Total Variation Minimization and Applications

Antonin Chambolle

CEREMADE - CNRS UMR 7534
Université Paris Dauphine.
and CMAP, Ecole Polytechnique.
Total variation minimization

- An algorithm for minimizing $TV(u) + \frac{1}{2\lambda} ||u - g||^2$

- Applications:

 \rightarrow Inverse problems in image processing (denoising, restoration, zooming),

 \rightarrow Evolution of sets by the mean curvature flow.
Main approach

The idea is to minimize numerically $TV + L^2$ norm via the dual problem.

$$J(u) = |Du|(\Omega) =$$

$$\sup \left\{ \int_{\Omega} u \text{div} \, \varphi \, : \, \varphi \in C_c^1(\Omega; \mathbb{R}^N), \|\varphi(x)\| \leq 1 \, \forall x \right\}$$

Problem (primal): given $g \in L^2$,

$$(1) \quad \min_u J(u) + \frac{1}{2\lambda} \|u - g\|_{L^2}^2$$
Dual problem

Several ways to derive the dual problem:

1) Problem is in the form (infconvolution)

\[F(g) = \min_{u+v=g} J(u) + H(v) \]

\(F = J \triangle H \) is convex l.s.c., so that \(F(g) = F^{**}(g) \)

\(F^{*}(f) = \sup_g \langle f, g \rangle - F(g) \) is the Legendre-Fenchel transform).

Hence one has \(F(g) = \sup_f \langle f, g \rangle - F^{*}(f) \) with

\[F^{*}(f) = \sup_g \langle f, g \rangle - \min_{u+v=g} (J(u) + H(v)) \]

\[= \sup_{u,v} g \langle f, u + v \rangle - J(u) - H(v) \]

\[= J^{*}(f) + H^{*}(f) \]
The dual problem is thus (changing the sign)

$$\min_{f} J^*(f) + H^*(f) - \langle f, g \rangle$$

Here, $H^*(f) = \lambda \|f\|^2 / 2$, hence the problem is

(2) $$\min_{f} J^*(f) + \frac{\lambda}{2} \| f - (g/\lambda)^2 \|^2 - \frac{1}{2\lambda} \| g \|^2$$
2) A second way to derive the dual problem in this situation (Yosida regularization)

Euler equation: \[
\frac{u - g}{\lambda} + \partial J(u) \ni 0
\]

\[
[p \in \partial J(u) \iff \forall v, J(v) \geq J(u) + \langle p, v - u \rangle] \]

That is, \(\frac{g - u}{\lambda} \in \partial J(u) \).

We have Fenchel’s identity:

\[
p \in \partial J(u) \iff u \in \partial J^*(p) \iff \langle u, p \rangle = J(u) + J^*(p)
\]

We deduce

\[
u \in \partial J^* \left(\frac{g - u}{\lambda} \right)
\]

Letting \(w = g - u \) we get \(\frac{w - g}{\lambda} + \frac{1}{\lambda} \partial J^* \left(\frac{w}{\lambda} \right) \ni 0 \) which is the Euler equation for

\[
\min_w \frac{\|w - g\|^2}{2\lambda} + J^* \left(\frac{w}{\lambda} \right)
\]

It is the same as (2) if we let \(f = w/\lambda \).
What is J^*?

If J is the total variation one has

$$J(u) = \sup_{w \in K} \langle u, w \rangle$$

with K given by (the closure in L^2 of)

$$\left\{ \text{div} \, \varphi : \varphi \in C_c^1(\Omega; \mathbb{R}^N), \|\varphi(x)\| \leq 1 \ \forall x \right\}.$$

Hence $J(u) = \sup_w \langle u, w \rangle - \delta_K(w)$,

$$\delta_K(w) = \begin{cases} 0 & \text{if } w \in K, \\ +\infty & \text{otherwise.} \end{cases}$$

We get $\delta^*_K = J$, yielding $J^* = \delta_K$. Therefore (3) (or (2)) is an orthogonal projection and we find:

(4) $$u = g - \Pi_{\lambda K}(g)$$
To solve the nonlinear projection problem (4) we have to discretize.

A discrete Total Variation is

$$J(u) = \sum_{i,j=1}^{N} |(\nabla u)_{i,j}|$$

with

$$(\nabla u)_{i,j} = \begin{pmatrix} u_{i+1,j} - u_{i,j} \\ u_{i,j+1} - u_{i,j} \end{pmatrix}$$

(+ B.C.).
One has (as in the continuous setting):

\[J(u) = \sup_{|\xi_{i,j}| \leq 1} \sum_{i,j} \xi_{i,j} \cdot (\nabla u)_{i,j} \]

\[= - \sup_{|\xi_{i,j}| \leq 1} \sum_{i,j} (\text{div } \xi)_{i,j} u_{i,j} \]

with \((\text{div } \xi) = \xi^{1}_{i,j} - \xi^{1}_{i-1,j} + \xi^{2}_{i,j} - \xi^{2}_{i,j-1} + \text{B.C.},\)

i.e., \(\text{div} = -\nabla^*\).

We see that, again,

\[J(u) = \sup_{v \in K} \langle u, v \rangle = \sup_{v} \langle u, v \rangle - \delta_K(v) \]

with \(K = \{\text{div } \xi : |\xi_{i,j}| \leq 1 \; \forall i, j\}\) and

\[\delta_K(v) = J^*(v) = \begin{cases}
0 & \text{if } v \in K \\
+\infty & \text{otherwise}
\end{cases} \]
We find that the Dual of (1), for J the discrete Total Variation, is, again,

$$
\min_w \frac{\|w - g\|^2}{2\lambda} + \delta_K \left(\frac{w}{\lambda} \right),
$$

that is

$$
\min_{w \in \lambda K} \|w - g\|^2
$$

Hence w is the projection on λK of g and the solution of (1) is given by

(4) \hspace{1cm} u = g - \Pi_{\lambda K}(g)$
The problem is: $\min_{|\xi_{i,j}| \leq 1} \| \text{div} \xi - g/\lambda \|^2$.

Approach with Lagrange multipliers:

$$\min_{\xi} \| \text{div} \xi - g/\lambda \|^2 + \sum_{i,j} \alpha_{i,j} |\xi_{i,j}|^2.$$

The Euler equation is

$$-(\nabla (\text{div} \xi - g/\lambda))_{i,j} + \alpha_{i,j} \xi_{i,j} = 0 \forall i, j$$

with $\alpha_{i,j} \geq 0$ and $\alpha_{i,j} = 0$ whenever $|\xi_{i,j}| < 1$. Computing the norm $| \cdot |$, we find that

$$\alpha_{i,j} = |(\nabla (\text{div} \xi - g/\lambda))_{i,j}|.$$
Gradient Descent

A straightforward descent scheme is the following
\[\xi_{i,j}^{n+1} = \xi_{i,j}^n + \tau (\nabla (\text{div} \xi^n - g/\lambda))_{i,j} - \tau \alpha_{i,j} \xi_{i,j}^{n+1}, \]
or
\[\xi_{i,j}^{n+1} = \frac{\xi_{i,j}^n + \tau (\nabla (\text{div} \xi^n - g/\lambda))_{i,j}}{1 + \tau |(\nabla (\text{div} \xi^n - g/\lambda))_{i,j}|}. \]

Theorem. The iterations converge as soon as \(\tau \leq 1/\|\text{div}\|_2^2 \) (which is greater or equal to 1/8).

Proof (simple). One just shows that
\[\|\text{div} \xi^{n+1} - g/\lambda\|^2 \leq \|\text{div} \xi^n - g/\lambda\|^2 \]
with < as long as \(\xi^n \) is not a solution of the problem.

Remark: Same convergence result for the (more natural) variant
\[\xi_{i,j}^{n+1} = \Pi_{\{\xi \leq 1\}}(\xi_{i,j}^n + \tau (\nabla (\text{div} \xi^n - g/\lambda))_{i,j}), \]
however (for unknown reasons) it is much slower (even if one can prove the convergence up to \(\tau = 1/4 \), which also works in the previous algorithm).

→ See also [Carter] or [Chan-Golub-Mulet] for primal/dual approaches.
Applications: Image Denoising

- **Classical Model:**
 \[
 g = u + n,
 \]

 \[g = (g_{i,j})_{i,j=1}^N\] observed image,

 \[u = (u_{i,j}) \text{ a priori piecewise smooth image},\]

 \[n = (n_{i,j}) \text{ Gaussian noise (average 0, variance } \sigma^2 \text{ hence } \frac{1}{N^2} \sum_{i,j} n_{i,j}^2 \sim \sigma^2).\]

 (Or: \(g = Au + n, A = \text{ linear transformation}.\))

- **Problem:** recover \(u\) from \(g\).

- **Tichonov’s Method:**

 (1) \[
 \min_u J(u) + \frac{1}{2\lambda} \|u - g\|^2
 \]

 or

 (1') \[
 \min_u J(u) \text{ subject to } \|u - g\|^2 = N^2 \sigma^2
 \]

- **Choice of \(J\):** \(H^1\) norm \((\sum |\nabla u|^2)\), TV (Rudin-Osher-Fatemi), Mumford-Shah...
(1) with varying λ
The problem proposed by Rudin-Osher-Fatemi is

\[
(1') \quad \min_u J(u) \quad \text{subject to} \quad \|u - g\|^2 = N^2 \sigma^2
\]

The constraint \(\|u - g\| = N \sigma\) is satisfied if \(\lambda\) in (1) is chosen such that \(\|\Pi_{\lambda K}(g)\| = \lambda \|\text{div} \xi\| = N \sigma\) (where \(\Pi_{\lambda K}(g) = \lambda \text{div} \xi \in \lambda K\)).

We propose the following algorithm for (1'): we fix an arbitrary value \(\lambda_0 > 0\) and compute \(v_0 = \Pi_{\lambda_0 K}(g)\). Then for every \(n \geq 0\), we let \(\lambda_{n+1} = (N \sigma / \|v_n\|) \lambda_n\), and \(v_{n+1} = \Pi_{\lambda_{n+1} K}(g)\). We have the following theorem:

Theorem. As \(n \to \infty\), \(g - v_n\) converges to the unique solution of (1').
Resolution of (1’) with $\sigma = 12$.
Other Applications: Zooming

The setting of the Zooming problem is the following: We have \(u = (u_{i,j})_{i,j=1}^N \in X = \mathbb{R}^{N \times N} \), and \(g \) belongs to a “coarser” space \(Z \subset X \) (for instance, \(Z = \{ u \in X : u_{i,j} = u_{i+1,j} = u_{i,j+1} = u_{i+1,j+1} \text{ for every even } i, j \} \)), \(A \) is the orthogonal projection onto \(Z \), and the problem to solve (as proposed for instance by [Guichard-Malgouyres])

\[
\text{(5)} \quad \min_u J(u) + \frac{1}{2\lambda} \| Au - g \|^2
\]

(for some small value of \(\lambda \)). Since \(Ag = g \), \(Au - g = A(u - g) \) and \(\| Au - g \|^2 = \min_{w \in Z^\perp} \| u - g - w \|^2 \). Hence (5) is equivalent to

\[
\text{(6)} \quad \min_{w \in Z^\perp, u \in X} J(u) + \frac{1}{2\lambda} \| u - (g + w) \|^2
\]
Hence, to solve the zooming problem, one readily sees that the following algorithm will work: letting \(w_0 = 0 \), we compute \(u_{n+1}, w_{n+1} \) as follows

\[
\begin{align*}
 u_{n+1} &= g + w_n - \Pi_{\lambda K}(g + w_n), \\
 w_{n+1} &= \Pi_{Z}(u_{n+1} - g).
\end{align*}
\]

Unfortunately, this method is not very fast. (cf. [Guichard-Malgouyres] for the original introduction of the problem and a different implementation.)

Any linear operator \(A \) can be implemented, with speed of convergence depending of the condition number (and quite slow if \(A \) non invertible, like in this example.)

[Aubert-Bect-Blanc-Féraud-AC]
Meyer introduces the norm $\| \cdot \|_*$ which is dual of the Total Variation:

$$\|v\|_* = \sup_{J(u) \leq 1} \langle u, v \rangle = \min\{\lambda \geq 0, v \in \lambda K\}$$

(it is $+\infty$ if $\sum_{i,j} v_{i,j} \neq 0$).

He proposes to decompose an image f into a sum $u + v$ of a u with low Total Variation and a v containing the oscillations, by solving

$$\min_{f = u + v} J(u) + \mu \|v\|_*$$

The idea:

- $J(u)$ is low when the signal u is very regular (with edges);

- $\|v\|_*$ is low when the signal v is oscillating.
Method

- Osher-Vese: minimize (for \(\lambda \) large)
 \[
 J(u) + \lambda \| f - u - v \|^2 + \mu \| v \|_*
 \]
 that is approximated by
 \[
 J(u) + \lambda \| f - u - \text{div} \xi \|^2 + \mu \| \xi \|_{\ell^p}
 \]
 for \(p >> 1 \).

- We propose the variant (our \(\lambda \) must be small)
 \[
 \min_{u,v} J(u) + \frac{1}{2\lambda} \| f - u - v \|^2 + J^* \left(\frac{v}{\mu} \right)
 \]
 that corresponds to a constraint \(\| v \|_* \leq \mu \).
Algorithm

An advantage of our approach: straightforward algorithm. Let $u_0, v_0 = 0$, then alternate:

- $v_n = \Pi_{\mu K}(f - u_{n-1})$
- $u_n = (f - v_n) - \Pi_{\lambda K}(f - v_n)$
Examples

Original synthetic image and same image with noise ($\sigma = 34$).
Reconstructed with Meyer’s problem and with ROF’s method ($\mu = 55$, $\sigma = 34$).
Difference image with Meyer’s problem and with ROF’s method.
“Texture removal” with Meyer’s problem and with ROF’s method ($\mu = 200$, $\sigma = 40.8$).
Difference image with Meyer’s problem and with ROF’s method.
Another example

A noisy zebra
Reconstructed with Meyer’s problem and with ROF’s method \((\mu = 20, \sigma = 19)\).
Texture removal” with Meyer’s problem and with ROF’s method ($\mu = 200, \sigma = 32.6$).
Differences

Difference image with Meyer’s problem and with ROF’s method.
\[
\min_u J(u) + \frac{1}{2\lambda} \|f - u\|_{H^{-1}}^2
\]

- Dual (cf first derivation of the dual problem)

\[
\min_w J^*(w) + \frac{\lambda}{2} \|\nabla w\|^2 - \langle f, w \rangle
\]

- Algorithm: variant of the TV algorithm (not extremely efficient, \(\tau\) must be quite small)

\[
\xi_{i,j}^{n+1} = \frac{\xi_{i,j}^n - \tau (\nabla(\Delta \text{div} \xi^n - f/\lambda))_{i,j}}{1 + \tau |(\nabla(\Delta \text{div} \xi^n - f/\lambda))_{i,j}|}
\]

\((\Delta = \text{div} \nabla)\). Then \(u = f - \lambda \Delta \text{div} \xi^\infty\).
Denoising with OVS

Reconstructed with OVS’s method and with ROF’s method ($\lambda = 100, \sigma = 33.7$).
Difference image with OVS’s approach and with ROF’s method.
Removing more...

Try to remove the “texture” with OVS’s approach ($\lambda = 1000$).
Denoising of the zebra

Zebra with OVS’s approach ($\lambda = 10$), and difference image.
Let $\Omega \subset \mathbb{R}^N$ and $E \subset\subset \Omega$. Fix $h > 0$ a small time step. Let us solve

\begin{equation}
\min_{w} J(w) + \frac{1}{2h} \int_{\Omega} |w - d_E|^2 dx
\end{equation}

where $d_E(x) = \text{dist}(x, E) - \text{dist}(x, \mathbb{R}^N \setminus E)$. We let $T_h(E) = \{w < 0\}$.

Given E, we can define $E_h(t) = T_h[t/h](E)$, a discrete evolution of the set E.
Anisotropic variant

Let φ be a convex one–homogeneous function in \mathbb{R}^N (a distance, with $c|x| \leq \varphi(x) \leq c'|x|$ for all x).

Let $\varphi^\circ(\xi) = \sup_{\varphi(\eta) \leq 1} \langle \xi, \eta \rangle$ be the polar function. We introduce the anisotropic TV:

$$J_{\varphi}(w) = \int_{\Omega} \varphi^\circ(\nabla w) = \sup \left\{ \int_{\Omega} u \operatorname{div} \psi : \psi \in C^1_c(\Omega; \mathbb{R}^N), \varphi(\psi(x)) \leq 1 \ \forall x \right\}$$

$d^\varphi_E(x) = d^\varphi(x, E) - d^\varphi(x, \mathbb{R}^N \setminus E)$ is the anisotropic signed distance to E, with $d^\varphi(x, E) = \inf_{y \in E} \varphi(x - y)$.

We solve

$$(7') \quad \min_w J_{\varphi}(w) + \frac{1}{2h} \int_{\Omega} |w - d^\varphi_E|^2 \, dx$$

and let again $T_h(E) = \{w < 0\}$.

38
The (formal) Euler Lagrange equation for (7) is

\[-h \text{div} \frac{\nabla w}{|\nabla w|} + w - d_E = 0.\]

At the boundary of T_hE, $w = 0$ and we get

\[d_E(x) = -h\kappa_{\{w=0\}}(x)\]

which is an implicit discretization of the Mean Curvature Motion.

→ Is it related to [Almgen-Taylor-Wang] or [Luckhaus-Sturzenecker]? Answer is Yes.

\[(\text{ATW}) \quad \min_{F \subset \mathbb{R}^N} \text{Per}(F) + \frac{1}{h} \int_{F \triangle E} |d_E(x)| \, dx\]

\[\kappa_F(x) + \frac{1}{h}d_E(x) = 0\]

→ same Euler equation.

Theorem:

$T_h(E) = \{w < 0\}$ is a solution of (ATW).
Convergence

We deduce (from (ATW)): smoothness of \(\partial T_h E \), Hölder-like continuity in time of \(E_h(t) \), convergence (up to subsequences) of \(E_h(t) \) to some movement \(E(t) \) (in \(L^1 \)). But we also have an important monotonicity property:

Lemma:

\[
E \subset E' \implies T_h(E) \subset T_h(E')
\]

[obvious, \(d_E > d_{E'} \implies w > w' \implies T_h E \subset T_h E' \)]

From which we deduce
Theorem: (Convergence to the generalized Mean Curvature Motion) Consider E and f such that $E = \{f < 0\}$, and $u(t)$ the (unique) viscosity solution of the MCM equation
\[
\frac{\partial u}{\partial t} = |\nabla u| \text{div} \frac{\nabla u}{|\nabla u|}
\]
with initial condition $u(t = 0) = f$. Assume at any time, $\Gamma(t) = \partial\{u(t) < 0\} = \partial\{u(t) \leq 0\}$ (no fattening, Γ is the \textit{unique} generalized evolution starting from ∂E and is independent of f). Then
\[
E_h(t) = T_h^{[t/h]} E \rightarrow E(t)
\]
as $h \to 0$.

(Also for a smooth, elliptic anisotropy φ.)

41
An advantage of (7) is not only that it yields the monotonicity of (ATW), other properties are also easier to study. Example:

Theorem [AC+Vicent Caselles]: Assume E is convex: then T_hE is also convex (any anisotropy). Hence $E_h(t)$ converges to a convex evolution $E(t)$. In the crystalline case, we deduce the existence of an evolution for convex sets (in a quite weak sense, but any dimension), preserving convexity.
Examples of evolutions

An isotropic evolution at different times
Anisotropic evolution (square Wulff shape)
Anisotropic evolution (hexagonal Wulff shape)