
Inverse Problems Workshop Series II

Total Variation Minimization
and Applications

Antonin Chambolle

CEREMADE - CNRS UMR 7534
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Total variation minimization

• An algorithm for minimizing TV (u)+ 1
2λ‖u−g‖

2

• Applications:

→ Inverse problems in image processing (de-

noising, restoration, zooming),

→ Evolution of sets by the mean curvature

flow.
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Main approach

The idea is to minimize numerically TV + L2

norm via the dual problem.

J(u) = |Du|(Ω) =

sup

{
∫

Ω
udiv ϕ : ϕ ∈ C1

c (Ω;R
N), ‖ϕ(x)‖ ≤ 1 ∀x

}

Problem (primal): given g ∈ L2,

(1) min
u
J(u) +

1

2λ
‖u− g‖2

L2
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Dual problem

Several ways to derive the dual problem:

1) Problem is in the form (infconvolution)

F (g) = min
u+v=g

J(u) +H(v)

F = J4H is convex l.s.c., so that F (g) = F ∗∗(g)

(F ∗(f) = supg 〈f, g〉−F (g) is the Legendre-Fenchel

transform).

Hence one has F (g) = supf 〈f, g〉 − F ∗(f) with

F ∗(f) = sup
g

〈f, g〉 − min
u+v=g

(J(u) +H(v))

= sup
u,v

g〈f, u+ v〉 − J(u) −H(v)

= J∗(f) +H∗(f)
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The dual problem is thus (changing the sign)

min
f
J∗(f) +H∗(f) − 〈f, g〉

Here, H∗(f) = λ‖f‖2/2, hence the problem is

(2) min
f
J∗(f) +

λ

2
‖f − (g/λ)2‖2 −

1

2λ
‖g‖2
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Dual Problem (2)

2) A second way to derive the dual problem in

this situation (Yosida regularization)

Euler equation:
u− g

λ
+ ∂J(u) 3 0

[ p ∈ ∂J(u) ⇔ ∀v, J(v) ≥ J(u) + 〈p, v − u〉 ]

That is, g−u
λ ∈ ∂J(u).

We have Fenchel’s identity:

p ∈ ∂J(u) ⇔ u ∈ ∂J∗(p) ⇔ 〈u, p〉 = J(u) + J∗(p)

We deduce

u ∈ ∂J∗
(

g−u
λ

)

Letting w = g−u we get w−g
λ +1

λ∂J
∗
(

w
λ

)

3 0 which

is the Euler equation for

(3) min
w

‖w − g‖

2λ

2

+ J∗
(

w
λ

)

It is the same as (2) if we let f = w/λ.
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What is J∗?

If J is the total variation one has

J(u) = sup
w∈K

〈u,w〉

with K given by (the closure in L2 of)
{

divϕ : ϕ ∈ C1
c (Ω;R

N), ‖ϕ(x)‖ ≤ 1 ∀x
}

.

Hence J(u) = supw 〈u,w〉 − δK(w),

δK(w) =

{

0 if w ∈ K,
+∞ otherwise.

We get δ∗K = J, yielding J∗ = δK. Therefore (3)

(or (2)) is an orthogonal projection and we find:

(4) u = g − ΠλK(g)
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Discretization Total Variation

To solve the nonlinear projection problem (4) we

have to discretize.

A discrete Total Variation is

J(u) =
N
∑

i,j=1

|(∇u)i,j| with

(∇u)i,j =

(

ui+1,j − ui,j
ui,j+1 − ui,j

)

(+ B.C.).

7



One has (as in the continuous setting):

J(u) = sup
|ξi,j|≤1

∑

i,j

ξi,j · (∇u)i,j

= − sup
|ξi,j|≤1

∑

i,j

(div ξ)i,jui,j

with (div ξ) = ξ1i,j − ξ1i−1,j + ξ2i,j − ξ2i,j−1 + B.C.,

i.e., div = −∇∗.

We see that, again,

J(u) = sup
v∈K

〈u, v〉 = sup
v

〈u, v〉 − δK(v)

with K = {div ξ : |ξi,j| ≤ 1 ∀i, j} and

δK(v) = J∗(v) =

{

0 if v ∈ K
+∞ otherwise

.
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Dual TV Problem

We find that the Dual of (1), for J the discrete

Total Variation, is, again,

min
w

‖w − g‖

2λ

2

+ δK
(

w
λ

)

,

that is

min
w∈λK

‖w − g‖2

Hence w is the projection on λK of g and the

solution of (1) is given by

(4) u = g − ΠλK(g)
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Algorithm(s)

• The problem is: min|ξi,j|≤1 ‖div ξ − g/λ‖2.

• Approach with Lagrange multipliers:

min
ξ

‖div ξ − g/λ‖2 +
∑

i,j

αi,j|ξi,j|
2.

The Euler equation is

−(∇(div ξ − g/λ))i,j + αi,jξi,j = 0 ∀i, j

with αi,j ≥ 0 and αi,j = 0 whenever |ξi,j| < 1.

Computing the norm | · |, we find that

αi,j = |(∇(div ξ − g/λ))i,j|.
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Gradient Descent

A straightforward descent scheme is the following

ξn+1
i,j = ξni,j + τ(∇(div ξn − g/λ))i,j − ταni,jξ

n+1
i,j ,

or

ξn+1
i,j =

ξni,j + τ(∇(div ξn − g/λ))i,j

1 + τ |(∇(div ξn − g/λ))i,j|

Theorem. The iterations converge as soon as

τ ≤ 1/‖div ‖2 (which is greater or equal to 1/8).

Proof (simple). One just shows that

‖div ξn+1 − g/λ‖2 ≤ ‖div ξn − g/λ‖2

with < as long as ξn is not a solution of the prob-

lem.

Remark: Same convergence result for the (more

natural) variant

ξn+1
i,j = Π{|ξ|≤1}(ξ

n
i,j + τ(∇(div ξn − g/λ))i,j),

however (for unknown reasons) it is much slower

(even if one can prove the convergence up to τ =

1/4, which also works in the previous algorithm).

→ See also [Carter] or [Chan-Golub-Mulet] for pri-

mal/dual approaches.
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Applications: Image Denoising

• Classical Model:

g = u+ n,

g = (gi,j)
N
i,j=1 observed image,

u = (ui,j) a priori piecewise smooth image,

n = (ni,j) Gaussian noise (average 0, variance σ2

hence 1
N2

∑

i,j n
2
i,j ' σ2).

(Or: g = Au+ n, A = linear transformation.)

• Problem: recover u from g.

• Tichonov’s Method:

(1) min
u
J(u) +

1

2λ
‖u− g‖2

or

(1′) min
u
J(u) subject to ‖u− g‖2 = N2 σ2

• Choice of J: H1 norm (
∑

|∇u|2), TV (Rudin-

Osher-Fatemi), Mumford-Shah...
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(1) with varying λ
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Denoising by Constrained TV Minimization

The problem proposed by Rudin-Osher-Fatemi is

(1′) min
u
J(u) subject to ‖u− g‖2 = N2σ2

The constraint ‖u−g‖ = Nσ is satisfied if λ in (1)

is chosen such that ‖ΠλK(g)‖ = λ‖div ξ‖ = Nσ

(where ΠλK(g) = λdiv ξ ∈ λK).

We propose the following algorithm for (1’): we

fix an arbitrary value λ0 > 0 and compute v0 =

Πλ0K(g). Then for every n ≥ 0, we let λn+1 =

(Nσ/‖vn‖)λn, and vn+1 = Πλn+1K
(g). We have

the following theorem:

Theorem. As n → ∞, g − vn converges to the

unique solution of (1’).
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Resolution of (1’) with σ = 12.
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Other Applications: Zooming

The setting of the Zooming problem is the fol-

lowing: We have u = (ui,j)
N
i,j=1 ∈ X = RN×N ,

and g belongs to a “coarser” space Z ⊂ X (for

instance, Z = {u ∈ X : ui,j = ui+1,j = ui,j+1 =

ui+1,j+1 for every even i, j}), A is the orthogonal

projection onto Z, and the problem to solve (as

proposed for instance by [Guichard-Malgouyres])

(5) min
u
J(u) +

1

2λ
‖Au− g‖2

(for some small value of λ). Since Ag = g, Au−

g = A(u−g) and ‖Au−g‖2 = minw∈Z⊥ ‖u−g−w‖2.

Hence (5) is equivalent to

(6) min
w∈Z⊥,u∈X

J(u) +
1

2λ
‖u− (g+ w)‖2
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Hence, to solve the zooming problem, one readily

sees that the following algorithm will work: letting

w0 = 0, we compute un+1, wn+1 as follows

un+1 = g+ wn − ΠλK(g+ wn),

wn+1 = ΠZ⊥(un+1 − g).

Unfortunately, this method is not very fast. (cf.

[Guichard-Malgouyres] for the original introduction of the

problem and a different implementation.)

Any linear operator A can be implemented, with

speed of convergence depending of the condition

number (and quite slow if A non invertible, like in

this example.)

[Aubert-Bect-Blanc-Féraud-AC]
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Zooming
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Image Decomposition

cf : Y. Meyer, Osher-Vese, Osher-Solé-Vese, AC

+ Aujol-Aubert-Blanc-Féraud

Meyer introduces the norm ‖ · ‖∗ which is dual of

the Total Variation:

‖v‖∗ = sup
J(u)≤1

〈u, v〉 = min{λ ≥ 0, v ∈ λK}

(it is +∞ if
∑

i,j vi,j 6= 0).

He proposes to decompose an image f into a sum

u + v of a u with low Total Variation and a v

containing the oscillations, by solving

min
f=u+v

J(u) + µ‖v‖∗

The idea:

• J(u) is low when the signal u is very regular

(with edges);

• ‖v‖∗ is low when the signal v is oscillating.
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Method

• Osher-Vese: minimize (for λ large)

J(u) + λ‖f − u− v‖2 + µ‖v‖∗

that is approximated by

J(u) + λ‖f − u− div ξ‖2 + µ‖ξ‖lp

for p >> 1 .

• We propose the variant (our λ must be small)

min
u,v

J(u) +
1

2λ
‖f − u− v‖2 + J∗

(

v

µ

)

that corresponds to a constraint ‖v‖∗ ≤ µ.
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Algorithm

An advantage of our approach: straightforward

algorithm. Let u0, v0 = 0, then alternate:

• vn = ΠµK(f − un−1)

• un = (f − vn) − ΠλK(f − vn)
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Examples

Original synthetic image and

same image with noise (σ = 34).
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Reconstruction

Reconstructed with Meyer’s problem

and with ROF’s method (µ = 55, σ = 34).
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Difference

Difference image with Meyer’s problem

and with ROF’s method.
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Removing more...

“Texture removal” with Meyer’s problem

and with ROF’s method (µ = 200, σ = 40.8).
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Difference

Difference image with Meyer’s problem

and with ROF’s method.
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Another example

A noisy zebra
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Reconstruction

Reconstructed with Meyer’s problem

and with ROF’s method (µ = 20, σ = 19).
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and more...

“Texture removal” with Meyer’s problem

and with ROF’s method (µ = 200, σ = 32.6).
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Differences

Difference image with Meyer’s problem

and with ROF’s method.
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Osher-Solé-Vese

min
u
J(u) +

1

2λ
‖f − u‖2

H−1

• Dual (cf first derivation of the dual problem)

min
w

J∗(w) +
λ

2
‖∇w‖2 − 〈f, w〉

• Algorithm: variant of the TV algorithm (not

extremely efficient, τ must be quite small)

ξn+1
i,j =

ξni,j−τ(∇(∆div ξn − f/λ))i,j

1 + τ |(∇(∆div ξn − f/λ))i,j|

(∆ = div∇). Then u = f − λ∆div ξ∞.
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Denoising with OVS

Reconstructed with OVS’s method

and with ROF’s method (λ = 100, σ = 33.7).
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Difference

Difference image with OVS’s approach

and with ROF’s method.
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Removing more...

Try to remove the “texture” with

OVS’s approach (λ = 1000).
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Denoising of the zebra

Zebra with OVS’s approach (λ = 10),

and difference image.
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the zebra
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Mean Curvature Motion

Let Ω ⊂ RN and E ⊂⊂ Ω. Fix h > 0 a small time

step. Let us solve

(7) min
w

J(w) +
1

2h

∫

Ω
|w − dE|

2 dx

where dE(x) = dist (x,E) − dist (x,RN \ E). We

let Th(E) = {w < 0}.

Given E, we can define Eh(t) = T
[t/h]
h (E), a dis-

crete evolution of the set E.
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Anisotropic variant

Let ϕ be a convex one–homogeneous function in

R
N (a distance, with c|x| ≤ ϕ(x) ≤ c′|x| for all x).

Let ϕ◦(ξ) = supϕ(η)≤1 〈ξ, η〉 be the polar function.

We introduce the anisotropic TV:

Jϕ(w) =

∫

Ω
ϕ◦(∇w) =

sup

{
∫

Ω
udiv ψ : ψ ∈ C1

c (Ω;R
N), ϕ(ψ(x)) ≤ 1 ∀x

}

d
ϕ
E(x) = dϕ(x,E)−dϕ(x,RN \E) is the anisotropic

signed distance to E, with dϕ(x,E) = infy∈E ϕ(x−

y).

We solve

(7′) min
w

Jϕ(w) +
1

2h

∫

Ω
|w − d

ϕ
E|

2 dx

and let again Th(E) = {w < 0}.
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What does it do?

The (formal) Euler Lagrange equation for (7) is

−hdiv
∇w

|∇w|
+ w − dE = 0.

At the boundary of ThE, w = 0 and we get

dE(x) = −hκ{w=0}(x)

which is an implicit discretization of the Mean

Curvature Motion.

→ Is it related to [Almgen-Taylor-Wang] or

[Luckhaus-Sturzenecker]? Answer is Yes.

(ATW) min
F⊂RN

Per (F ) +
1

h

∫

F4E
|dE(x)| dx

κF (x) +
1

h
dE(x) = 0

→ same Euler equation.

Theorem:

Th(E) = {w < 0} is a solution of (ATW).
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Convergence

We deduce (from (ATW)): smoothness of ∂ThE,

Hölder-like continuity in time of Eh(t), conver-

gence (up to subsequences) of Eh(t) to some

movement E(t) (in L1). But we also have an

important monotonicity property:

Lemma:

E ⊂ E′ ⇒ Th(E) ⊂ Th(E
′)

[obvious, dE > dE′ ⇒ w > w′ ⇒ ThE ⊂ ThE
′]

From which we deduce
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Theorem: (Convergence to the generalized Mean

Curvature Motion) Consider E and f such that

E = {f < 0}, and u(t) the (unique) viscosity so-

lution of the MCM equation

∂u

∂t
= |∇u|div

∇u

|∇u|

with initial condition u(t = 0) = f . Assume at any

time, Γ(t) = ∂{u(t)<0} = ∂{u(t)≤0} (no fatten-

ing, Γ is the unique generalized evolution starting

from ∂E and is independent of f). Then

Eh(t) = T
[t/h]
h E −→ E(t)

as h→ 0.

(Also for a smooth, elliptic anisotropy ϕ.)
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The Convex case

An advantage of (7) is not only that it yields the

monotonicity of (ATW), other properties are also

easier to study. Example:

Theorem [AC+Vicent Caselles]: Assume E is

convex: then ThE is also convex (any anisotropy).

Hence Eh(t) converges to a convex evolution E(t).

In the crystalline case, we deduce the existence

of an evolution for convex sets (in a quite weak

sense, but any dimension), preserving convexity.
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Examples of evolutions

An isotropic evolution at different times
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Anisotropic evolution (square Wulff shape)
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Anisotropic evolution (hexagonal Wulff shape)
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