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Total variation minimization

e An algorithm for minimizing TV(u)—I—%Hu—gH2
e Applications:

— Inverse problems in image processing (de-
noising, restoration, zooming),

— Evolution of sets by the mean curvature
flow.



Main approach

The idea is to minimize numerically TV + L2
norm via the dual problem.

J(u) = |Du|(2) =

sup{/QudiV p 1 € Or(URY), o) < 1 V:c}

Problem (primal): given g € L?,

, 1
(1) min J(u) + v —gl72



Dual problem

Several ways to derive the dual problem:

1) Problem is in the form (infconvolution)

F(g) = min J(u)+ H(v)

u+v=g

F = JAH is convex |l.s.c., so that F(g) = F**(g)

(F*(f) = supy (f,9)—F(g) is the Legendre-Fenchel
transform).

Hence one has F(g) =sup(f,g) — F*(f) with
F*(f) = Sl;p<f,g> — min (J(u) + H(v))

u+v=g

= supg(f,u+wv)— J(u) - H(v)
= J*(f) + H*(f)



The dual problem is thus (changing the sign)
mf!n J(f)+H(f) = (f,9)

Here, H*(f) = || f||?/2, hence the problem is

@ min WO+ - @NR - el



Dual Problem (2)

2) A second way to derive the dual problem in
this situation (Yosida regularization)

Euler equation: u% + 0J(u) >0

[ peds(u) &V, J() > J(u) + (pv—u) ]
That is, 5= € 9J(u).

We have Fenchel’s identity:

p € dJ(u) & ue dJ(p) & (u,p) = J(u) + J*(p)
We deduce

u € 0JF (%)

Letting w = g—u we get “24+25.7* (%) 5 0 which
is the Euler equation for

: ||w_g||2 * (w
(3) min o + J (X)

It is the same as (2) if we let f = w/\.



What is J*?

If J is the total variation one has

J(u) = sup (u,w)
weK

with K given by (the closure in L? of)

{dive : p e CHQRY), [lo(2)] <1 Va}.

Hence J(u) = supy, (u, w) — o (w),

Sre(w) = 0 if we K,
K\W) =1 Lo otherwise.

We get 47 = J, vielding J* = §x. Therefore (3)
(or (2)) is an orthogonal projection and we find:

(4) u = g—Myg(g)



Discretization Total Variation

To solve the nonlinear projection problem (4) we
have to discretize.

A discrete Total Variation is

N
,J=1

(Vu);; = (u’i“’j T ) (+ B.C)).

Ui j+1 — Ui



One has (as in the continuous setting):
J(w) = sup > & (Vu)i;
€151 75 5
= — Sup Z(lef)z,]uZ’]
1€ j1<1 55
with (dive) =&, — &l | + &2, - €2, 1 + B.C,
i.e., div=—-V*.

We see that, again,
J(u) = sup (u,v) = sup{u,v) —dg(v)
veK v
with K = {div§ : |§; ;| <1 Vi,5} and

0 ifve K
+o0c0 otherwise

O (v) = J(v) = {



Dual TV Problem

We find that the Dual of (1), for J the discrete
Total Variation, is, again,

. 2
o w—gl

) o + 5}((%),

that is

- 2
min —
wENK ”w QH
Hence w is the projection on AK of g and the

solution of (1) is given by

(4) u = g—Txg(g)



Algorithm(s)

e The problem is: minj, <1 | divé — g/M||2.

e Approach with Lagrange multipliers:

mﬁin [dive — g/AIZ2+ Y i 41€40°
1,]
The Euler equation is
—(V(divE—g/N))i; + o6& = 0 Vi,j

with QG g > 0 and Q5 = O whenever |£Z7]| < 1.
Computing the norm | - |, we find that

a;; = [(V({divE —g/N)); il
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Gradient Descent

A straightforward descent scheme is the following

gt = &+ r(V(dive” — g/N);; — Tal el
or

el i+ T(V{dive™ —g/X))i
" L+ 7|(V(divE™ —g/X))i ]

Theorem. The iterations converge as soon as
T < 1/||div||? (which is greater or equal to 1/8).

Proof (simple). One just shows that

Idiventt — g/A|12 < | dive™ — g/A|2
with < as long as £" is not a solution of the prob-
lem.

Remark: Same convergence result for the (more
natural) variant

& ;r = Myg<y (& +7(V(divE™ —g/A))i ),
however (for unknown reasons) it is much slower
(even if one can prove the convergence up to 7 =
1/4, which also works in the previous algorithm).

— See also [Carter] or [Chan-Golub-Mulet] for pri-

mal/dual approaches.
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Applications: Image Denoising

e Classical Model:

g =u-+n,
g = (gi,j)f\szl observed image,
u = (ui’j) a priori piecewise smooth image,
n = (n; ;) Gaussian noise (average 0, variance o2
1 2 . 2
hence 5753 jni; >~ 0%).
(Or: g = Au+n, A = linear transformation.)

e Problem: recover u from g.

e [ichonov's Method:

. 1 5
(1) minJ() + o llu =gl

or

(1) minJ(u) subject to |u—g[|* = N?0”

e Choice of J: H! norm (3 |Vu|?), TV (Rudin-
Osher-Fatemi), Mumford-Shah...
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(1) with varying )\
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Denoising by Constrained TV Minimization

The problem proposed by Rudin-Osher-Fatemi is

(1) minJ(u) subject to [u— gl|? = N25?

The constraint ||u—g|| = No is satisfied if A in (1)
is chosen such that ||[Myx(g)|| = A||divE|| = No
(where My (g) = Adivé € AK).

We propose the following algorithm for (1'): we
fix an arbitrary value \Ag > 0 and compute vg =
My,x(g). Then for every n > 0, we let A\, 11 =
(No/l|lvn|)An, and vy4q1 = ﬂAn+1K(9)' We have
the following theorem:

Theorem. As n — oo, g — vp CONnverges to the
unique solution of (17).

14



Resolution of (1) with ¢ = 12.
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Other Applications: Zooming

The setting of the Zooming problem is the fol-
lowing: We have u = (u;)ii—y € X = RV,
and g belongs to a ‘“coarser” space Z C X (for
instance, Z = {u € X ! w;; = w1 = Uj 41 =
u;41 ;41 for every even i,5}), A is the orthogonal
projection onto Z, and the problem to solve (as
proposed for instance by [Guichard-Malgouyres])

| 1 5
(5) minJ() + ol Au— gl

(for some small value of \). Since Ag = g, Au —
g= A(u—g) and ||[Au—g||? = min, -1 |u—g—w]|?.
Hence (5) is equivalent to

. 1 5
(6) wegll,ZeXJ(U) + 5Hu—(g+w)|!
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Hence, to solve the zooming problem, one readily
sees that the following algorithm will work: letting
wo = 0, we compute uy,4 1, wy,41 as follows

Up4+1 — 9 + wn — HAK(Q + wn),

wp4+1 = My (up41—9).

Unfortunately, this method is not very fast. (cf.
[Guichard-Malgouyres] for the original introduction of the

problem and a different implementation.)

Any linear operator A can be implemented, with
speed of convergence depending of the condition
number (and quite slow if A non invertible, like in
this example.)

[Aubert-Bect-Blanc-Féraud-AC]
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Zooming
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Image Decomposition

cf : Y. Meyer, Osher-Vese, Osher-Solé-Vese, AC
-+ Aujol-Aubert-Blanc-Féraud

Meyer introduces the norm || - ||« which is dual of
the Total Variation:

|lv||l« = sup (u,v) = min{\ > 0,v € AK}
J(u)<1

(it IS 400 if ZZ’] Vi j # O)

He proposes to decompose an image f into a sum
u-+ v of a uw with low Total Variation and a v
containing the oscillations, by solving

min J(u) + pllvls
=u—+v

The idea:

e J(u) is low when the signal u is very regular
(with edges);

e ||v]|x is low when the signal v is oscillating.
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Method

e Osher-Vese: minimize (for X\ large)

Jw) + Mf—u—vl? + vl
that is approximated by

J(u) + Af —u—divel? 4+ ulléllw
forp>>1.

e We propose the variant (our A must be small)

,U

: 1 2 « [ Y
mip J) + ool = u ol + (2]

that corresponds to a constraint ||v||x < u.
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Algorithm

An advantage of our approach: straightforward
algorithm. Let ug,vg = 0, then alternate:

e vp = M, (f—up_1)

® Un — (f—’Un)_ HAK(f_’Un)
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Examples

Original synthetic image and
same image with noise (o = 34).
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Reconstruction

Reconstructed with Meyer's problem

and with ROF’s method (u = 55, 0 = 34).
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Difference

Difference image with Meyer’'s problem
and with ROF’'s method.
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Removing more...

“Texture removal” with Meyer's problem

and with ROF’'s method (u = 200, o = 40.8).
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Difference

Difference image with Meyer’'s problem
and with ROF’'s method.
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Another example

A noisy zebra
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Reconstruction

Reconstructed with Meyer's problem

and with ROF’'s method (u = 20, 0 = 19).
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and more...

“Texture removal” with Meyer's problem

and with ROF’'s method (pu = 200, o0 = 32.6).
29



Differences

Difference image with Meyer’'s problem
and with ROF’'s method.
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Osher-Solé-Vese

. 1 2
min J(u) + 5||f—u||H—1

e Dual (cf first derivation of the dual problem)

min J*(w) + SIVel? ~ (fw)

e Algorithm: variant of the TV algorithm (not
extremely efficient, 7 must be quite small)

et _ Sigr(V(AdVET = /),
0. 14 7[(V(AdiVE® — f/X))i ]

(A =divV). Then u= f — AA div £®.
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Denoising with OVS

Reconstructed with OVS’'s method

and with ROF’s method (A = 100, ¢ = 33.7).
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Difference

Difference image with OVS's approach
and with ROF’'s method.

33



Removing more...

2 Lorm e i oo
e ey .- o, : .'-.: l.-..l :-| L | LI..I...II-I F l.. 5 -ll.-.1.. -l

Try to remove the ‘“texture” with
OVS's approach (A = 1000).
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Denoising of the zebra

Zebra with OVS's approach (A = 10),
and difference image.
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Mean Curvature Motion

Let Qc RN and Ecc Q. Fix h > 0 a small time
step. Let us solve

. 1 >
(7) min J(w) + Q—h/Q|w_dE| dx

where dp(z) = dist (z, E) — dist (,RN \ E). We
let T3, (E) = {w < 0}.

Given E, we can define E;,(t) = T}[Lt/h](E), a dis-
crete evolution of the set F.
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Anisotropic variant

Let ¢ be a convex one—homogeneous function in
RN (a distance, with c|z| < ¢(z) < |z| for all z).

Let p°(&) = SUP,(n)<1 (&¢,m) be the polar function.
We introduce the anisotropic TV:

Jo(w) = [ o°(Vw) =

Q
sup {/Qudiv b € CHQ RN, o(i(2)) < 1 Va;}

do(z) = d?(z, E) — d?(z,RN \ E) is the anisotropic
signed distance to E, with d¥(z, E) = inf, cpo(z—
y).

We solve

. 1
(7  minJg(w) + Q—h/Q w — df)2 da

and let again T, (F) = {w < 0}.
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What does it do?

The (formal) Euler Lagrange equation for (7) is

Vw
[Vl
At the boundary of T, FE, w = 0 and we get

—hdiv

—I—w—dEz 0.

dE(J}) — —hli{wzo} (CU)

which is an implicit discretization of the Mean
Curvature Motion.

— Is it related to [Almgen-Taylor-Wang] or
[Luckhaus-Sturzenecker]? Answer is Yes.

1
ATW min Per (F — d d
(ATW)  min Per(F) + o | ldp()|de

sp@) + dp() = 0

— same Euler equation.

Theorem:
Ty,(E) = {w < 0} is a solution of (ATW).
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Convergence

We deduce (from (ATW)): smoothness of 0T}, F,
Holder-like continuity in time of Ej(t), conver-
gence (up to subsequences) of E,(t) to some
movement E(t) (in L1). But we also have an
important monotonicity property:

Lemma:
ECE = T,(F)cCTy(E"

[obvious, dg > dpr = w > w' = ThE C ThEl]

From which we deduce
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Theorem: (Convergence to the generalized Mean
Curvature Motion) Consider E and f such that
E = {f < 0}, and u(t) the (unique) viscosity so-
lution of the MCM equation

ou Vu
— = |Vul|div——
ey [Vl

|Vu
with initial condition u(t = 0) = f. Assume at any
time, IM'(t) = 0{u(t)<0} = 0{u(t)<0} (no fatten-
ing, I is the unique generalized evolution starting
from OF and is independent of f). Then

E,(t) = T'/"E — E@®)

as h — 0.

(Also for a smooth, elliptic anisotropy ¢.)
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T he Convex case

An advantage of (7) is not only that it yields the
monotonicity of (ATW), other properties are also
easier to study. Example:

Theorem [ACHVicent Caselles]: Assume E is
convex: then Ty E is also convex (any anisotropy).
Hence E3,(t) converges to a convex evolution E(t).
In the crystalline case, we deduce the existence
of an evolution for convex sets (in a quite weak
sense, but any dimension), preserving convexity.
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Examples of evolutions

An isotropic evolution at different times
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/

Anisotropic evolution (square Wulff shape)
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Anisotropic evolution (hexagonal Wulff shape)
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