Total Variation Minimization and Applications

Antonin Chambolle

CEREMADE - CNRS UMR 7534 Université Paris Dauphine. and CMAP, Ecole Polytechnique.

IPAM, UCLA, Nov. 12-14 2003

Total variation minimization

- An algorithm for minimizing $TV(u) + \frac{1}{2\lambda} ||u g||^2$
- Applications:
- → Inverse problems in image processing (denoising, restoration, zooming),
- \rightarrow Evolution of sets by the mean curvature flow.

Main approach

The idea is to minimize numerically $TV + L^2$ norm via the dual problem.

$$J(u) = |Du|(\Omega) =$$

$$\sup \left\{ \int_{\Omega} u \operatorname{div} \varphi \ : \ \varphi \in C^1_c(\Omega; \mathbb{R}^N), \|\varphi(x)\| \leq 1 \ \forall x \right\}$$

Problem (primal): given $g \in L^2$,

(1)
$$\min_{u} J(u) + \frac{1}{2\lambda} ||u - g||_{L^{2}}^{2}$$

Dual problem

Several ways to derive the dual problem:

1) Problem is in the form (infconvolution)

$$F(g) = \min_{u+v=g} J(u) + H(v)$$

 $F=J\triangle H$ is convex I.s.c., so that $F(g)=F^{**}(g)$ $(F^*(f)=\sup_g \langle f,g\rangle -F(g)$ is the Legendre-Fenchel transform).

Hence one has $F(g) = \sup_{f} \langle f, g \rangle - F^*(f)$ with

$$F^*(f) = \sup_{g} \langle f, g \rangle - \min_{u+v=g} (J(u) + H(v))$$
$$= \sup_{u,v} g \langle f, u+v \rangle - J(u) - H(v)$$
$$= J^*(f) + H^*(f)$$

The dual problem is thus (changing the sign)

$$\min_{f} J^{*}(f) + H^{*}(f) - \langle f, g \rangle$$

Here, $H^*(f) = \lambda ||f||^2/2$, hence the problem is

(2)
$$\min_{f} J^{*}(f) + \frac{\lambda}{2} ||f - (g/\lambda)^{2}||^{2} - \frac{1}{2\lambda} ||g||^{2}$$

Dual Problem (2)

2) A second way to derive the dual problem in this situation (Yosida regularization)

Euler equation:
$$\frac{u-g}{\lambda} + \partial J(u) \ni 0$$

[
$$p \in \partial J(u) \Leftrightarrow \forall v, J(v) \ge J(u) + \langle p, v - u \rangle$$
]

That is, $\frac{g-u}{\lambda} \in \partial J(u)$.

We have Fenchel's identity:

$$p \in \partial J(u) \Leftrightarrow u \in \partial J^*(p) \Leftrightarrow \langle u, p \rangle = J(u) + J^*(p)$$

We deduce

$$u \in \partial J^* \left(\frac{g-u}{\lambda} \right)$$

Letting w=g-u we get $\frac{w-g}{\lambda}+\frac{1}{\lambda}\partial J^*\left(\frac{w}{\lambda}\right)\ni 0$ which is the Euler equation for

(3)
$$\min_{w} \frac{\|w - g\|^2}{2\lambda} + J^*\left(\frac{w}{\lambda}\right)$$

It is the same as (2) if we let $f = w/\lambda$.

What is J^* ?

If J is the total variation one has

$$J(u) = \sup_{w \in K} \langle u, w \rangle$$

with K given by (the closure in L^2 of)

$$\left\{\operatorname{div}\varphi: \varphi\in C^1_c(\Omega;\mathbb{R}^N), \|\varphi(x)\|\leq 1 \ \forall x\right\}.$$

Hence $J(u) = \sup_{w} \langle u, w \rangle - \delta_K(w)$,

$$\delta_K(w) = \begin{cases} 0 & \text{if } w \in K, \\ +\infty & \text{otherwise.} \end{cases}$$

We get $\delta_K^* = J$, yielding $J^* = \delta_K$. Therefore (3) (or (2)) is an orthogonal projection and we find:

$$(4) u = g - \Pi_{\lambda K}(g)$$

Discretization Total Variation

To solve the nonlinear projection problem (4) we have to discretize.

A discrete Total Variation is

$$J(u) = \sum_{i,j=1}^{N} |(\nabla u)_{i,j}|$$
 with

$$(\nabla u)_{i,j} = \begin{pmatrix} u_{i+1,j} - u_{i,j} \\ u_{i,j+1} - u_{i,j} \end{pmatrix}$$
 (+ B.C.).

One has (as in the continuous setting):

$$J(u) = \sup_{|\xi_{i,j}| \le 1} \sum_{i,j} \xi_{i,j} \cdot (\nabla u)_{i,j}$$
$$= -\sup_{|\xi_{i,j}| \le 1} \sum_{i,j} (\operatorname{div} \xi)_{i,j} u_{i,j}$$

with $(\operatorname{div}\xi)=\xi_{i,j}^1-\xi_{i-1,j}^1+\xi_{i,j}^2-\xi_{i,j-1}^2+\operatorname{B.C.},$ i.e., $\operatorname{div}=-\nabla^*.$

We see that, again,

$$J(u) = \sup_{v \in K} \langle u, v \rangle = \sup_{v} \langle u, v \rangle - \delta_K(v)$$

with $K = \{ \operatorname{div} \xi : |\xi_{i,j}| \leq 1 \ \forall i,j \}$ and

$$\delta_K(v) = J^*(v) = \begin{cases} 0 & \text{if } v \in K \\ +\infty & \text{otherwise} \end{cases}.$$

Dual TV Problem

We find that the Dual of (1), for J the discrete Total Variation, is, again,

$$\min_{w} \frac{\|w - g\|^2}{2\lambda} + \delta_K\left(\frac{w}{\lambda}\right),$$

that is

$$\min_{w \in \lambda K} \|w - g\|^2$$

Hence w is the projection on λK of g and the solution of (1) is given by

$$(4) u = g - \Pi_{\lambda K}(g)$$

Algorithm(s)

- The problem is: $\min_{|\xi_{i,j}| \le 1} \|\operatorname{div} \xi g/\lambda\|^2$.
- Approach with Lagrange multipliers:

$$\min_{\xi} \|\operatorname{div} \xi - g/\lambda\|^2 + \sum_{i,j} \alpha_{i,j} |\xi_{i,j}|^2.$$

The Euler equation is

$$-(\nabla(\operatorname{div}\xi - g/\lambda))_{i,j} + \alpha_{i,j}\xi_{i,j} = 0 \ \forall i,j$$

with $\alpha_{i,j} \geq 0$ and $\alpha_{i,j} = 0$ whenever $|\xi_{i,j}| < 1$. Computing the norm $|\cdot|$, we find that

$$\alpha_{i,j} = |(\nabla(\operatorname{div}\xi - g/\lambda))_{i,j}|.$$

Gradient Descent

A straightforward descent scheme is the following

$$\xi_{i,j}^{n+1} = \xi_{i,j}^n + \tau (\nabla (\operatorname{div} \xi^n - g/\lambda))_{i,j} - \tau \alpha_{i,j}^n \xi_{i,j}^{n+1},$$
 or

$$\xi_{i,j}^{n+1} = \frac{\xi_{i,j}^n + \tau(\nabla(\operatorname{div}\xi^n - g/\lambda))_{i,j}}{1 + \tau|(\nabla(\operatorname{div}\xi^n - g/\lambda))_{i,j}|}$$

Theorem. The iterations converge as soon as $\tau \le 1/\|\operatorname{div}\|^2$ (which is greater or equal to 1/8).

Proof (simple). One just shows that $\|\operatorname{div} \xi^{n+1} - g/\lambda\|^2 \leq \|\operatorname{div} \xi^n - g/\lambda\|^2$ with < as long as ξ^n is not a solution of the problem.

Remark: Same convergence result for the (more natural) variant

 $\xi_{i,j}^{n+1} = \Pi_{\{|\xi| \leq 1\}}(\xi_{i,j}^n + \tau(\nabla(\operatorname{div}\xi^n - g/\lambda))_{i,j}),$ however (for unknown reasons) it is much slower (even if one can prove the convergence up to $\tau = 1/4$, which also works in the previous algorithm).

→ See also [Carter] or [Chan-Golub-Mulet] for primal/dual approaches.

Applications: Image Denoising

Classical Model:

$$g = u + n,$$

 $g=(g_{i,j})_{i,j=1}^N$ observed image, $u=(u_{i,j})$ a priori piecewise smooth image, $n=(n_{i,j})$ Gaussian noise (average 0, variance σ^2 hence $\frac{1}{N^2}\sum_{i,j}n_{i,j}^2\simeq\sigma^2$).

(Or: g = Au + n, A = linear transformation.)

- Problem: recover u from g.
- Tichonov's Method:

(1)
$$\min_{u} J(u) + \frac{1}{2\lambda} ||u - g||^2$$

or

(1')
$$\min_{u} J(u)$$
 subject to $||u - g||^2 = N^2 \sigma^2$

• Choice of J: H^1 norm $(\sum |\nabla u|^2)$, TV (Rudin-Osher-Fatemi), Mumford-Shah...

(1) with varying λ

Denoising by Constrained TV Minimization

The problem proposed by Rudin-Osher-Fatemi is

(1')
$$\min_{u} J(u) \text{ subject to } ||u - g||^2 = N^2 \sigma^2$$

The constraint $||u-g|| = N\sigma$ is satisfied if λ in (1) is chosen such that $||\Pi_{\lambda K}(g)|| = \lambda ||\operatorname{div} \xi|| = N\sigma$ (where $\Pi_{\lambda K}(g) = \lambda \operatorname{div} \xi \in \lambda K$).

We propose the following algorithm for (1'): we fix an arbitrary value $\lambda_0 > 0$ and compute $v_0 = \Pi_{\lambda_0 K}(g)$. Then for every $n \geq 0$, we let $\lambda_{n+1} = (N\sigma/\|v_n\|)\lambda_n$, and $v_{n+1} = \Pi_{\lambda_{n+1} K}(g)$. We have the following theorem:

Theorem. As $n \to \infty$, $g - v_n$ converges to the unique solution of (1').

Resolution of (1') with $\sigma = 12$.

Other Applications: Zooming

The setting of the Zooming problem is the following: We have $u=(u_{i,j})_{i,j=1}^N\in X=\mathbb{R}^{N\times N}$, and g belongs to a "coarser" space $Z\subset X$ (for instance, $Z=\{u\in X:u_{i,j}=u_{i+1,j}=u_{i,j+1}=u_{i+1,j+1}\}$ for every even $i,j\}$), A is the orthogonal projection onto Z, and the problem to solve (as proposed for instance by [Guichard-Malgouyres])

(5)
$$\min_{u} J(u) + \frac{1}{2\lambda} ||Au - g||^2$$

(for some small value of λ). Since Ag = g, Au - g = A(u-g) and $||Au-g||^2 = \min_{w \in Z^{\perp}} ||u-g-w||^2$. Hence (5) is equivalent to

(6)
$$\min_{w \in Z^{\perp}, u \in X} J(u) + \frac{1}{2\lambda} ||u - (g + w)||^2$$

Hence, to solve the zooming problem, one readily sees that the following algorithm will work: letting $w_0 = 0$, we compute u_{n+1}, w_{n+1} as follows

$$u_{n+1} = g + w_n - \Pi_{\lambda K}(g + w_n),$$

 $w_{n+1} = \Pi_{Z^{\perp}}(u_{n+1} - g).$

Unfortunately, this method is not very fast. (cf. [Guichard-Malgouyres] for the original introduction of the problem and a different implementation.)

Any linear operator A can be implemented, with speed of convergence depending of the condition number (and quite slow if A non invertible, like in this example.)

[Aubert-Bect-Blanc-Féraud-AC]

Zooming

Image Decomposition

cf: Y. Meyer, Osher-Vese, Osher-Solé-Vese, AC + Aujol-Aubert-Blanc-Féraud

Meyer introduces the norm $\|\cdot\|_*$ which is dual of the Total Variation:

$$\|v\|_*=\sup_{J(u)\leq 1}\langle u,v\rangle=\min\{\lambda\geq 0,v\in\lambda K\}$$
 (it is $+\infty$ if $\sum_{i,j}v_{i,j}\neq 0$).

He proposes to decompose an image f into a sum u+v of a u with low Total Variation and a v containing the oscillations, by solving

$$\min_{f=u+v} J(u) + \mu ||v||_*$$

The idea:

- J(u) is low when the signal u is very regular (with edges);
- $||v||_*$ is low when the signal v is oscillating.

Method

• Osher-Vese: minimize (for λ large)

$$J(u) + \lambda ||f - u - v||^2 + \mu ||v||_*$$

that is approximated by

$$J(u) \ + \ \lambda \|f - u - \operatorname{div} \xi\|^2 \ + \ \mu \|\xi\|_{l^p}$$
 for $p >> 1$.

• We propose the variant (our λ must be small)

$$\min_{u,v} J(u) + \frac{1}{2\lambda} ||f - u - v||^2 + J^* \left(\frac{v}{\mu}\right)$$

that corresponds to a constraint $||v||_* \le \mu$.

Algorithm

An advantage of our approach: straightforward algorithm. Let $u_0, v_0 = 0$, then alternate:

$$\bullet \ v_n = \ \Pi_{\mu K}(f - u_{n-1})$$

•
$$u_n = (f - v_n) - \prod_{\lambda K} (f - v_n)$$

Examples

Original synthetic image and same image with noise ($\sigma = 34$).

Reconstruction

Reconstructed with Meyer's problem and with ROF's method ($\mu = 55$, $\sigma = 34$).

Difference

Difference image with Meyer's problem and with ROF's method.

Removing more...

"Texture removal" with Meyer's problem and with ROF's method ($\mu=200,\ \sigma=40.8$).

Difference

Difference image with Meyer's problem and with ROF's method.

Another example

A noisy zebra

Reconstruction

Reconstructed with Meyer's problem and with ROF's method ($\mu=20$, $\sigma=19$).

and more...

"Texture removal" with Meyer's problem and with ROF's method ($\mu=200,\ \sigma=32.6$).

Differences

Difference image with Meyer's problem and with ROF's method.

Osher-Solé-Vese

$$\min_{u} J(u) + \frac{1}{2\lambda} ||f - u||_{H^{-1}}^{2}$$

Dual (cf first derivation of the dual problem)

$$\min_{w} J^{*}(w) + \frac{\lambda}{2} \|\nabla w\|^{2} - \langle f, w \rangle$$

• Algorithm: variant of the TV algorithm (not extremely efficient, τ must be quite small)

$$\xi_{i,j}^{n+1} = \frac{\xi_{i,j}^n - \tau(\nabla(\Delta \operatorname{div} \xi^n - f/\lambda))_{i,j}}{1 + \tau|(\nabla(\Delta \operatorname{div} \xi^n - f/\lambda))_{i,j}|}$$

 $(\Delta = \operatorname{div} \nabla)$. Then $u = f - \lambda \Delta \operatorname{div} \xi^{\infty}$.

Denoising with OVS

Reconstructed with OVS's method and with ROF's method ($\lambda=100,\ \sigma=33.7$).

Difference

Difference image with OVS's approach and with ROF's method.

Removing more...

Try to remove the "texture" with OVS's approach ($\lambda = 1000$).

Denoising of the zebra

Zebra with OVS's approach $(\lambda=10)$, and difference image.

Mean Curvature Motion

Let $\Omega \subset \mathbb{R}^N$ and $E \subset\subset \Omega$. Fix h>0 a small time step. Let us solve

(7)
$$\min_{w} J(w) + \frac{1}{2h} \int_{\Omega} |w - d_{E}|^{2} dx$$

where $d_E(x) = \operatorname{dist}(x, E) - \operatorname{dist}(x, \mathbb{R}^N \setminus E)$. We let $T_h(E) = \{w < 0\}$.

Given E, we can define $E_h(t) = T_h^{[t/h]}(E)$, a discrete evolution of the set E.

Anisotropic variant

Let φ be a convex one-homogeneous function in \mathbb{R}^N (a distance, with $c|x| \leq \varphi(x) \leq c'|x|$ for all x).

Let $\varphi^{\circ}(\xi) = \sup_{\varphi(\eta) \leq 1} \langle \xi, \eta \rangle$ be the polar function. We introduce the anisotropic TV:

$$J_{\varphi}(w) = \int_{\Omega} \varphi^{\circ}(\nabla w) = \sup \left\{ \int_{\Omega} u \operatorname{div} \psi : \psi \in C_{c}^{1}(\Omega; \mathbb{R}^{N}), \varphi(\psi(x)) \leq 1 \ \forall x \right\}$$

 $d_E^{\varphi}(x) = d^{\varphi}(x, E) - d^{\varphi}(x, \mathbb{R}^N \setminus E)$ is the anisotropic signed distance to E, with $d^{\varphi}(x, E) = \inf_{y \in E} \varphi(x - y)$.

We solve

(7')
$$\min_{w} J_{\varphi}(w) + \frac{1}{2h} \int_{\Omega} |w - d_{E}^{\varphi}|^{2} dx$$

and let again $T_h(E) = \{w < 0\}.$

What does it do?

The (formal) Euler Lagrange equation for (7) is

$$-h\operatorname{div}\frac{\nabla w}{|\nabla w|} + w - d_E = 0.$$

At the boundary of $T_h E$, w = 0 and we get

$$d_E(x) = -h\kappa_{\{w=0\}}(x)$$

which is an implicit discretization of the Mean Curvature Motion.

→ Is it related to [Almgen-Taylor-Wang] or [Luckhaus-Sturzenecker]? Answer is Yes.

(ATW)
$$\min_{F \subset \mathbb{R}^N} \operatorname{Per}(F) + \frac{1}{h} \int_{F \triangle E} |d_E(x)| dx$$

$$\kappa_F(x) + \frac{1}{h} d_E(x) = 0$$

→ same Euler equation.

Theorem:

$$T_h(E) = \{w < 0\}$$
 is a solution of (ATW).

Convergence

We deduce (from (ATW)): smoothness of $\partial T_h E$, Hölder-like continuity in time of $E_h(t)$, convergence (up to subsequences) of $E_h(t)$ to some movement E(t) (in L^1). But we also have an important monotonicity property:

Lemma:

$$E\subset E' \Rightarrow T_h(E)\subset T_h(E')$$
 [obvious, $d_E>d_{E'}\Rightarrow w>w'\Rightarrow T_hE\subset T_hE'$]

From which we deduce

Theorem: (Convergence to the generalized Mean Curvature Motion) Consider E and f such that $E = \{f < 0\}$, and u(t) the (unique) viscosity solution of the MCM equation

$$\frac{\partial u}{\partial t} \ = \ |\nabla u| \operatorname{div} \frac{\nabla u}{|\nabla u|}$$

with initial condition u(t=0)=f. Assume at any time, $\Gamma(t)=\partial\{u(t)<0\}=\partial\{u(t)\leq 0\}$ (no fattening, Γ is the *unique* generalized evolution starting from ∂E and is independent of f). Then

$$E_h(t) = T_h^{[t/h]}E \longrightarrow E(t)$$

as $h \rightarrow 0$.

(Also for a smooth, elliptic anisotropy φ .)

The Convex case

An advantage of (7) is not only that it yields the monotonicity of (ATW), other properties are also easier to study. Example:

Theorem [AC+Vicent Caselles]: Assume E is convex: then T_hE is also convex (any anisotropy). Hence $E_h(t)$ converges to a convex evolution E(t). In the crystalline case, we deduce the existence of an evolution for convex sets (in a quite weak sense, but any dimension), preserving convexity.

Examples of evolutions

An isotropic evolution at different times

Anisotropic evolution (square Wulff shape)

Anisotropic evolution (hexagonal Wulff shape)