
III.  Kinetic-Hydrodynamics 
Coupling



Kinetic and hydrodynamics equations

• Solving kinetic equations are much more 
expensive than solving hydrodynamic 
equations

• Defined in phase space (six dimension + 
time)

• More expensive when mean free path      
（Knudsen number=mfp/typical domain length）

is small



Kinetic Equations (of monatomic gases)

ft + k · ∇x f -∇x V · ∇k f =  1/ε Q(f)
f(t,x,k):  probability density distribution

t:  time       x: position      k: particle velocity
V(x): potential        Q(f): collision operator
ε: dimensionless mean free path or Knudsen number

Properties (for elastic collisions):
conservations of mass, moment and total energy;  
H-theorem (entropy condition)



Scales in Kinetic (Boltzmann) Equations

• When  ε is small (kn · 0.01), the moments 
of f solve the compressive Euler (to 
leading order) or Navier-Stokes equations 
( to O(ε) ) of fluid dynamics, except at 
initial, boundary or shock layers 

• When ε is not small the fluid equations 
are not valid, so one has to use the kinetic 
equations



Multiscale Problems

• Very often one needs to deal with 
multiscale phenomena:
• Space shuttle reentry 

ε : 10-8 ∼ 1 meters
• fluid equations not accurate in boundary   

layers, shock layers, high Mach numbers         
• Different property of materials need    

different physical laws at different scales



Outline

• Develop schemes that work uniformly with 
respect to ε:
asymptotic-preserving methods
(kinetic schemes)

• Domain decomposition (hybridization method)

• Moment closure techniques



III-A:  Asymptotic preserving methods

• Work in both kinetic and fluid regimes
by solving only the kinetic equation; No 
need to couple two physical equations

• When ε is small, can do coarse
(underresolved) computation: numerical 
discretization parameters (time step, mesh 
size) independent of ε

• Automatically become a fluid solver when 
ε 0 



Fluid approximations of kinetic equations

• The Euler scaling
moments:

ρ=∫ f dk mass
ρ u = ∫ kf dk momentum
E=1/2 ∫ |k|2 f dk total energy

• when ε 0,  Q(f) 0,  then
f=ρ/(2π T)( d/2) e-(k-u)2/2T=M local  Maxwellian

• The moments ρ, ρ u, E solve the compressible Euler 
equations



High order approximations
• Chapman-Enskog expansion:

expand in terms of power series of ε

• Zeroth order: Euler equations
• First order:  Navier-Stokes equations 
• Second order: Burnett equations (linearly  unstable)
• Third order: super Burnett equations (linearly unstable) 

Justifications of fluid dynamics limit (Caflish-
Papanicolaou, Bardos-Golse-Levermore, Golse-Saint 
Raymond, …)



Numerical issues when ε is small 

• Numerical stiffness:  an explicit collision term 
would require Δ t=O(ε)

• Implicit collision allows Δt to be independent of ε, 
but inverting the non-local collision term is 
numerically difficult and expensive

• Does the underresolved computation gives the 
correct macroscopic solutions?



Numerical goals

• Implicit collision that can be solved explicitly: 
underresolved time step; uniform stability

• Schemes capture the macroscopic behavior
without resolving the small Knudsen number

• Asymptotic-preserving:
numerical scheme should preserve the discrete 
analog of the Chapman-Enskog expansion



Asymptotic preserving
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AP Uniform convergence
• Golse-Jin-Levermore (SIAM J Num Anal 99)

For linear transport equation, with the diffusion 
limit, if the scheme is asymptotic-preserving, 
then 

|| FΔ
ε – fε || · C (Δ)n/2

Where C is independent of ε

Similar analysis applies to any other AP scheme



A case study—the BGK model
• Coron-Perthame SINUM ’91

• ft + k · ∇x f = 1/ε (M –f)
M = ρ/(2π T)(d/2) e(k-u)/(2T)

Splitting:

convection:   ft = 1/ε (M –f)
collision         ft + k · ∇x f = 0 



Implicit collision
• (fn+1-fn)/Δ t = 1/ε (Mn+1 – fn+1 )

Clearly Δ t=O(1)

however, since elastic collision conserves  ρ, u, T: 
Mn+1=M(ρn+1, un+1, Tn+1)=M(ρn+1, un+1, Tn+1)

Thus one can solve this implicit scheme explicitly!

This time discretization is AP:  
As \epsilon 0,  fn+1 Mn+1, 

Plug this into the convection step gives the Euler equation



AP in space

• ∂t f+ k ∂x f = 0
using upwind:

∂t fi+ (k+|k|)/2 (fi-fi-1) /Δ x
+ (k-|k|)/2 (fi+1-fi}) /Δ x=0 

if one plugs f=M into the scheme, and take 
the moments, one arrives at

∂t F + [Fj+1/2-Fj-1/2]/Δ x=0



• Where Fj+1/2= F+
j+1/2= F-

j+1/2

This is the kinetic flux vector splitting scheme for compressible Euler by 
Deshpande



More general collision terms

• using the Wild sum for more general 
collision  operators

(Gabette,Pareschi, Toscani,     SIAM J Num Anal ’97)



High order time discreitzations

• second order Strang splitting reduces to 
first order as \epsilon 0:

* Jin,  J. Comp. Phys. 95
• usually L-stable ODE solvers work:

* Runge-Kutta splitting: Caflish, Jin, Russo,       
SIAM J. Num Anal. 97
*  Implicit-Explicit (IMEX) time discretizations:    
Pareschi-Russo,



(Incompressible) Navier-Stokes or diffusive limit

• Transport equation in the diffusive regime

• The diffusion limit: as ε 0, f ρ(0), where



An AP scheme (J-Pareschi-Toscani, SINUM ‘00)



An AP scheme (cont’d)

• Solve the relaxation step (by some L-stable implicit ODE solver)

• Solve the convection step (by some explicit shock capturing scheme)

Here φ(ε)=min {1, 1/ε} is a front wave speed

(related work:  Klar) 



Numerical example: transport to diffusion

density                                  flux
ε=1, x<10;   ε=0.001, x>10
Δ x=0.5, Δ t=0.1

Jin, Pareschi, Toscani: SIAM J. Num Anal. ‘00



Numerical example: transport to diffusion

density                                  flux
ε=1, x<10;   ε=0.001, x>10
Δ x=0.5, Δ t=0.1

Jin, Pareschi, Toscani: SIAM J. Num Anal. ‘00



density                                 
ε=1, x<1;   ε=0.0001, x>1

Δx=0.05, x<1;  Δx =0.1, x>1.    Δ t=0.025



Two space dimension

density

ε=10-8

Δx=0.05
 Δt=0.001

 flux



Other AP schemes

• A. Klar
• Carrillo-Goudon
• Lemou-Mieussens
• Hauck-Lowrie
• Degond etc. for plasma (Euler-Poisson, 

Valsov-Poisson)
• Asymptotic-preserving Monte Carlo

Caflish-Pareschi-Russo ’99--



III-B: Domain decomposition methods

difficulty:      location of interface,             
interface condition



Different couplings

• Artifical interface:
* add an artificial interface to couple a   
kinetic and hydrodynamic equations
*where should the interface be?

• Physical interface
need physical interface condition, interface 
layer



Artifical coupling: Previous works

sharp interface coupling:
• Bouygat-Mallinger-Le Tallec-Tidriri, 
• Klar-Neunzert
• Perthame-Qiu

can be easily implemented if kinetic schemes are used for 
hydrodynamics

Difficulty:  where to put the interface



A sharp interface coupling

f=M(ρ, m, E), ξ<0                                                 

ρ, m, E=moments of f



A smooth transition model

• Degond-Jin: SIAM J. Num. Anal. 05
• Degond-Jin-Mieussens: J. Comp. Phys. 05

kinetic            buffer                hydrodynamic

a           b

h(x): smooth



Kinetic/kinetic coupling

-∞<x<∞ (1)



The hydrodynamic limit

• When ε 0, fε E[ρ], where ρ(t,x) is a 
solution to the hydrodynamic equation

∂t ρ +∂x F(ρ)=0

ρ: hydrodynamic variables
F(ρ):  the hydrodynamic flux

F(ρ)=<vmF(ρ)>



The hydrodynamic limit of fε
R

• When ε 0, fε
R F(ρε

R), where ρε
R is a 

solution to the hydrodynamic equation 

∂t ρε
R+(1-h) F(ρε

R)+(1-h)<vmfε
L>=0



Kinetic/hydrodynamic coupling

fε=fεL+E(ρε
R)

Remark: no boundary condition is needed since 
the equation is degenerate at x=(a+b)/2: h=0



Conditions/constraints
• General geometry of the interface has been built into the h-function
• The mapping ρ E(ρ) should be homogeneous of degree one

E( λ ρ)=λ E(ρ)   for any λ>0
• Classical kinetic models for rarified gas or plamsa (Boltzmann, BGK, 

Fokker-Planck-Laudau) OK:

• Quamtum kinetic models with Fermi-Dirac or Bose- Einstein statistics not 
OK:

• Constraints can be removed using micro-macro decomposition  
f= E(ρ)+g

(Degond-Liu-Mieussens) 



1d numerical example: shock tube

• Solid line: coupling method

• Dot line:   BGK

• Dash-dot: Euler



Shock defraction around a circular cylinder
(Kn=0.005, Mach=2.81)



Physical interface

• Due to different materials, one needs to 
couple equations at different scales via a 
physical interface boundary condition



Transport/diffusion coupling



approaches

• f+ can not be directly used for diffusion 
boundary condition: a boundary (interface) 
condition based on matched boundary 
layer analysis is needed to derive the 
boundary condition for the diffusion 
equation

• A reflecting boundary condition at xM can 
be used for the transport equation



Different physical interfaces
• Density (energy) conserved at interface

Golse-Jin-Levermore, M2AN ’03

• Density (energy) flux conserved at interface
Bal-Ryzhik derived interface condition
Jin-Yang-Yuan:  domain decomposition method
allow partial specular or diffusive     
transmission/reflection



III-C: Moment Methods

multiply the Boltzmann equation by the functions φi(k) (i=1, L, N, L) 

∂t ∫ φi(k) f(t, x, k)  dk + ∇ · ∫ φi(k) k f(t, x, k)  dk
= ∫ φi(k) Q(f) dk i=1, L, N, L

how to  close  the system with finite many moments:

• Grad’s thirteen moments (density, momentum, energy, stress, 
heat flux):  f is a Maxwellian times a Hermite function of k 

• Muller: Extended Thermodynamics: using more moments

look for models for transition regimes (0.01 · Kn · 1)



Better Hydrodynamic Models?
The Navier-Stokes equations are not valid in 
rarefied gas (high altitude flights, microscopic 
flows, etc.) or inaccurate in shock and boundary 
layers 

If one does not want to go back to Boltzmann, 
then intermediate models are desired.

• improved constitutive relation
• use  more moments.  



Disadvantage of the Moment Methods

• work well for low Mach number flow (Ma ·1.6)

• For higher Mach number flow it gives unphysical  
• sub-shocks 
• elliptic region
• deviate from the experiments and Monte Carlo 
results across the shock layer.

• Including higher moments eventually cure this 
problem but one needs many moments and the 
increase in Mach number is very slow



Chapman-Enskog expansion
Constitutive relation for ideal gas:    μ--viscosity

T= -p I- P,  p =Rρθ,
P= μ Π(1)+μ2 Π(2)+μ3 Π(3)+L,
q = μ Ξ(1)+μ2 Ξ(2)+μ3 Ξ(3) +L

O(1):   Euler
O(μ):   Navier-Stokes equations
O(μ2):   Burnett equations
O(μ3):  super Burnett equations



About Burnett equations

• linearly unstable: inconsistent to the 
second law of thermodynamics

• going to higher order does not help
• give more accurate shock profile for  

hypersonic flow  than the Navier-Stokes 
equations when compared with the Direct 
Simulation Mont Carlo (Fiscko-Chapman, ‘88 
Agarwal, ’00)



Relaxed Burnett equations
• Jin-Slemrod (J. Stat. Phys. ’91)
• a relaxation scheme to  regularize the Burnett equations
• defining the Stress and Heat Flux (thus the constitutive 

relation) with rate equations as in visco-elastic fluids.
• This gives a system of thirteen equations
• linearly stable
• Has a globally defined nonlinear  entropy function that is 

consistent to the Second Law of Thermodynamics
• Chapman-Enskog expansion shows it agrees with the 

Boltzmann equation to the Burnett (second) order, 



A model problem

ut=ε uxx - ε2 uxxt

Here the second order term resembles N-S 
viscosity while the third order term is that of 
Burnett approximation

Fourier Transform on x gives
Ut = - ε ξ2/(1-ε2 ξ2) U

this is a high-frequency instability if
ε |ξ| > 1



A relaxation model

• Consider the following “hyperbolic heat”
equation
ut + ε qx = 0
qt + 1/ε ux = -1/ε q

This is a hyperbolic system with a relaxation, 
which is endowed with a convex entropy
u2/+ε2 q2



Chapman-Enslog expansion

• q=- ux - ε qt

= -ux + ε uxt+O(ε2)
Applying this to

u_t+q_x=0
Gives ut=ε uxx - ε2 uxxt

Our idea is to use the first-order “good”
relaxation system, rather than the third 
order “unstable” Burnett equation



Relaxed Burnett equation





•

N-S
•
• Grad          Relaxation

• (with Pareschi)

A stationary, Mach 10 shockA stationary, Mach 10 shock



Numerical observations

• For small Mach numbers (· 1.6) all these 
methods give comparable results

• Relaxed Burnett offers more accurate 
shock profiles for larger Mach numbers, 
the larger the better

• Also extended to granular flow
(Jin-Slemrod Physica D ’01)



Other transition models

• Levermore
• R13

H. Struchtrup:  
Macroscopic Transport Equations for Rarefied Gas 
Flows:
Approximation Methods in Kinetic Theory , 

Springer 2005

http://www.me.uvic.ca/~struchtr/IMM.html
http://www.me.uvic.ca/~struchtr/IMM.html
http://www.me.uvic.ca/~struchtr/IMM.html
http://www.me.uvic.ca/~struchtr/IMM.html


Summary
• Three methods were discussed for multiscale kinetic problems:

• asymptotic-preserving: solving one equation (kinetic), more efficiency 
in the fluid regime; don’t use hydrodynamic equations – good when 
they are not available

• domain decomposition: more efficient than AP, but trickier at the 
interface

• moment methods: for transition regime,  most efficient, but no perfect 
models (stability+entropy+accuracy)
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