developed which address explicitly the multiscale nature of the
solutions (wavelets, multigrid, domain decomposition, stiff solvers, adaptive
mesh refinements...).

For many problems, representation or solution on the fine-scale is impossible
because of the overwhelming costs.
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Introduction Multiscale problems and methods

The different scales
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Introduction Multiscale problems and methods

Multiscale methods

Couplings of atomistic or molecular, and more generally microscopic
stochastic models, to macroscopic deterministic models based on ODEs and
PDEs is highly desirable in many applications. Similar arguments apply also
to numerical methods1.

A classical field where this coupling play an important rule is that of kinetic
equations. In such system the time scale is proportional to a relaxation time
ε and a strong model (and dimension) reduction is obtained when ε → 0.

Many examples could depict this situation, rarefied gas dynamics, plasma
physics, granular gases, turbulence,. . ..

1W.E, B.Engquist CMS ’03, N. AMS ’03
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Introduction Kinetic equations

Kinetic equations

Kinetic equations

∂tf + v∇xf =
1

ε
Q(f, f), x, v ∈ R

d, d ≥ 1, (microscale)

Here f = f(x, v, t) ≥ 0 is the particle density and Q(f, f) describes the particle
interactions. In rarefied gas dynamics the equilibrium functions M for which
Q(M,M) = 0 are local Maxwellian

M(ρ, u, T )(v) =
ρ

(2πT )d/2
exp

(

−
|u − v|2

2T

)

,

where we define the density, mean velocity and temperature as

ρ =

∫

Rd

f dv, u =
1

ρ

∫

Rd

vf dv, T =
1

dρ

∫

Rd

[v − u]2f dv.
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Introduction Kinetic equations

Fluid limit

If we multiply the kinetic equation by its collision invariants (1, v, |v|2) and
integrate the result in velocity space we obtain five equations that describe the
balance of mass, momentum and energy. The system is not closed since it
involves higher order moments of the distribution function f .
As ε → 0 we have Q(f, f) → 0 and thus f approaches the local Maxwellian Mf .
Higher order moments of f can be computed as function of ρ, u, and T and we
obtain the closed system

Compressible Euler equations






∂t̺ + ∇x · (̺u) = 0,

∂t̺u + ∇x · (̺u ⊗ u + p) = 0, (macroscale)

∂tE + ∇x · (u(E + p)) = 0,

where p is the gas pressure.
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Introduction Kinetic equations

Generalizations

The macroscale process is described by the conserved quantities
U = (ρ, u, T ) whereas the microscale process is described by f . The two
processes and state variables are related by compression and reconstruction
operators P and R, such that P (f) = U and R(U) = f , with the property
PR = I, where I is the identity operator.

The compression operator is a projection to low order moments. The
reconstruction operator does the opposite and it is under-determined, except
close to the local equilibrium state when Q(f, f) = 0 implies f = M(U).
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Hybrid methods Hybrid representation

Hybrid representation

The solution is represented at each space point as a combination of a
nonequilibrium part (microscale) and an equilibrium part (macroscale)

−R R

w(v)M(v)

nonequilibrium

equilibrium

f(v)

v −R R
 

equilibrium

f(v)
nonequilibrium

βM(v)

v
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Hybrid methods Hybrid representation

The starting point is the following2

Definition II - hybrid function

Given a probability density f(v), v ∈ R
d (i.e. f(v) ≥ 0,

∫
f(v)dv = 1) and a

probability density M(v), v ∈ R
d called equilibrium density, we define

w(v) ∈ [0, 1] and f̃(v) ≥ 0 in the following way

w(v) =







f(v)

M(v)
, f(v) ≤ M(v) 6= 0

1, f(v) ≥ M(v)

and f̃(v) = f(v) − w(v)M(v). Thus f(v) can be represented as

f(v) = f̃(v) + w(v)M(v).

2L.P. ESAIM ’05, L.P., G.Dimarco CMS ’06, MMS ’08
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Hybrid methods Hybrid representation

Taking β = minv{w(v)}, and f̃(v) = f(v) − βM(v), we have

∫

f̃(v)dv = 1 − β.

Let us define for β 6= 1 the probability density

fp(v) =
f̃(v)

1 − β
.

The case β = 1 is trivial since it implies f ≡ M . Thus we recover the hybrid
representation3 as

f(v) = (1 − β)fp(v) + βM(v).

3 R.E.Caflisch, L.P. JCP ’99
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Hybrid methods The hybrid method

The general methodology

Now we consider the following general representation

f(x, v, t) = f̃(x, v, t)
︸ ︷︷ ︸

nonequilibrium

+ w(x, v, t)M(ρ(x, t), u(x, t), T (x, t))(v)
︸ ︷︷ ︸

equilibrium

.

The nonequilibrium part f̃(x, v, t) is represented stochastically, whereas the
equilibrium part w(x, v, t)M(ρ(x, t), u(x, t), T (x, t))(v) deterministically. The
general methodology is the following.

Solve the evolution of the non equilibrium part by Monte Carlo methods.
Thus f̃(x, v, t) is represented by a set of samples (particles) in the
computational domain.

Solve the evolution of the equilibrium part by deterministic methods. Thus
w(x, v, t)M(ρ(x, t), u(x, t), T (x, t))(v) is obtained from a suitable grid in the
computational domain.
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Hybrid methods The hybrid method

The general methodology

The starting point of the method is the classical operator splitting which consists
in solving first a homogeneous collision step

(C) ∂tf
r(x, v, t) =

1

ε
Q(fr, fr)(x, v, t)

and then a free trasport step

(T ) ∂tf
c(x, v, t) + v · ∇xfc(x, v, t) = 0.

Except for BGK-like models where the collision term has the form
Q(f, f) = M − f , one needs a suitable solver for the stiff nonlinear collision
operator4.

4 E.Gabetta, L.P., G.Toscani SINUM ’97
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Hybrid methods The hybrid method

Sketch of the basic method

C: Starting from a hybrid function f(t) = f̃(t) + w(t)M(t) solve the collision step
fr(t + ∆t) = λf(t) + (1 − λ)M(t) with λ = e−∆t/ε.

1 The new value f̃r(t + ∆t) = λf̃(t) is computed by particles.
2 Set wr(t + ∆t) = λw(t) + 1 − λ.
3 Discard a fraction of Monte Carlo samples since wr(t + ∆t) ≥ w(t).

T: Starting from the hybrid function fr(t + ∆t) computed above solve the transport
step f(x, v, t + ∆t) = fr(x − v∆t, v, t + ∆t).

1 Transport the particle fraction f̃r(x− v∆t, v, t + ∆t) by simple particles shifts.
2 Transport the deterministic fraction wr(x − v∆t, v, t + ∆t)M(x − v∆t, v, t)

by a deterministic scheme.
3 Project the computed solution to the hybrid form

f(t + ∆t) = f̃(t + ∆t) + w(t + ∆t)M(t + ∆t).
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Hybrid methods The hybrid method

Remarks

Note that point 2 of the transport corresponds to a Maxwellian shift analogous to
that usually performed in the so called kinetic or Boltzmann schemes for the Euler
equations5.
Clearly point 3 after the transport step is crucial for the details of the hybrid
method. We have considered three different possibile reconstructions

(0) We loose entirely equilibrium thus w(x, v, t + ∆t) = 0.

(C) We compute the new equilibrium fraction from
wr(x − v∆t, v, t + ∆t)M(x − v∆t, v, t) using definition I.

(1) We compute the new equilibrium fraction from
wr(x − v∆t, v, t + ∆t)M(x − v∆t, v, t) using definition I and take the
minimum β = minv{w(x, v, t + ∆t)}

Off course the different reconstructions are strictly connected to the choice of the
macroscopic solver used in point 2.

5 S.Deshpande JCP ’79, B.Perthame SINUM ’90
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Hybrid methods Macroscopic solvers

Macroscopic solvers I

Methods based on discrete velocity model6 (HM methods).
Main features

Representation f(v) = f̃(v) + w(v)M(v)

Discretize the velocity space.

Solve the deterministic and stochastic part with a DVM.

Compact support, equilibrium functions Ef differ from Maxwellian Ef 6= Mf .

We need to solve a non linear system for each cell at each time step.

Time step restrictions from deterministic transport step.

6L. Mieussens M3AS ’00, L.P. G.Dimarco CMS ’07
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Hybrid methods Macroscopic solvers

Macroscopic solvers II

II) Methods based on the full kinetic equation (BHM methods).
Main features

Representation f(v) = f̃R(v) + wR(v)M(v) where wR(v) = 0 for
v /∈ [−R,R]d.

Discretize velocity space only in the central part v ∈ [−R,R]d.

Tails are treated by particles.

Shorter computational time due to time step increase, no need of nonlinear
iterations, and to less mesh points in velocity space.

More fluctuations due to the the presence of the tails.

7L.P., G.Dimarco MMS ’08, P.Degond, G.Dimarco, L.Mieussens JCP ’07
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Hybrid methods Macroscopic solvers

Macroscopic solvers III

III) Methods independent from the fluid solver (FSI methods).
Main features

Representation f(v) = f̃(v) + βM(v), β = minv{w(v)}.

Solve relaxation in the usual way to get βr(t).

Solve the transport (equilibrium and nonequilibrium part) with a Monte Carlo
method.

Solve the Euler equations with initial data UE(t) = P (βr(t)M(t)) to get the
moments UE(t + ∆t). We have
P (βr(x − v∆t, t)M(x − v∆t, v, t)) = UE(t + ∆t) + O(∆t2).

Apply a moment matching only to the advected equilibrium particles so that
the above equation is satisfied exactly.

Additional difficulties sin the reconstruction since the kinetic information are
only available through particles.

8L.P., G.Dimarco ’08
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Hybrid methods Numerical results

Accuracy test

Smooth solution in 1D (velocity and space) with periodic boundary conditions. L1 norm
of the errors for temperature respect to different value of the Knudsen number ε (in
units of 10−2).

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCM 3.2923 4.4354 6.2404 5.7733 6.1142

HM 2.9520 2.7893 2.6305 0.96996 0.2840

HM1 2.8437 2.5110 1.6132 0.6617 0.2053

CHM 1.8196 1.2004 0.5368 0.1310 0.0651

BHM 3.1869 3.0254 2.8536 2.1430 1.8134

BHM1 2.7132 2.6807 2.3756 2.0148 2.1010

BCHM 2.6210 2.3226 2.1498 1.9315 1.8849
N = 1500 particles for cell, v ∈ [−15, 15] for HM schemes, R = 5 for BHM schemes, ∆v = 0.16 and ∆x = 0.05.

ε = 10−2 ε = 10−3 ε = 5 ∗ 10−4 ε = 10−4

MCM 6.762 7.611 7.578 7.316

FSI 7.007 6.022 4.500 0.641

FSI1 6.662 4.939 3.773 0.598
N = 200 particles for cell ∆x = 0.05.
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Hybrid methods Numerical results

Computational cost

Smooth solution in 1D (velocity and space) with periodic boundary conditions.

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

MCM N=1500 23 sec 25 sec 27 sec 26 sec

BHM N=1500 35 sec 25 sec 22 sec 22 sec

BHM1 N=1500 34 sec 20 sec 19 sec 20 sec

BCHM N=1500 15 sec 11 sec 17 sec 21 sec

FSI N=1500 25 sec 22 sec 3 sec 0.6 sec

FSI1 N=1500 18 sec 17 sec 2 sec 0.6 sec

FSI N=500 9 sec 8 sec 0.4 sec 0.3 sec

FSI N=500 7 sec 6 sec 0.4 sec 0.3 sec
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Hybrid methods Numerical results

Sod test

Comparison of results for ρ for HM and ε = 10−3 9.
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Hybrid methods Numerical results

Sod test

Comparison of results for ρ for BHM and ε = 10−3 .
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Hybrid methods Numerical results

BGK equation: flow past an ellipse

Comparison of results for T , DSMC (left), FSI (right).
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ε is such that 50% of the solution is represented by particles in HM.
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Hybrid methods Numerical results

BGK equation: flow past an ellipse

Comparison of results for T , DSMC (left), FSI (right).
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The fluid limit ε → 0.
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Hybrid methods Numerical results

Boltzmann equation: 2D channel flow

Comparison of results for ρ (left), T (right), DSMC (left), HM1 (right)10.
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Hydro-guided Monte Carlo Basic principles

Basic principles

The basic idea consists in obtaining reduced variance Monte Carlo methods
forcing particles to match prescribed sets of moments given by the solution of
deterministic macroscopic fluid equations4.

These macroscopic models, in order to represent the correct physics for all
range of Knudsen numbers include a kinetic correction term, which takes into
account departures from thermodynamical equilibrium.

We will focus on a basic matching technique between the first three moments
of the macroscopic and microscopic equations. However, in principle, it is
possible to force particles to match also higher order moments, which
possibly can further diminish fluctuations.

The general methodology described in the following is independent from the
choice of the collisional kernel (Boltzmann, Fokker-Planck, BGK etc..).

4G.Dimarco, P.Degond, L.P., ’09
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Hydro-guided Monte Carlo Basic principles

The setting

Consider a kinetic equation of the form

∂tf + v · ∇xf = Q(f, f)

The operator Q(f, f) is assumed to satisfy

∫

−R3

φ(v)Q(f, f)(v)dv = 0

where φ(v) = (1, v, |v|2) are the collision invariants.
We define

U =

∫

−R3

φ(v)f(v)dv = (ρ, ρu, 2E).
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Hydro-guided Monte Carlo The HG method

The HG method

The starting point of the methods is the following micro-macro decomposition

f(v) = M(v) + g(v).

The function g(v) represents the non equilibrium part and it is not strictly positive.
Now the moments vector U and g = f − M satisfy the coupled system of
equations

∂tU + ∂x

∫

R3

vfφ(v) dv + ∂x

∫

R3

vgφ(v) dv = 0

∂tf + v∂xf = Q(f, f).

Our scope is to solve the kinetic equation with a Monte Carlo method, and
contemporaneously the fluid equation with any type of finite difference or finite
volume scheme and than match the resulting moments. Similar decomposition
strategies can be used also for low Mach number flows 5.

5N.Hadjiconstantinou, 05
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Hydro-guided Monte Carlo The HG method

The HG method

Note that the two systems, with the same initial data, furnish the same results in
terms of macroscopic quantities apart from numerical fluctuations.
We summarize the method in the following way

1 Solve the kinetic equation and obtain a first set of moments.

2 Solve the fluid equation with the preferred finite volume/difference scheme.

3 Match the moments of the two models through a transformation of samples
values.

4 Restart the computation for the next time step.

Step 3 of the above procedure requires great care. If we restrict to moments up to
second order then a standard moment matching procedure based on a velocity
(linear) transformation can be applied.
In the sequel we apply the method to the case of the BGK operator for an
unsteady shock problem.
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Hydro-guided Monte Carlo Numerical results

Numerical results: ε = 0.1

Unsteady Shock: Solution at t = 0.067 for density. MC method (left), Hydro
Guided MC method (right). Knudsen number ε = 0.1.
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Hydro-guided Monte Carlo Numerical results

Numerical results: ε = 0.01

Unsteady Shock: Solution at t = 0.067 for density. MC method (left), Hydro
Guided MC method (right). Knudsen number ε = 0.01.
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Hydro-guided Monte Carlo Numerical results

Numerical resultsε = 0.001

Unsteady Shock: Solution at t = 0.067 for density. MC method (left), Hydro
Guided MC method (right). Knudsen number ε = 0.001.
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