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Scales and Physical Laws

• Figure from E & Engquist, AMS Notice



Connections between these physical laws

• Quantum mechanics classical mechanics
Wigner transform and semi-classical limit
Planck constant 0

• Classical mechanics Boltzmann Kinetic equations
BBGKY hierarchy, Grad-Boltzmann limit
N ∞, σ 0,  Nσ2 = constant

• Kinetic equations to hydrodynamics equations
Hilbert and Chapman-Enskog expansions
Knuden number (mean free path) 0



Problems of multiple scales
• Physical laws at smaller scales contain laws at 

larger scales at some level of approximations; 
they are more accurate but more 
computationally expensive--very often 
prohibitively expensive

• Many physical problems contain scales of 
different orders of magnitude. A multiscale
computational method is more efficient than a 
full small-scale simulation

• Understandings of the mathematical transitions 
from one scale to another are crucial for and 
guide the design of multiscale methods



Outline of this tutorial

• The tutorial surveys some (recent) 
computational methods for

Multi-scale quantum-classical coupling

Multi-scale kinetic-hydrodynamic coupling



I. Battling scales in Quantum mechanics

• Difficulties in a quantum simulation
1)  N-body quantum system: 

solve the Schrodinger equation in 3N-dimension:  
Born-Oppenheimer approximations, Hartree
approximation, Hartree-Fock appriximation, 
density function theory, etc.

2) Small scale: valid from Angstroms 
(10-10 m)  to hundreds of nanometers 

We will mainly focus on point 2)



Electromagnetic spectrum

Fig. 1. The electromagnetic spectrum, which encompasses the visible region of light, extends from 
gamma rays with wave lengths of one hundredth of a nanometer to radio waves with wave lengths 
of one meter or greater.

• High frequency waves: wave length/domain of computation <<1



Difficulty of high frequency wave 
computation

• Consider the example of visible lights in this 
lecture room:

wave length:  ∼ 10-6 m
computation domain ∼ m
1d computation:  106 ∼ 107

2d computation:  1012 ∼ 1014  

3d computation: 1018 ∼ 1021

do not forget time!  Time steps:  106 ∼ 107



Linear Schrodinger Equation



Free Schrodinger equation (V=0)

If ψ(x,0)=exp (ik· x/ε), x∈ Rd

Then ψ(x, t)=exp [i( k · x/ε- |k|2t/(2ε)]
solution is oscillatory in both space and 
time: wave length O(ε)

No explicit solution for V ≠ 0



Semiclassical limit of the linear schrodinger
equation

If one can find the asymptotic (semiclassical) limit as 
ε 0 then one can just solve the limiting equation
numerically (no more ε !)



The WKB Method

We assume that solution has the form  (Madelung Transform)

and apply this ansatz into the Schrodinger equation with initial data. 
Separating the real part from the imaginary part, and keeping only the leading 

order term, one 
can get



Pressureless gas equations



Linear superposition vs viscosity solution

This limit can be justified for smooth solutions (Grenier 98).
Beyond the singularity (caustics) of the eiconal equation this
system is no longer the correct weak solution of the 
Semi-classical limit of the Schrodinger equations, even for
linear problem. 

For example, in the linear case, the Schrodinger equation
satisfies the superposition principle, while the viscosity
solution, in the sense of Crandall and Lions, for the eiconal
equation beyond the caustics, is not linearly superimposable.



Linear superposition vs viscosity solution



Shock vs. multivalued solution



Semi-classical limit in the phase space

Wigner Transform 

W(x,k)=1/(2π)d ∫ e-i k · y ψ(x+εy/2)ψ*(x-εy/2) dy
Rd

where ψ* is the complex conjugate of ψ.

A convenient tool to study the semiclassical limit 
Lions-Paul; 
Gerard, Markowich, Mauser, Poupaud;
Papanicolaou-Ryzhik-Keller



Moments of the Wigner function

The connection between Wε and ψ is
established through the moments



The Wigner equation

• Wε satisfies the Wigner equation
Wε

t + k · ∇x Wε - Θε[V] Wε=0
Where

Θε[V] Wε = ε-1 /(2π)d ·

∫R
d eik · y ψ(x-εy/2)[V(x+ε y/2)-V(x-ε y/2)] dy



The semi-classical limit



Semiclassical limit beyond caustics

In the  linear case, the Liouville equation still
holds beyond the caustics; it unfolds the caustics in the phase space

Some phase information is missing:  Keller-Maslov index



The semiclassical limit for the moments



Difficulties for computing the semi-classical limit

• In the physical space solution becomes multi-
valued

• In phase space, solution in defined in higher 
dimension, and is singular (measure-valued)

moment methods and level set methods have 
been developed to deal with these difficulties



Kinetic moment closure
Since the Liouville equation is a  kinetic equation defined in the
phase space (six dimensional !), it is too expensive to solve
numerically.   We hope to bring it down to the physical space. This
usually requires special density distribution (Grad, Levermore, 
extended thermodynamics).

We are interested in computing the  multivalued or multiphased
solutions.  If the total number of phases is  finite, we can find
a limiting distribution for Wε that can be used to close the Liouville
equations exactly



Multiphase ansatz



Multiphase ansatz in the semiclassical limit



Moment equations in 1D (with X. Li)



Moment closure in 1D



A weakly hyperbolic system

• FN can be defined and consequently the 
multiphase equations  are equivalent to the
N pressureless gas equations  satisfied by 

each (ρk, uk) 
• The moment systems are

---weakly hyperbolic—
the Jacobian is similar to Jordan blocks. 



Two phase equations in 1D



Modified flux



Higher moment equations

Similar moment equations can be obtained for larger N (algebraically
the flux becomes increasingly more complicated with larger N and one

needs to use numerical procedure to generate the flux FN for N>5.

FN is always a rational function of m_0, L, M2N-1, and the zero
denominator condition can be used to determine the correct
number of phases as was done for N=2. Similar modified flux may also
be introduced.

We have also found  moment equations for 2-D.

One can estimate the total number of phases in 1-D (number of intitial
inflection points). 

For multi-D  physical intuition is needed for such an estimate.

For wave equations moment methods were used by Brenier-Corias, (’84, 98),
Engquist-Runborg ’96, Gosse ‘03



Kinetic schemes for moment equations

Since the moment system is only  weakly hyperbolic, and
the flux function cannot be expressed analytically when N 

is
large, the Godunov type scheme is out of the question.  

On the other hand, since the moment system 
arises as a moment closure of the kinetic Liouville

equation, 
thus a kinetic scheme is the most natural choice for the
moment systems.



Burgers’ equation



A level set method

• joint work with S. Osher (Comm Math 
Sci ’03)

• also see Cheng-Liu-Osher (Comm Math 
Sci ’03)

• Liouville-based level set for multivalued
fronts:  Engquist-Runborg-Tornberg, Fomel-Sethian, 
Osher-Cheng-Kang-Shim-Tsai



Quasilinear hyperbolic equations



The level set equation



Multivalued solution to the Burgers equation



Riemann problem for Burgers’ equation 



Burger’s equation with harmonic osccilator forcing



Riemann problem for 2d Burgers

• uut+uux+uuy=0



Multidimensional Hamilton-Jacobi equations



Level set equation for H-J



Initial condition



2d Hamilton-Jacobi



Density and other physical observables



Phase space computation of physical observables

• Jin, H.L. Liu, S. Osher and R. Tsai, J Comp Phys ’05



Recovering the physical observables (moments) 



Evolving delta function or not



Five branch solution (velocity and density)



Another example



2d computation (density)



Phase shift

• We are also able to include the Keller-
Maslov index into the level set formulation 
in order to take into account the phase 
shift at caustics

Jin and X. Yang (JSC 08)



Other topics/issues

Diffractions
—can combine with Geometric 
Theory of diffractions (J. Keller)

Runborg-Matemed; Jin-Yin



Other topics/issues

Gaussian beam methods —accurate even at 
caustics

Where A and M are complex (Haller,Popov, 
Ralston, …)

Level set/complex Liouville equations can also be 
used

(Leung-Raslton-Qian-Burridge, Jin-Wu-Yang)
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