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Scales and Physical Laws

Time 4
s 4+ Continuum Theory
iNavier-5tokes)
10-6 ¢ | Kinetic Theory
(Boltzimann)
1n-1og | Molecular Diyvnamics
iMNewton's Equartion)
10-15¢ | Cuanmm Mechanics
(schridinger)
i i i i i
L.A® 1 rmm Lierm Lm Space

Figure 1. Different laws of physics are required to describe
properties and processes of fluids at different scales.

» Figure from E & Engquist, AMS Notice



Connections between these physical laws

 Quantum mechanics - classical mechanics
Wigner transform and semi-classical limit
Planck constant -0

o Classical mechanics - Boltzmann Kinetic equations
BBGKY hierarchy, Grad-Boltzmann limit
N->oc0, 6 2 0, No? = constant

o Kinetic equations to hydrodynamics equations
Hilbert and Chapman-Enskog expansions
Knuden number (mean free path) - 0



Problems of multiple scales

 Physical laws at smaller scales contain laws at
larger scales at some level of approximations;
they are more accurate but more
computationally expensive--very often
prohibitively expensive

 Many physical problems contain scales of
different orders of magnitude. A multiscale
computational method Is more efficient than a
full small-scale simulation

* Understandings of the mathematical transitions
from one scale to another are crucial for and
guide the design of multiscale methods



Outline of this tutorial

* The tutorial surveys some (recent)
computational methods for

pA¢ Multi-scale quantum-classical coupling

Y7 Multi-scale kinetic-hydrodynamic coupling



|. Battling scales in Quantum mechanics

 Difficulties in a quantum simulation
1) N-body quantum system:

solve the Schrodinger equation in 3N-dimension:
Born-Oppenheimer approximations, Hartree
approximation, Hartree-Fock appriximation,
density function theory, etc.

2) Small scale: valid from Angstroms
(10-1° m) to hundreds of nanometers
We will mainly focus on point 2)



Electromagnetic spectrum
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Fig. 1. The electromagnetic spectrum, which encompasses the visible region of light, extends from
gamma rays with wave lengths of one hundredth of a nanometer to radio waves with wave lengths

of one meter or greater.

High frequency waves: wave length/domain of computation <<1



Difficulty of high frequency wave

computation

e Consider the example of visible lights in this
lecture room:

wave length: ~ 10°m
computation domain ~ m

10
20

30

com
com
com

gutation: 106 ~ 107
outation: 1012 ~ 1014

outation; 1018 ~ 1041

do not forget time! Time steps: 10° ~ 107



Linear Schrodinger Equation

2
ie t;l'g—l—%.&ﬂl' — V=10 xR, t=0

Sgix)
w(x,0) = Ag(x)e" -

In this equation, ¥ (x.t) 15 the complex-valuaed wave
function, € 1s or 1s playving the role of Planck's con-
stant. It 1s assumed to be small here. The solution
ir and the related physical observables become os-
ciifatory in space and time in the order of O(e),
causing all the mathematical and numerical chal-
lenges.



Free Schrodinger equation (V=0)

If w(Xx,0)=exp (ik- x/), x& R
Then y(x, t)=exp [i( k - x/e- |k|?t/(2¢)]

solution is osclillatory in both space and
time: wave length O(g)

No explicit solution for V= 0



Semiclassical limit of the linear schrodinger
eqguation

If one can find the asymptotic (semiclassical) limit as
¢ =2 0 then one can just solve the limiting equation
numerically (no more ¢ !)



The WKB Method

We assume that solution has the form (Madelung Transform)

(X, 1) = A(x.t)e' «

and apply this ansatz into the Schrodinger equation with initial data.

Separating the real part from the imaginary part, and keeping only the leading
order term, one

can get

i 1 : .
St + E|‘~F§_€~”“|2 +V =0 eiconal equation
(|A|2)t + V- (|A|2‘F.5') = 0 transport equation



Pressureless gas equations

Let
o(t,x) = |A(t,X)|?
p(t.x)u(t.x) = p(t,x)VS(t.x)

Then these “fluid variables” satisfy the pressure-
less gas dynamics equations

pt +V - (pu) =0,
(pu); + V- (puu) + pVV = 0.



Linear superposition vs viscosity solution

This limit can be justified for smooth solutions (Grenier 98).
Beyond the singularity (caustics) of the eiconal equation this
system is no longer the correct weak solution of the
Semi-classical limit of the Schrodinger equations, even for
linear problem.

For example, in the linear case, the Schrodinger equation
satisfies the superposition principle, while the viscosity
solution, in the sense of Crandall and Lions, for the eiconal

equation beyond the caustics, is not linearly superimposable.



Linear superposition vs viscosity solution

(a) Correct solution (b) Eikonal equation



Shock vs. multivalued solution




Semi-classical limit in the phase space

Wigner Transform

W(x,K)=1/(2n)d [ eik Y y(x+ey/2)y (x-ey/2) dy
Rd

where vy’ is the complex conjugate of .

A convenient tool to study the semiclassical limit
Lions-Paul;

Gerard, Markowich, Mauser, Poupaud,
Papanicolaou-Ryzhik-Keller



Moments of the Wigner function

The connection between W¢ and v Is
established through the moments

/ We(x, k) dk = [1(x)]|?
R
1 -
/ k‘[,..l[..ff(x_ k)dk = —(¢vVi — V)
Rd 21

/R“r K[2We(x, k)dk = [V (x)|2



The Wigner equation

o \We satisfies the Wigner equation
We, + k- V, We - ©¢[V] We=0
Where
O[V] We = ¢1/(2r)d .
JR9 ek Yy(x-ey/2)[V(X+e y/2)-V(x-¢ y/2)] dy



The semi-classical limit

As ¢ — 0, the limit Wigner equation is the Liou-
ville equation in phase space

W4k VW =YV ¥ W =0

with the initial condition

W(0,x,k) = |4g(x)0(k — VSp(x))



Semiclassical limit beyond caustics

In the linear case, the Liouville equation still
holds beyond the caustics; it unfolds the caustics in the phase space

Some phase information is missing: Keller-Maslov index



The semiclassical limit for the moments

For smooth solution, the solution

S (x.
DX, 1) = A(x, et e

has a limit
W(t,x, k) = |A(t. x)[?5(k — VS(L.x))

Applying this ansatz to the Liouville equation one
gets the eiconal equation for the phase S and
transport equation for amplitude |A|2, recovering
the result by WKB.



Difficulties for computing the semi-classical limit

* |n the physical space solution becomes multi-
valued

* In phase space, solution in defined in higher
dimension, and Is singular (measure-valued)

moment methods and level set methods have
been developed to deal with these difficulties



Kinetic moment closure

Since the Liouville equation is a kinetic equation defined in the
phase space (six dimensional !), it is too expensive to solve
numerically. We hope to bring it down to the physical space. This
usually requires special density distribution (Grad, Levermore,
extended thermodynamics).

We are interested in computing the multivalued or multiphased
solutions. If the total number of phases is finite, we can find

a limiting distribution for We that can be used to close the Liouville
equations exactly



Multiphase ansatz

Use the stationary phase method or the Fourier
Integral operators, one can prove that, if the
total number of phases is N < oo, then

N(x.t) N(x.t) S (x.1)
L."; o Z L L(K f) — Z ’Li',l (X f) E41 £,
k=1

In addition, we have u(x, t) = VS, (x, 1) # u;(x, )
for k # 7 and A;'s are bounded away from O.



Multiphase ansatz in the semiclassical limit

If one calculates the Wigner function, one can find
its limit to be (away from the caustics)
N(x,t)

wx.v.t) = > ppd(v—uy)

k=1
Moreover, each (pg.u;) satisfies the pressureless
gas equations.

Sparber, Markowich, Mauser;

Jin-Xiantao Li



Moment equations in 1D (with )

Define the moments

g = fR w(x, v, Dvldv, Il =0,1,---,2N.
INn addition, we define the density and wvelocity by
o(x. t) = 1m0, u(x,t) = Ll
TR0

Multiplving the Liouwville equation in 1-d bwy PELNy g—
O.1.---.2N —1 and integrating over v, one obtains
the moment equations in the phvysical space

O,
— 1 OV,

Oerrrg + Arrreq
Oe1rrq + Ao

+++++++++

Herriopn 1 + Prerriony = — (2N — 1)miopn o0 V.



Moment closure in 1D

YWith the multiphase ansatz, one has

N
ey = E p;t._'ui._. [ =0.,1,---,2N.
F=—1
WWith these one can close the moment system by
expressing m-opn as a function of mpo,---.,mMopn_ 1.,
moyny = Fpy(mog.mq, -, mon_1) .

provided the 2N =< 2N system

N
my; = > p;i._'ui__. [=—=0,1,---,2N — 1
EF=1
is invertible, allowing us to express (pp.up.k =
1.---.N) in terms of mg.m1.---.mopn_1.- IFf this



A weakly hyperbolic system

* Fcan be defined and consequently the
multiphase equations are equivalent to the

N pressureless gas equations satisfied by
each (py, Uy)

 The moment systems are
---weakly hyperbolic—
the Jacobian is similar to Jordan blocks.



Two phase equations in 1D

If N =2, then one obtains four moment equations

ogmog + d,mqy = 0,

ogmq + dpmoy = —mgd.V.
dymo + drmz = —2m10:V,
oymg + dymy = —3moo.V.

with

-;-n%-m.g — 2mymoms + m.%

mQomo — m%

mg =



Modified flux

mono— m-% (v
p— L e
P1P2 -

u1)2 = 0 (when there is just one phase). We
modify mg4 as follows:

Clearly, mgq4 is not well-defined if

-m%-mg —2mq -mg'.rn-g—}—-m% i

Mmoo —-m%

2

T .
—2, Otherwise.
Q)

momo — mq = O;
mg =

Then the moment system is good for both single
and double phases, whichever emerges.

Phase boundaries are undercompressive shocks



Higher moment equations

Similar moment equations can be obtained for larger N (algebraically
the flux becomes increasingly more complicated with larger N and one
needs to use numerical procedure to generate the flux F for N>5.

F. is always a rational function of m_0, ---, M,,,, and the zero
denominator condition can be used to determine the correct

number of phases as was done for N=2. Similar modified flux may also
be introduced.

We have also found moment equations for 2-D.

One can estimate the total number of phases in 1-D (number of intitial
inflection points).

For multi-D physical intuition is needed for such an estimate.

For wave equations moment methods were used by Brenier-Corias, ('84, 98),
Engquist-Runborg '96, Gosse ‘03



Kinetic schemes for moment equations

Since the moment system is only weakly hyperbolic, and

the flux function cannot be expressed analytically when N
IS

large, the Godunov type scheme is out of the question.

On the other hand, since the moment system

arises as a moment closure of the kinetic Liouville
equation,

thus a kinetic scheme iIs the most natural choice for the
moment systems.



Burgers’ equation

FICURE 4. Numerical results for u; 25 (top) and p; o5 (bottom)

1 with (20), N = 3 (second order) and p = 1.

at time T



A level set method

 joint work with S. Osher (Comm Math
Sci '03)

 also see Cheng-Liu-Osher (Comm Math
Sci '03)

 Liouville-based level set for multivalued

fronts: Engquist-Runborg-Tornberg, Fomel-Sethian,
Osher-Cheng-Kang-Shim-Tsal



Quasilinear hyperbolic equations

Based on a mathematical Tformulation in Courant-
Hilbert.

WWe consider Let w(#f.x) € R be a scalar satisfving
an initial value problem of an d-dimensional first
order hvperbolic PDE with source term:

(1) e+ F () - Vyxuw + g(x) = O,

(2) w0, x) = uo(x).

Here F(w) : R4 — R4 js a vector, and g : RY — R is
the source term. We introduce a level set function

A(t.x.p) in dimension 4+ 1, whose zero level set
is the solution w:

(3) GH(t.x,.p) = O at p = (. x) .

T herefore we evolve the entire solution «w as the
zero level set of .



The level set equation

One can easily show that the level set function sat-
Isfies a simple linear hyperbolic equation In RA+1.

(4) o+ F(p) - Vx¢ —q(x) dpp = 0.

The initial condition for ¢ can be chosen simply as

(5) #(0,x.p) = p —uo(x).

If ug(x) is ocntinuous, or as the signed distance
function if ug(x) is discontinuous (so ¢ is always
continuous).



Multivalued solution to the Burgers equation




Riemann problem for Burgers’ equation




Burger’s equation with harmonic osccilator forcing

N aTTaCE e CETY Do

Fic. 4.3. The numerical soluttons of the harmonic oscillator case.



Riemann problem for 2d Burgers

* uutuu,tuu, =0



Multidimensional Hamilton-Jacobi equations

Consider the time dependent, d-dimensional Hamilton-
Jacobi equation

(6) WS + H(x.VxS) =0.
(7) S(0.x) = Sp(x) .
Introduce u = (uq1.---.ug) = VxS. Taking the

gradient on the H-J equation, one gets an equiv-
alent (at least for smooth solutions) form of the
Hamilton-Jacobi equation

(8) ou+ VxH(x.u) =0,
(9) u(0.x) = upg(x) = VxSp(x) .



Level set equation for H-J

We use d level set functions ¢, = ¢,;(t.X.p). i =
1,---.d, where p = (p1.---.pg) € R such that
the intersection of their zero level sets vields u,
namely,

|
[
.

Gi(t.x.p) =0 at p =u(t.x). 7
(13)

Then one can show that ¢; satisfies

{:14:} f-__)t-:’_.;:.';l —|— ""FPH . vx:’ﬂ — ‘F;{H . vl}:’_.;:.) — 0.

It iIs the Liouville equation, which is linear hy-
perbolic with wvariable coefficients since in (77)
H = H(x.p).



Initial condition

A convenient initial condition for each ¢;, i =
1, .... n can be taken as:

(15) ¢;(0.x.p) = p; — u;(x).

One should use the signed distance function if the
initial data are discontinuous.

Local level set method can be used to reduce the
cost to O(N%In N)



2d Hamilton-Jacobi




Density and other physical observables

IT one is interested in also computing the density,
or other physical observables (momentum, energay,
etc.), the solving directly the continuity equation

ot +— N - o puaa = O

will be difficult when o is multivalued.

OnNne can of course solve the Licouwville equation
MWe +~ k- NVxW — NV - N W = O
with the measure-wvalued initial data
M (0. x. k) = |Ag(x)|©6(k — V.S5(x))

T his Iinvolves 1) approximating the delta function

initially and then 2) numerically evolving a ""delta’™
TunNnction iN tiMme.

Due to NnumMmerical dissipation the accuracy will be
| O



Phase space computation of physical observables

e Jin, H.L. Liu, S. Osher and R. Tsai, J Comp Phys '05

We now consider the following two problems.
hf+k-Vxf—-VV.Vf=0,
f(0.x.k) = po(x) ;

i'}tgf: + k- -Vxo —VV. “Fkg‘} =0.
$(0.x. k) =k —up(x).

we can prove that

(16) Wiit.x. k)= f(t.x.k)o(o(t.x. k)) .



Recovering the physical observables (moments)

T he physical observables of the Liouville equation
are thus given by
p=[Wdk=[f(t.x,k)d(o(t.x. k))dk,
= [kWdk = [Kkf(t.x,k)o(o(t.x.k)) dk.

We only evaluating the delta function numerical
at the end (postprocessing)!



Evolving delta function or not

0 - —

—2 —1 0 1 2
FIGURE 3.1. Comparison of the density computed from
evolving the delta function initial data (dotted curve) and the

proposed level set approach (solid curve). These are numner-
ical solutions to the problem described in Examople 3.2.



Five branch solution (velocity and density)
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Another example

FIGURE 3.10. 200 grid points are used. The dotted line and
the solid line in the plot on the left correspond respectively
to the multivalued phase gradient and its average (u). The

plot on the right is the corresponding density p at T = 18.0.

m 1



2d computation (density)

400,

200"

FIGURE 3.11. T=1.0and 1.25. 40 grid points.



Phase shift

e \We are also able to include the Keller-
Maslov index into the level set formulation
In order to take into account the phase

shift at caustics

Jin and X. Yang (JSC 08)



Other topics/issues

Diffractions

—can combine with Geometric
Theory of diffractions (J. Keller)

Runborg-Matemed; Jin-YIn



Other topics/issues

Gaussian beam methods —accurate even at
caustics

T(t.x,y) = 5‘[?.-y]+-p[f.-y]-[:-:—y;n+3|;-.r—-y;nTM[a‘.. y][:c—y}+£}.;|m—-y|3].

Where A and M are complex (Haller,Popov,
Ralston, ...)

Level set/complex Liouville equations can also be
used

(Leung-Raslton-Qian-Burridge, Jin-Wu-Yang)
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