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Introduction Motivations

Motivations

One of the major computational challenges in rarefied gas dynamic (RGD)
simulations is the difficulty to compute regimes where the collisional time
becomes very small.

A nondimensional measure of the significance of collisions is given by the
Knudsen number, which is small in the fluid dynamic limit and large in the
rarefied state. For small Knudsen numbers most numerical methods lose their
efficiency because they are forced to operate on a very short time scale.

This difficulty is present, at different levels, both in deterministic as well as in
stochastic methods such as Nanbu and Bird’s method.
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Introduction Motivations

Main goal

The goal of time relaxed Monte Carlo (TRMC) methods1 is to construct simple
and efficient numerical methods for the solution of RGD problems in regions with
a large variation in the mean free path.
As a consequence TRMC methods have the following features

for large Knudsen numbers, the TRMC methods behave as classical DSMC
methods;

for intermediate Knudsen numbers the methods are capable to speed up the
computation time without degradation of accuracy;

in the limit of the very small Knudsen number, the collision step replaces the
distribution function by a local Maxwellian with the same moments. The
methods will behave as a stochastic kinetic scheme for the underlying Euler

equations of gas dynamics;

mass, momentum, and energy are preserved.

In the sequel we will present some recent advances in this direction based on the
use of recursivity and adaptivity2.

1L.Pareschi, G.Russo SISC ’01
2L.Pareschi, S.Trazzi, B.Wennberg SISC ’08
Lorenzo Pareschi (Univ. Ferrara) Monte Carlo methods for kinetic equations #3 IPAM, March 10-12, 2009 5 / 56



Time relaxed methods Exponential expansion

Exponential expansions
Let us consider a kinetic equation of the type

∂f

∂t
=

1

ε
[P (f, f) − µf ]

with initial condition f(v, 0) = f0(v), and where µ > 0 and P a bilinear operator.
The solution of such equation admits the following exponential expansion3

f(v, t) = e−µt/ε
∞
∑

k=0

(1 − e−µt/ε)kfk(v),

where the functions fk are given by the recurrence formula

fk+1(v) =
1

k + 1

k
∑

h=0

1

µ
P (fh, fk−h), k = 0, 1, . . . .

It is obtained from a Taylor expansion with respect to the relaxed variables

τ = (1 − e−µt/ε), F (v, τ) = f(v, t)eµt/ε.

3E. Wild ’51
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Time relaxed methods Exponential expansion

Application to the Boltzmann equation
The starting point of most numerical methods for the Boltzmann equation is a
first order splitting in time, which consists of solving separately a purely
convective step (i.e., Q ≡ 0) and a collision step characterized by a space
homogeneous equation.
After this splitting, most of the main computational difficulties are contained in
the collision step

∂f

∂t
=

1

ε
Q(f, f).

Assuming that the collision kernel is bounded by Σ taking
P (f, f) = Q(f, f) + µf , with µ ≥ 4πρΣ then the solution can be written in the
above exponential expansion form.
In this case, an important property of the coefficients fk(v) appearing in the
expansion is that they are nonnegative and that

∫

R3

fk(v)φ(v) dv =

∫

R3

f0(v)φ(v) dv, φ(v) = 1, v, |v|2, ∀ k.

Thus the exponential expansion has the nice property of being a convex
combination of nonnegative functions with the same moments of order 0, 1 and 2.
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Time relaxed methods Exponential expansion

Simple exponential schemes
In a time step ∆t a simple truncation at the order m of the series is given by

fn+1(v) = (1 − A(∆t))
m−1
∑

k=0

A(∆t)kfn
k (v) + A(∆t)mfn

m(v),

where fn = f(n∆t) and A(∆t) = 1 − e−µ∆t/ε. The methods can be seen as a
particular class of exponential integrators4 and are exact for any linear operator

Q(f, f) = µ(G − f),

with G = G(v) an arbitrary given function.

If we define the function ϕ(∆t) = A(∆t)
µ∆t/ε , the first order scheme reads

fn+1(v) = fn(v) + ϕ(∆t)
∆t

ε
Q(fn, fn),

which is the explicit exponential Euler method. Note that, if µ is a sufficiently
accurate estimate of the Jacobian of Q(f, f) then the method is of order 2.

4M.Hochbruck, C.Lubich, H.Selhofer ’98, M.Banda, G.Dimarco, L.Pareschi ’08
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Time relaxed methods Time relaxed schemes

Time relaxed schemes
Since the coefficients fk in the exponential expansion are characterized by
successive applications of the collision operator, it is natural to expect that

lim
k→∞

fk(v) = lim
t→∞

f(v, t) = M(v),

where M(v) = M [f ](v) is the local Maxwellian equilibrium5.
Using this remark, we consider a Maxwellian truncation for k > m ≥ 1 to get6

fn+1(v) = (1 − A(∆t))

m
∑

k=0

A(∆t)kfn
k (v) + A(∆t)m+1M(v).

Since M has the same moments of fn then fn+1 is a convex combination of
density functions. The schemes are conservative and asymptotic preserving

(fn+1(v) → M(v) as ε → 0).
Moreover they are exact for linear problems like

Q(f, f) = µ(M − f).

5E.Carlen, M.Carvalho, E.Gabetta, ’00
6E.Gabetta, L.Pareschi, G.Toscani ’97
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Time relaxed methods Time relaxed schemes

Generalized TR schemes
Generalized schemes can be derived, of the following form

fn+1(v) =

m
∑

k=0

Akfn
k (v) + Am+1M(v).

The weights Ak = Ak(τ) are nonnegative function that satisfy the following
properties

i)conservation :
m+1
∑

k=0

Ak(τ) = 1 τ ∈ [0, 1],

ii)asymptotic preserving :

lim
τ→1

Ak(τ) = 0, k = 0, . . . ,m

iii)consistency :

lim
τ→0

A1(τ)/τ = 1, lim
τ→0

Ak(τ)/τ = 0, k = 2, . . . ,m + 1
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Time relaxed methods Time relaxed schemes

Remarks

For both classes of methods we have the monotonicity property

H(fn+1) ≤ H(fn) (where H is for example the entropy functional) at any
order m of the numerical schemes provided that7

H

(

P (f, f)

µ

)

≤ H(f).

In fact, using the recursive representation of the coefficients it follows that

H(fk+1) ≤ H(fk), ∀ k

and hence since H(M) ≤ H(fk), ∀ k by convexity we obtain the
monotonicity property.

The schemes have a nice probabilistic interpretation. In fact, if fn is a
probability density function so are fn

k for all k and then the schemes describe
the next time level fn+1 as a convex combination of probability density
functions which makes them suitable for Monte Carlo simulations.

7A.Bobylev, G.Toscani ’92
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Time relaxed methods Time relaxed Monte Carlo methods

Time Relaxed Monte Carlo Methods
First order TR scheme (TRMC1):
Form m = 1 the generalized TR schemes give

fn+1 = A0f
n + A1f1 + A2M

The probabilistic interpretation of the above equation is the following.
A particle extracted from fn

does not collide with probability A0, (i.e. it is sampled from fn)

collides with another particle extracted from fn with probability A1 (i.e. it is
sampled from the function f1)

is replaced by a particle sampled from a Maxwellian with probability A2.

Remarks: In this formulation the probabilistic interpretation holds uniformly in
µ∆t, at variance with NB, which requires µ∆t < 1. Furthermore, as µ∆t → ∞,
the distribution at time n + 1 is sampled from a Maxwellian.
In a space non homogeneous case, this would be equivalent to a particle method
for Euler equations.
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Time relaxed methods Time relaxed Monte Carlo methods

Second order TRMC scheme
Form m = 2 the generalized TR schemes give

fn+1 = A0f
n + A1f1 + A2f2 + A3M,

with f1 = P (fn, fn)/µ, f2 = P (fn, f1)/µ.
The probabilistic interpretation of the scheme is the following. Given N particles
distributed according to fn:

NA0 particles do not collide,

NA1 are sampled from f1, as in the first order scheme,

NA2 are sampled from f2, i.e. NA2/2 particles sampled from fn will
undergo dummy collisions with NA2/2 particles sampled from f1,

NA3 particles are sampled from a Maxwellian.

Remarks: Previous MC schemes can be made exactly conservative. This goal is
achieved by using a suitable algorithm for sampling a set of particles with
prescribed momentum and energy from a Maxwellian.
Higher order TRMC methods can be constructed similarly.
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Time relaxed methods Numerical results

Numerical results
1D Shock wave profiles
Comparison between:
NB, TRMC1, TRMC2, TRMC2
Initial data f(x, v, t) = M(ρ, u, T ), with

ρ = 1.0, T = 1.0, Ma = 3.0, x > 0,

where Ma is the Mach number. The mean velocity is

ux = −Ma
√

(γT ), uy = 0,

with γ = 5/3
The values for ρ, u and T for x < 0 are given by the Rankine-Hugoniot conditions.
Test problem :
• Hard spheres : 50 − 100 space cells and 500 particles in each cell on x > 0. The
reference solution is obtained with 200 space cells and 500 particles in each cell on
x > 0.
Remark: Since we have a stationary shock wave the accuracy of the methods can
be increased by computing averages on the solution for t ≫.
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Time relaxed methods Numerical results

Shock profile rarefied regime

1D shock profile: DSMC(+) and first order TRMC (×) (top), second order (∗)
and third order (◦) TRMC (bottom) for ǫ = 1.0 and ∆t = 0.025. From left to
right: ρ, u, T . The line is the reference solution.
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Time relaxed methods Numerical results

Shock profile intermediate regime
1D shock profile: DSMC(+) and first order TRMC (×) (top), second order (∗)
and third order (◦) TRMC (bottom) for ǫ = 0.1 and ∆t = 0.0025 for DSMC,
∆t = 0.025 for TRMC. From left to right: ρ, u, T . The line is the reference
solution.
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Time relaxed methods Numerical results

Shock profile fluid regime
1D shock profile: First order TRMC (×) for ǫ = 10−6 and ∆t = 0.025. From left to right: ρ, u,
T .
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Time relaxed methods Numerical results

2D Flow past an ellipse

Euler or Navier-Stokes region

Boltzmann region

ε << 0.01

ε >  0.01
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NB, TRMC1 and TRMC2 schemes
Ma = 20, ρinf = 0.01, Tinf = 200, Tobj = 1000, ǫ = 0.1, 0.01, 10−6

Test problem :
• Hard spheres : 75× 60 space cells and 100 particles in each cell at ’infinity’. Full
accomodation boundary condition.

Lorenzo Pareschi (Univ. Ferrara) Monte Carlo methods for kinetic equations #3 IPAM, March 10-12, 2009 22 / 56



Time relaxed methods Numerical results

2D flow: ε = 0.1

NB, TRMC1 and TRMC2 solution for the mass ρ.
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Time relaxed methods Numerical results

2D flow: ε = 0.1

Transversal and longitudinal sections for the mass ρ at y = 6 and x = 5
respectively for ǫ = 0.1 and M = 20; DSMC-NB (◦), TRMC I (+), TRMC II (×).
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Time relaxed methods Numerical results

2D flow: ε = 0.01

NB, TRMC1 and TRMC2 solution for the mass ρ.
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Time relaxed methods Numerical results

2D flow: ε = 0.01

Transversal and longitudinal sections for the mass ρ at y = 6 and x = 5
respectively for ǫ = 0.1 and M = 20; DSMC-NB (◦), TRMC I (+), TRMC II (×).
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Time relaxed methods Numerical results

2D flow: ε = 10
−6

NB, TRMC1 and TRMC2 solution for the mass ρ.
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Time relaxed methods Numerical results

2D flow: ε = 10
−6

Transversal and longitudinal sections for the mass ρ at y = 6 and x = 5
respectively for ǫ = 0.1 and M = 20; DSMC-NB (◦), TRMC I (+), TRMC II (×).
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Time relaxed methods Numerical results

2D flow: Number of ”Collisions”

From left to right ǫ = 0.1, 0.01, 0.001; NB (◦), TRMC1 (+), TRMC2 (×).
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Recursive time relaxed Monte Carlo methods Recursive sampling

Recursive sampling
Let us first consider the simpler case of a Maxwellian kernel and show how we can
sample from the whole exponential expansion

fn+1(v) = e−µ∆t/ε
∞
∑

k=0

(1 − e−µ∆t/ε)kfn
k (v).

This sum has a clear probabilistic interpretation.

The distribution of particles that do not collide is just f0 and the probability
of this event is e−µ∆t/ε.

In the same way f1 is the velocity distribution for particles which have been
involved in exactly one collision, and the probability of that is
e−µ∆t/ε(1 − e−µ∆t/ε).

At least fm is the velocity distribution given that exactly m + 1 particles have
been involved in their collision history back to the initial time. To be able to
find a sample of fm, we must assume that the densities fk, 0 ≤ m − 1 are all
already known. Off course the only one of these that is really known is f0,
the initial distribution.
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Recursive time relaxed Monte Carlo methods Recursive sampling

Collision trees

It is useful to use a representation of the collision process through the collision

trees, sometimes called Mc Kean graphs. Note that “re-collisions” are not allowed.

f_0 f_0 f_0 f_0 f_0 f_0 f_0 f_0

f_1
f_1 f_1

f_2 f_2

f_0 f_0 f_0 f_0 f_0 f_0 f_0 f_0 f_0 f_0 f_0 f_0

f_1

f_2

f_3

f_1 f_1

f_3
f_2

f_3

f_1

Mc Kean graphs for f1, f2 and f3
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Recursive time relaxed Monte Carlo methods Recursive sampling

Structure of the recursive sampling algorithm

The velocity distribution fk can be drawn from the starting distribution f0,
choosing the different collisional trees with the same probability in mean. In
general we need k + 1 particles from f0 to get two particles from fk.

Two particles are produced in every collisional event (as in standard DSMC),
and only one of these is used to complete the collisional process.

The particle not used is stored in a list, for its direct utilization in a future
collisional process. In this way we can increase the efficiency of the method
(if a particle sampled from a velocity density fk already exist it will not be
necessary to obtain it by the complete collisional process).

If we start from a finite set of N particles initially then the above strategy
yields a natural truncation of the sum, since the maximum possible length of
a collision process is mmax = N − 1, and guarantees the exact conservation
of moments.
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Recursive time relaxed Monte Carlo methods Recursive time relaxed Monte Carlo

Recursive Time relaxed Monte Carlo
The methods can be generalized to time relaxed approximations of order m

fn+1(v) = (1 − A(∆t))

m
∑

k=0

A(∆t)kfn
k (v) + A(∆t)m+1M(v),

with A(∆t) = 1 − exp(−µ∆t/ε).
Let us start from a set of N particles initially8.

We split the N particles into m collision sets Ni, i = 0, . . . ,m where each set
Ni characterizes the particles that undergo i collisions in a time step ∆t.

Sampling starts recursively from fm and then in decreasing order
fm−1, fm−2, . . . , f1, f0.

All particles having more then m collisions in the time step are thermalized
(i.e. replaced with an equilibrium particle taken from the local Maxwellian).

Note that if m is too large compared to the initial number of particles then
thermalization never occurs.

8L.Pareschi, B.Wennberg ’01
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Recursive time relaxed Monte Carlo methods Recursive time relaxed Monte Carlo

A numerical example

Maxwell molecules in 2D, N = 105 particles, ∆t = t. Relative L2 error norm in
time for the Ernst-Bobylev solution.

mmax 1000 100 25
t = 0 0.013312 0.013312 0.013312
t = 1 0.012055 0.012055 0.012055 m = 22
t = 2 0.012209 0.012209 0.012114 m = 64
t = 3 0.012389 0.013130 0.013446 m = 156
t = 5 0.012737 0.013762 0.016806 m = 881
t = 7 0.011303 0.012881 0.014775 m > 1000
t = 10 0.011896 0.012847 0.012998 m > 1000
t = 15 0.012479 0.012479 0.012479 m > 1000
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Recursive time relaxed Monte Carlo methods Recursive time relaxed Monte Carlo

VHS collision kernels

The simple recursive algorithm described for Maxwellian molecules can be
extended to more general collision kernels by using “dummy” collisions and
acceptance-rejection technique.

This is equivalent to sample the post collisional velocity according to
P (f, f)/µ, where µ = 4πΣ and Σ is an upper bound of the scattering cross

section for the given set of particles.

The upper bound Σ should be chosen as small as possible, to avoid inefficient
rejection, and it should be computed fast. Typically the upper bound used is
Σ = σ(2∆v),

∆v = max
i

|vi − v̄|, v̄ =
∑

i

vi/N.

As a result of the acceptance-rejection technique we obtain longer (virtual)
collision trees compared to the Maxwellian case.

Lorenzo Pareschi (Univ. Ferrara) Monte Carlo methods for kinetic equations #3 IPAM, March 10-12, 2009 37 / 56
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Adaptive techniques

In practical simulations the number m can be very large, depending on the
Knudsen number, on the upper bound Σ and on the number of test particles.

Small values of m make the algorithm faster, because the collision process is
replaced by the projection to the local Maxwellian equilibrium, but far from
the fluid regime keeping m too small can produce less accurate results.

The main problem is to choose the right maximum depth of the trees, in
order to have the best combination between efficiency and accuracy.

One possibility is to use an adaptive technique based on evaluating the
distance of the solution from the equilibrium through a suitable indicator.
This can be performed measuring the variation of some macroscopic variables

(such as the fourth order moment or the components of the shear stress
tensor).
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An example algorithm

Let S be the macroscopic variable selected. Then define the quantity

E1 =
|Sn+1,mmax − Sn|

|Sn| .

that represents the relative variation at time step n + 1 of the macroscopic
variable S computed with the solution obtained using mmax as maximum depth of
the collision trees.
If we fix an interval [δ1, δ2], 0 < δ1 < δ2 then we can apply the following criteria

if E1 < δ1 the solution is accepted and mmax = mmax/2 in the next time
step n + 2;

if δ1 ≤ E1 ≤ δ2 the solution is accepted and mmax is unchanged in the next
time step n + 2;

if E1 > δ2 the solution is discarded and the calculation is performed again
using mmax = 2mmax.
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Efficiency considerations
The algorithm has optimal efficiency if the collisions computed with the “wrong”
mmax are kept and reused with 2mmax. This can be done observing that if

fn+1,m = (1 − A(∆t))

m
∑

k=0

A(∆t)kfk + A(∆t)m+1M

then

fn+1,2m = fn+1,m +(1−A(∆t))
2m
∑

k=m+1

A(∆t)kfk +[A(∆t)2m+1−A(∆t)m+1]M

So when increasing the length of the trees we proceed as follows

the collisions computed with m are kept;

the fraction A(∆t)m+1M is discarded;

the fraction
∑2m

k=m+1 A(∆t)kfk is computed by the recursive collision
process;

the fraction [A(∆t)2m+1 − A(∆t)m+1] is sampled by a Maxwellian.

Note that for estimation purposes the sampling from the Maxwellian can be
avoided using a direct analytical computation.
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Well balanced trees

In TRMC we sample directly from the local Maxwellian if k > mmax, otherwise
the whole collision tree is evaluated. This simple choice however does not take
into account the shape of the collision trees and then the effective collision history
of the sampled particle.

f_0 f_0 f_0 f_0 f_0 f_0 f_0 f_0

f_1 f_1 f_1f_1

f_3 f_3

f_7

f_7

f_0f_0 f_0 f_0 f_0 f_0 f_0 f_0

f_1

f_2

f_3

f_4

f_1

f_2

Well balanced (left) and not well balanced tree (right)

The idea is to consider other indicators L(k), capable to distinguish between well

balanced and not well balanced trees, and the thermalization criteria

L(k) > mmax. The simplest definition corresponds to L(k) = k.
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Thermalization indicators

Different length indicators L can be constructed using recursivity. For example

L(k = h + j + 1) = 1 + min{L(h), L(j)},
L(k = h + j + 1) = 1 + mean{L(h), L(j)}.

In table we show the values of the length indicators for the two collision trees of
the previous Figure.

Indicator left tree right tree

simple 7 7
min 3 2

mean 3 43/16

The implementation of such strategy inside the recursive algorithm needs the
evaluation of collision trees and their storage without performing collisions. Only
non thermalized trees are then computed effectively.
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Space homogeneous case

We consider a simple space homogeneous test for a VHS kernel.

The initial data is the sum of two Maxwellians. The solutions is computed in
one single run using N = 5 × 104 particles. The reference solution has been
obtained by a large number of averages on Bird’s DSMC method.

We compare the results for the fourth order moment

M4 =

∫

R3

fv4 dv.

We use the notations TRMC-R for the basic recursive method, TRMC-RAD

for same scheme improved by the adaptive truncation of the collision trees,
based on the shear stress tensor

Pxx =

∫

R3

f(v1 − u1)
2 dv,

as equilibrium indicator, and TRMC-WB for the method based on the well
balanced truncation of the collision trees.
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Evolution of the fourth order moment (TRMC-R)
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Evolution of the fourth order moment (TRMC-RAD)
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Length of the collision trees (TRMC-RAD)
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Evolution of the fourth order moment (TRMC-WB)
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Total number of collisions (TRMC-WB)
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Stationary shock in 1D
Next we consider a stationary shock problem characterized by the
Rankine-Hugoniot relations

ρLuL = ρRuR,

ρLu2
L + pL = ρRu2

R + pR,

uL(EL + pL) = uR(ER + pR).

The values used in the simulation are

MaL
= 3 (Mach Number)

TL = 1

uxL
= −M

√
γTL, uyL

= 0, uzL
= 0 γ = 5/3

ρL = 1

The numerical solution has been obtained using TRMC-RAD and Bird’s method
with 50 spatial cells and 1000 particles in each cell. Reference ’Exact’ solution has
been performed by Bird’s standard DSMC method using 50 spatial cells and 3000
particles in each cell.
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Rarefied regime (TRMC-RAD)
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Rarefied regime (ε = 1). Temperature (left) and maximum length of the
collisional trees in each cell for TRMC-RAD.
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Intermediate regime (TRMC-RAD)
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Intermediate regime (ε = 0.1). Temperature (left) and maximum length of the
collisional trees in each cell for TRMC-RAD.
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Fluid regime (TRMC-RAD)
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Number of collisions (TRMC-RAD)
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