Part I: Boundary perturbations caused by small
conductivity inhomogeneities nearly touching
the boundary [joint with M. Asch, H. Kang]

Part II: T-scan Electrical Impedance Imaging
system [joint with O. Kwon, J.K. Seo, E. Wo0O0]



Boundary perturbations caused by small con-
ductivity inhomogeneities [joint with M. Asch,
H. Kang]

Q C R2: Lipschitz bounded domain. Suppose
that €2 contains a conductivity inhomogeneity
D = z+ eB, B Lipschitz bounded domain.

dist(z,00) = Me, M: fixed positive constant.
D: Nearly touching the boundary.

The conductivity of Q\D = 1; the conductivity
of D=k O<k#1< +oo.

u: voltage potential

( v-<1 4 (k — 1)X(D)>Vu —0 in,

ou

\ /aszuzo’




U: the solution of the conductivity problem in
the absence of any inhomogeneity.

Numerical computations by direct simulations

u — U: leading order boundary perturbations
resulting from D.

(a) (b) (c)
k = 2 and € varying with (a) M = 1.5, (b) M = 2 and
(c) M = 3. Colors: blue ¢ = 0.2; green ¢ = 0.15; red
e = 0.1 and cyan € = 0.05.

e Perturbation peak corresponds to the po-
sition of the conductivity inclusion



e Peak sharper as M decreases

e Perturbation amplitude is asymptotically first
order in e near the inclusion while it is 0(&?)
far away

= Significant change in the voltage potentials
when the inclusion is brought in close to the
boundary

Key idea

When the inclusion is not too close to the
boundary it can be modeled by a dipole (be-
cause the potential within the inclusion is nearly
constant). On decreasing the inclusion-boundary
separation, this assumption begins to fail be-
cause higher-order multipoles become signifi-
cant due to the inclusion-boundary interaction.



Objective: Derive mathematically rigorous for-
mula for the leading order boundary perturba-
tions (u — Ulgn) resulting from D

Motivation: Motivated by the inverse problem
of determining the location and some geomet-
ric features of D from the peak: Design non-
iterative real-time algorithms for imaging D;
extract some core information on the conduc-
tivity inclusion D.

Fundamental limitations of EIT (ill-posedness
and nonlinearity) = not possible to reconstruct
the exact shape of D and its exact conductiv-
ity (high frequency information from zero fre-
quency data).



Asymptotic formula when D is not too close to
the boundary 92 [A. Friedman, M. Vogelius, S.
Moskow, D. Volkov, H. Kang, J.K. Seo, H.A /]

(u—U)(z) = 2VU()TMVN(z, 2) + 0(e3)

holds uniformly on 02
Dipole approximation

N: Neumann function

([ AxN(z,2) = -6, in Q,
ON, 1
\ A9 |99

N(x,z)d =0 forze(2.
\/6{2 (z,2)do(x) z

M: Polarization tensor: two equivalent defini-
tions

Variational definition:

M:(k—l)(I—I—(k—l)/BV\U)
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Via layer potential techniques:

G(x) = 1/2wIn|x|: the fundamental solution
of A in R?

Simple and double-layer potentials of a density
¢, on 0D, D bounded Lipschitz domain,

Spe(a) = [ Gz —y)e(y)doy, @R
0

Dpo(x) := /BB 8—G(az —y)¢p(y)doy, =x¢€ R2 \ 0B.
Vy



Trace formulae [Verchota]:

O Spoe) = (Fol + K)o(a)
— r) = — x
a8 2 B ’

1

(Dpd)ls = (F51 +Kp)o(@), € 0B,

— i <£E — Y, V3/>
Kpo(@) = —pv. [ 5 06) doy

K% is the adjoint of Kg in L?(0B).

[Verchota] 51 — K% : L3(8B) — L3(dB) is an
Isomorphism

[Escauriaza-Fabes-Verchota] |A| > 1/2, Al —
K% : L?(0B) — L?(0B) is an isomorphism.

M= [ (M- K5) 1 () y do(y)

k41
A_Q(k_1>, 0<k#1<4oo




Properties of the Polarization tensor [G. Pdlya,
G. Szego, R.E. Kleinman, V. Mazy'a, A.B.
Movchan, H.Kang, H.A.]

Symmetry, positivity, isoperimetric inequalities
(Tr(M) ~ A B|)

M occurs in several other interesting contexts
— Low-frequency scattering

— Dilute composites: effective electrical con-
ductivity of two-phase medium consisting of
inclusions of one material of known shape em-
bedded into a matrix of another having # con-
ductivity [joint with H. Kang, K. Touibi]

Generalization of the Maxwell-Garnett formula:
O(f3) symmetric B

E=1+fM+f2M2+{ 5
O(f2) general case



f: volume fraction

M admits a natural generalization [joint with
H. Kang]

Generalized polarization tensors

Mo = [ 1K) ML)y do(y), 0,8 € WP
OB ov

Basic building blocks for higher-order asymp-

totic expansions of u—U on 0L2 < higher-order

multipoles

Symmetry, positivity, isoperimetric inequalities

u—U=e2VU((R)TMVN(z,2)+ 0(e3)

Quantify the remainder 0(e3) [joint with J.K.
Seo]

0(e3) ~ Cé3



C blows up when dist(D,02) — 0 and when B
has a bad Lipschitz character (B becomes flat)
= Not valid expansion

D thin inhomogeneity: E. Beretta, E. Francini,
M. Vogelius



dist(D,02) — 0

Theorem Let zg be the projection of z on 0f2.
Suppose that g € ¢1(8Q) and Q is of class
C2. The following asymptotic expansion holds
uniformly on 02

(u—-U)(x) =
—eVU(20)-( Jop N(z, 2 + ey) (A — K5)~1(0) day)

T 1-W(z0)
(/{B N (20,2 + ey) (A — K5)~1(») day>
+0(e3/2).
If |z — 29| > O(e) then
(w —U)(z) = —e2VU(20) T MV N(z, zp)

—elﬂ?zO)VU(zo)

.(/8B N(zg,z + ey) (M — K5) 7 1(w) day)
+0(5/2),




where M = [55y(M — K%)~1(v) doy is the po-
larization tensor and N is the Neumann func-
tion.

W (x) describes the effect due to the interac-
tion between the inclusion and the boundary.

Since

/Z9B N(x,z+ ey)( A — /C*B)_l(y) dO'y = 0(1)

for x near zg = (u—U)(xz) = O(e) near zp,
while (v — U)(z) = O(e?) for x far away from
zg. T'hus uw — U has a relative peak near zg.

Proof of the Theorem:
e Energy estimates by the Rellich identity.

e Technical estimates on Poisson-type ker-
nels.



Lemma Suppose that 9 is of class C2 and
D = eB + 2. Let zg be the normal projection
of z onto 0L2. Define

, x€0D.

For f € CO(80), let
sp(e) := sup [f(z) — f(20)l-

|z—20|<e
Then,

SUPzcop |€VDQ(f)(z) + w(z) f(20)vz| <
C(sp(Ve) + VOl fll Lo (o)

where C is independent of € and f.

(AI=KH) ™ H(wv),

W(z) := ,,ZO./ N(z,y) — N(z,z)

0D €
x € 0L2.



A Unit Disk Containing a Single Disk-Shaped
Imperfection: A Numerical Example

.\ 1
(M - Kp)tW)(y) = nyav y € 022

N(xz,y) = —2I'(x — y) modulo constants,V x &€
082,y € Q2

g(1,0) = cosf 4+ siné.
U(r,0) = r(cosf +sind).

(u —U)(zp) can be approximated as follows:
e(k—1)
m(k+ 1)(1 — W(z0))

27
/o log ((M — cos 6)? + sin? 9) (cosf +sin@) db

(u—U)(z0) >~ —

11—k
27(k+ 1)
/27r o ((M — c0s6)2 + sin? 9) cos 6
0 M?2 M — cosé

W(zg) =

do




M=30| M=40 | M =5.0
e = 0.05 || 0.0118 0.0093 0.0076
0.0116 0.0085 0.0068
e = 0.02 | 0.0046 0.0035 0.0028
0.0046 0.0034 0.0027
e = 0.01 | 0.0023 0.0017 0.0014
0.0023 0.0017 0.0014

Comparison of (u—U)(zp) computed numerically (upper
lines) and (u — U)(z9) computed from the asymptotic

formula (lower lines) for k = 2.
Precise dependence with respect to k and M

— Design an efficient algorithm for reconstruct-
ing zg, M, e,k (Can not separate between k and

€)



Half space problem [joint with H. Kang]

Simpler formula

(V14 (k-1)x(D)Vu=0 inR2,
< ﬂ =g & L%(@Rg)
{ 83:2 aRg

Weighted Sobolev spaces

Let &, be the unique solution to

(A®” =0, BU(R2\B),
0D
i =0, ORZ,
0}
Jo7| -7 =0, 0B,
_I_ _
oPb.~ oPb.~
L — k L — Uy 0B ,
ov 4 ov | _
im &, =0.
\52—>—OO




(2

w(z) = U(z) + (k — 1)e2VU (24)-
(/B VN(z,ey+2z) - (I+ (k—1)VyP~ (y)) dy)
+0(e3), z € ORZ.

| VNG, ey+2) - Vy®7(y) dy
— Q/BVI_(a: ey —2) -V, ® (y) dy, zcdR2

Expanding VI(x — ey — z) as e goes to zero
yields the following theorems.
Theorem 1 For any = € ORZ2: |z — zi| >> ¢,

w(z) = U(z) + 262(k — 1)VU (24)-

<|B|I + (k- 1) /B Vy P (y) dy) Vol (z — 24)

+0(e3).



(k— 1)(IT+ (k—1) /B v, (y) dy): half space
polarization tensor

Theorem 2 For any x € OR?: |z — z.| = O(e),
we have

@w40®%=—£jh—DVU@0-

[ Iz (@) = y2)% + (M = 42)?)

O((k—-1)P™ +y)
Ov

where d; (x) = (x — z«)1/€ (scaled distance)
and eM = |z — z«|.

+ O(€?),

The two asymptotic expansions match in some
overlap region



oP—

fop (= (@) = 2)? + (0= 42)) | (w) do(y)

2 oPb~

= ) sV e _(y) do(y)

1
dZ* (:E)Q

+O( ) as d;(x) — 4o,

Connection between the half-space and whole
space polarization tensors

BT: the reflection of B with respect to y» = O.

(A® =0, BUBtTU(@R2\(BUB™")),
CD‘ —CD‘ =0, o(BUBT),
. P
oP odP
TS =0 sBuUBT),
81/_|_ ov
Iim & =
[ [§]——o0




;k_r— DI+ (k—-1) /BUB+ Vy®(y) dy): whole space

— Equivalent ellipse with the same polariza-
tion tensor (general result for multiple inclu-
sions [joint with H. Kang, E. Kim, M. Lim ] :
equivalent ellipse with overall conductivity)

2 [ Vi@ @ du = ([ . Vy®W) i

BUB

(2 [ Yy~ (y) dy)1z = 0



T-scan Electrical Impedance Imaging system
[joint with O. Kwon, J.K. Seo, E. Wo00]

e Breast cancer is the most common form of
cancer in women - one out of nine women
will develop breast cancer in her lifetime.
About 200,000 women in the U.S. will be
diagnosed with breast cancer each vyear,
and about 40,000 women will die from this
disease each year.

e X-ray mammography is recognized as the
"gold standard’ for breast cancer detec-
tion. Mammographic sensitivity and speci-
ficity are low for young women and those
with dense breast tissue.

e Mammography is not recommended for screen-
ing in young women due to its reduced sen-
sitivity and specificity in dense breast tissue



and concern about increased lifetime expo-
sure to radiation.

Mammography has an overall 25% false
positive rate which leads to unnecessary
biopsies. 85% of mammography initiated
biopsies are negative.

MRI suffers from the limitations of high
expense, reduced sensitivity for small car-
cinomas, and reduced specificity in partic-
ular as a result of hormonal factors. Cur-
rently these exams may not be suitable for
widespread, population-based screening.

Breast ultrasound uses high-frequency waves
to image the breast. Ultrasound does not
have good spatial resolution and also un-
able to image micro-calcifications, tiny cal-
cium deposits that are often the first indi-
cation of breast cancer.



e Electrical Impedance Technology is based
on the discovery that normal and malig-
nant breast tissues have different electrical
properties.

e The T-Scan 2000ED generates a low-level
electric signal that is transmitted into the
body. The resulting electric field is then
measured by sensors in a non-invasive probe
placed on the breast. Measurements are
made over several frequencies using pro-
prietary algorithms to create and display
a real-time electrical image of the breast
along with immediate results.

e Benefits of the T-Scan 2000ED
Safe and radiation-free

Painless exam



Real-time imaging

Portable

Previous results

Assenheimer et al. (Physiol. Meas., 2001)
found an expression showing the relation
between the amount of field distortion at
the plane of z=0 and anomaly information.
It is difficult to quantitatively estimate its
accuracy and perform any further analysis.

B. Scholz (IEEE Trans. Med. Imag, 2002)
presented an approximate expression for trans-
admittance data at z=0 using lead vectors
regarding the anomaly as multipolar signal
sources. However, the expression lacks of
generality and flexibility.

In order to develop a more accurate anomaly
estimation algorithm capable of error anal-
ySis, an explicit representation of the rela-
tion between the measured trans-admittance
data and anomaly information is required.



e Difficulties

We only measure the data in a small por-
tion instead of the whole surface.

Electrical safety regulations limit the amount
of total current flowing through the human
subject and therefore the range of the ap-
plied voltage is also limited.

Since the breast differs for each subject,
our detection algorithm should not depend
much on the global geometry of the breast.

Breast is not homogeneous.



T-scan: Mathematical model

E,: voltage potential

N\

\

(V- (0 +iwe)VE, =0

E,=0 I, E,=1

oL,
ov

=0 0\l Un~.

$2,
s



Suppose

: . T ‘=01 + wweq iN QL\D
O'-|-’Lw€—{7_2 = 0o +twer in D.

Key idea

o Keeping E, = 0 on ' has a great advan-
tage because forces the level surface of
the voltage in the breast region to be ap-
proximately parallel to the probe and VE,
will be in the direction perpendicular to the
level surface. Since the conductivity of D
IS much higher than the surrounding, more
currents will flow along D. This enables us
to guess that D may exist below the point
where g has a maximum.

e Applications of several highly oscillatory volt-
ages on the small portion I as is done in



most EIT techniqgues may not have much
advantage to localize D below [ with a
certain depth.

E, satisfies in €2, :

V-(Tlx(QL \ D) + sz(D)>VEp =0 in Q.

Set

OF HE,
Tla—yp — g,’7'2$ — go, on [.

OF E
gL — Tla—ypa L — EP7gL — M1, J — Eg on

;.

Prove Vo € R3\ Q; :

(11 =72) [ VyEp(y) - VyGla —y) dy =
Soe, (9r — 99)(x) + 11Dag, (fr — f2)();



[r planar surface (great advantage of using a
probe with a planar array of electrodes):

(1 —) o [ VyEy) - VG~ y) dy
= 3lo() - P@H=@), @,

_ 0
=(@) == —~Saq\rlor - g2l(x)
0
+715-DPoq\rlfL - fil(z), z €T

Veel :

Sl - O ~ (=) ()

z \4rlr — 2|3

: VE dy.

/D p(y) dy

Approximating

—33°|D|
€3,

2171 + ™

VE dy =~
/D o(y)dy



where g° denotes the average of g°, we arrive
at Vel :

35°%(m1 — 9% 1
2o %) ~ L2 )
211 + 0z24r|x — 2|

04 -02 0 02 04 06 08 1

01 (a) 0% of noise; (b) 5%

of noise

The brightness of the image indicates the am-
plitude of |g — ¢°|.



Multi-frequency Reconstruction Algorithm

10 KHz 100KHz
Normal | Cancer Normal | Cancer
o 0.03 0.2 0.03 0.2
€/€g 800 20000 100 6000

Detection algorithm:

e Transversal position:
below the point z* at which the absolute
value |g(z*) — g(z*)| has the greatest quan-

tity:

The anomaly D lies

9(z") — g(z")| = max|g(z) — g(=z)|.
xel

e Depth: Let xg be any chosen point on [
near z* and let | be the distance between
z* and xqg, that is, | = |z* — zg|. The depth
d is determined by the identity:

g(z") —g(z") _

l2
2 — 5

g9(z0) —g(zo) 2(3_22 1+ 1)5/2




Numerical results

Depth and size estimation for the model prob-
lem with inhomogeneous background and added

random noise

0% 2.5% 5%
—0.2 —0.1975 | —0.1941 | —0.1821
0.0625 0.0569 0.0557 0.0527
—0.3 —0.2971 | —0.2929 | —0.2817
0.0625 0.0560 0.0549 0.0533
—0.4 —0.3918 | —0.3808 | —0.3711
0.0625 0.0539 0.0526 0.0513




Proof: requires technical estimates.

Theorem 1 p = dist(D, ). The difference g — go on I
can be expressed as

Sola =0l (@) = | V5 G = 1)+ TG s)] - VE 1)y
where T'(xz,y) satisfies the following estimate:
VT (e, )| <Cp>, yeD,zel.

Theorem 2 Let z* = (21,22,0), the projection of z on
[. Then

- o 0 (x—y)-lest (2 —m)VV(y)]
Sla—a0l@) = () [ 5 e dy

+Err(x), xe€l,
where the error term Err(x) satisfies the estimate:

diam(D 1
# _|_ _ , T E I_.
ple — =3 = p?

p
Here, V is the H'(Q)-solution of
(AV =0 inQ\dD,
VT =V~ ondD,
oV + oV~

ol 5 — T 50 —=v-e3 0n oD,
oV

XrV + (1 — Xr)— 0 on 0X2.

Brr(2)] < Cgo(*)|D) (

/\\




D ball:

3g(z*)(7'1 — 7'2)|D|22:§ — (5(31 — z1)2 — (xQ — z2)2.

1
E[g — gol(z) » 211 + 1 Art|x — z|°



