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Plan
� Notation

� Part I:

– general form of the solution of Tikhonov algorithms

– existence and uniqueness

� Part II: a data independent bound on the solution (for the square
loss)



Ingredients

1. The sample space � � � �� , with � a closed subset of ��	�

and� a closed subset of �� .

2. The probability measure 
 on the sample space � .

3. The training set � � � �� �� � �� ��� � � � �� �� � �� � , a sequence �

examples drawn i.i.d. according to the probability 
 . � .

4. Regression: the labels � belong to �� ; Classification � � ��



More ingredients

The loss function � ��� � ��� � � is the price we are willing to pay by
using � ��� � to predict the correct label� .

The expected risk, defined as

 ! �" # $ %& � �� � � ��� � ��' ( ��� � ��

can be seen as the average error obtained by a solution � of the
learning problem.

Given a training set ) the empirical risk is defined as
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The Learning Problem

The problem of learning is to find, given the training set 5 , an esti-
mator 6 effectively predicting the label of a new point.

This translates in finding a function 6 such that its expected risk is
small with high probability.



Tikhonov Regularization

A possible way to efficiently solve the learning problem is provided
by Regularization Networks (Girosi and Poggio 92, Evgeniou et al
2000) which amounts to solve the following minimization problem

78 9:; <>=
?

@
A

BC D
E FG BH I FKJ BL L M N O I OQP <R H

whereE is the loss function, S is the Hypothesis space, N T U

is the regularization parameter and F�V B H G BL A BC D are the @ pairs of
examples.



Previous Work: Representer Theorem

If we let W be RKHS, it can be shown (Wahba 70, Wahba90, Girosi
et al 95, Scholkopf et al. 01) that, if a solution exists, it can be written
as
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It is also interesting to consider the case in which an offset term i

appears in the explicit form of the solution
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Tikhonov Functional in the Continuous Setting

We study the following functional

kl mnop q rst u v w ux y z{| } z�~ �� � z�~ � ��� � z�~ | { �� � � } �Q�t �

Minimization takes place in the set �� � , where � and � are RKHS
with kernel � and � v respectively.

If we consider the empirical measure
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this reduces to the standard Regularization Network framework.



Hypotheses

Loss function

� is a map � �� �� �   ¡£¢ ¤¥ ¦ ¡ such that

1. § ¨ª© � , � « ¨ ¤�¬  , is a convex function on� � , and continuous on

� � � �

2. there are ®© ¡£¢ ¤ ¥ ¦ ¡ and ¯ ��   � � such that

� « ¨ ¤±° ² ¯ « ¨  ¥ ® ³° ³µ´ § ° © � � ¤ ¨© �

¶ ·¸ ³ ¯ « ¨  ³º¹ » «�¼ ¤ ¨  ½ ¥ ¦ ¤



Hypotheses (cont’d)

Kernels

Since we assume ¾ and ¿ to be just closed sets we have to require
the following conditions

À ÁÂ Ã Ä�Å ÆÅ Ç�È É Ä�Å Æ Ê ÇªË ÌÎÍ

À ÁÂ ÃÐÏ Ä�Å Æ±Å Ç�È É Ä�Å Æ Ê ÇªË ÌÎÍ Ñ
This ensure that Ò and Ó can be considered as subspaces of ÔÖÕ ÄK× Æ É Ç

and is always true if ¾ is compact or the kernel bounded.



A Quantitative Representer Theorem

Theorem 1
Consider the minimization problem

ØÙ ÚÛÜÝ Þ ßàá â ã ä âå æ çèé ê ç�ë ìí î ç�ë ì ì�ï ð ç�ë é è ìí ñ ò ê òQóá ô

A pair ç êöõ é îõ ìª÷ ø ù ú is a solution iff there are îõ ÷ ú and

êûõ ÷ ø such that

êõ ü ý þ
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with �÷ � ó ç�� é ð ì , satisfying
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ä âå � ç�ë é è ì�� ã� ï ð ç�ë é è ì ü 
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Dealing with the Bias Term

The set � �  is not a RKHS (the intersection between � and 

in not necessarily empty). This makes it difficult to extend typical
statistical learning analysis to the setting in which a bias term is
considered.

The fact that the estimator is ��� ��� �� �� ��� � (for regression) or

� ��� � �� ��� �� �� ��� � � (for classification) suggests to replace � � 

with the sum

��� � � �  � � �"! # ��$ � % � ! � & �!  ')(

which is RKHS with kernel *,+ given by the sum * � *,-



Offset Function Space and RKHS

Theorem 2
Let . be the orthogonal projection on the closed subspace of /

/ 021 354 6 / 78 4 9 : ; < 1 => : 6? @ 9

We have the following facts.

1. If ABDC 9 :C E 6F G? is a solution of the problem

HIJKLM N OPQ R S 3�T UBV : WV X Y B Y[ZQ @ 9

then4C 1 BC V :C 6 / is a solution of the problem
H IJ \ P < 3�T U4 WV X Y . 4 Y Z < @

andBC 1 . 4C .

2. If4C 6 / is a solution of the problem

H IJ \ P < 3�T U4 WV X Y . 4 Y Z < @ 9
letBC 1 . 4C and :C 1 4C ] . 4C , then

T UBC V :C WV X5^^ BC ^^ ZQ 1 IJ _KLM N O PQ R S 3�T UB V : WV X Y B Y ZQ @�`



Comments

a Quantitative version of the representer theorem: very general,
it holds for both regression and classification without assuming
differentiability of the loss function

a The RKHS sum of the two RKHSs, b and c , is the natural hy-
pothesis space. The minimization of the Tikhonov functional in

b d c is equivalent to the minimization of a Tikhonov functional
in which the penalty term is a seminorm.



Existence of the Regularized Solution

If e f g the existence is easy to prove. If e f hi (constant offset
functions) existence is ensured by requiring some weak assump-
tions on the loss function

j regression

klm n op q r ls t uvw x ryz { | | f }�~

j classification

klm n o�� q x r�� z { | f }�~ and klm n o � q x r�� � z { | f }�~

and the kernel

j there is � �� such that � r�� z � |� � for all� �� � � ���

For classification one must also require to have at least one example
for each class.



Uniqueness of the Regularized Solution

For strictly convex functions the uniqueness is ensured if the offset
space is small enough.

An example of convex loss function which is not strictly convex is
the hinge loss of SVM for classification. In this case the solution
is unique unless a special condition on the number and location of
support vectors is met.



Discrete Setting

Since

���� � ��� � ��� �� �� ��� � �� � �� ��� � ���

we have that the minimizer of
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Hinge loss: SVM Classification

For the SVM algorithm the conditions on Æ�Ç ÈÉ5Ê Ê Ê É Ç ËÉÍÌ Î Ï translate
in the following system of algebraic inequalities
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usually obtained as the Kuhn-Tucker conditions of a QP optimiza-
tion problem



An Example: SVM Classification (cont’d)

It is immediate to establish a link between the form of the loss and
the solution properties. The box constraints ( ï ð ñ ò ð ó ô are
due to the fact that õ ö÷ø ö�ù ô ô has an asymptote for÷ø ö�ù ô�ú û ü ,
whereas sparsity ( ñ ò,ý ï ) follows from õ ö÷ø ö�ù ô ô being constant
for÷ø ö�ù ô"þ ÿ .



Comments

� The offset makes life difficult for both existence and uniqueness

� For constant offsets existence and uniqueness are obtained
adding some mild conditions. Convexity of the loss is not suffi-
cient for uniqueness (though in practice it is very likely to be)

� The fact that the Kuhn-Tuker conditions can be obtained in the
primal formulation may be useful for understanding other sup-
port vector methods and proposing new computational methods



Back to the learning problem (discrete setting)

The problem of learning is to find, given the training set � , an esti-
mator � effectively predicting the label of a new point.

This translates in finding a function � such that its risk is small with
high probability.



A bound for Regularized Least Square RLS

From now on we will focus on the following RLS algorithm. The
estimator ��� � is defined as the unique solution of the minimization
problem

�� 	
� � 
�

�
�

�
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We thus restrict our analysis to the square loss.



Generalization and Model Selection

Model Selection: choose a value $ % such that & '(*) +, - is small with
high probability
A possible criterion: given a probabilistic bound of the form

./ 01, 23 45 & '() , -6 7 8 $ 9 : 9<; 9>= ? @BA :

for a fixed confidence level CED : , choose $ % according to the fol-
lowing rule

$ % 8 : 9 ; 9>= ?GF H/ IKJ LM) N % O 7 8 $ 9 : 9 ; 9= ? P 9



Example of bounds

We distinguish between two type of bounds:

Type 1 Q R�S T U T<V T>W XGY Z\[ ]^ _a`b c[ de f RgV T U ThS X

where f RgV T U ThS X is a stability or complexity term. (Vapnik 1998,
Bousquet et al. 2001...)

Type 2 Q R�S T U T<V XGY i R�S T U T V X e j R�S X
where i is the sample error due to finite sampling and j is the
approximation error due to the fact that we are working in a given
Hypothesis space (Vapnik 1998, Cucker et al. 2002...).



Risk of data dependency

Data-dependent bounds introduce a dependency on the training set

k in the selected model l m .

k n o l mp qr k s n o t*u vw xyKz {z |

It could happen that

}~ ��z �� � �� � t�u vw xyKz {z �� � p l mp qr k sr qr k s ��� q |



Concentration inequality (Mc Diarmid, 1989)
� Let �B� be the training set with the ���� example replaced by

����� � � �� � � ,

� let � be a random variable, �a� � � ¡ ¢£ ,

� assume that there exists constants ¤� � �¦¥ § �©¨ ¨ ¨ �<ª � such that

«¬ ® ¯° ± «¬ ²K³µ´ ¶¸· ¹´ ¶»º ¯° ¼ � � � �¾½ � � �¿� � ¼À ¤� �

then Mc Diarmid inequality gives

ÁÂ ÃÄ® ¯° ± � ¼ � � � �¾½ Å ® � � � ¼Æ Ç � À È
É Ê Ë Ê

Ì ± ¶Í ÎÐÏ Ê¶ Ñ



A new bound on the expected risk

We consider the real random variable ÒÓaÔ ÕGÖ × ØÙ�Ú Û»Ü Ý Þßà áâã × ØÙ Ü

and proceed through the following steps

1. estimate the stability of ÒÓaÔ Õ under variations of a single data
in the training setÔ ,

2. bound the mean value ä Û Ó ÒÓaÔ Õ Õ ,

3. fix a confidence level å Ý æ ,

4. apply Mc Diarmid inequality to ÒÓaÔ Õ .



Stability of RN

The following strong stability result holds

çççççç
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where

û � �� � 	 
 �� ��� � �� �� � �

ú � �� � 	 �� � � � �� ���

� � þ�� � � dependency is critical for exponential convergence in the
concentration inequality.



The mean value of �

It holds

������
� �  
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where 2 and 5 are defined as above and $ % is given by

$% = >? @BA )*
,- . C " # $ ' : 6 D $ D3. E�F

The term " # $G% �H' can be thought of as approximation error. It is the
minimum expected risk achievable within the ball of radius III $%

III. in
the RKHS.



The result

Given J K L K M and N O J , with probability at least MQP L it holds

R STVU WX P YZ[\]^ R ST X _ R STVU X P YZ[\]^ R ST X ` a b N c L ced f c

where

a b N c L cd f g hi j
N k d M ` i
l k N b M ` k lm n o M
L fqp

The term a b N c L cd f plays the role of sample error. It measures the
deviation due to finite sampling, of R ST U W X from the approximation
error.



Conclusions

1. Data dependent bounds are risky

2. We derived a bound using stability of RLS

3. It can also be shown that the proposed RLS algorithm is con-
sistent, because for every r st it holds

uvwxy z {| }~ ��� �� x ��� ���� �� x �� � s v� ���� � �� �� r ��� t �



Strong Consistency in Probability

Definition: The one parameter family of estimators �� ���� � provided
with a model selection rule � � ¢¡ £ is strongly consistent in probability
iff, for every ¤ ¥¦ it holds

§¨©ª« ¬ ® ¯° ��± ²³ ª ´�µ ¶� � ·¸ ª ¹º » ¥ ¨¼ ½¾¿À µ ¶� »Á ¤� Â ¦ Ã



Consistency Results

1. We defined the regularization parameter Ä Å as a function of the
number of examples Æ and the confidence level ÇQÈ É ,

Ä ÅÊ Æ Ë ÉÌ Í Î ÏÐ ÏÑ Ò ÎÓ ÔÕ Ö × Å ØÙÚ Û
Ü Ê Ä Ë É Ë ÆÌ Ý

2. We now define a model selection rule only depending on Æ by
introducing a power-law dependency of É on Æ ,

Ä ÅÊ ÆÌ Í Ä ÅÊ Æ Ë ÆßÞ àÌ Ë¢á Ó âã ä�å æ Ý

3. It can be proved that the sequenceÊ Ä Å Ê ÆÌ Ì Ú çè é is not increas-
ing, tends to zero and provides strong consistency in probabil-
ity.



Concluding...




