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Fundamental idea

Problem involving a set D and its interface
F (D, ∂D):

Represent D ←→ χ
approximate its volume/area

|D| ←→
∫

Ω
χdx←→

∫

Ω
χh dx

Represent ∂D ←→ Jχ
approximate its area/length
HN−1(∂D)←→ HN−1(Jχ)←→ ?

Introduce a characteristic length ε.

Diffuse the interface
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Phase field method

Minimization problem
Free Discontinuity Problems

min
D admissible

F (D, ∂D) or min
u admissible

F (u, Ju).

Mumford-Shah:
E(u, Ju) =

∫
Ω |∇u|2 dx+

∫
Ω(u− g)2 dx+HN−1(Ju)

Minimum interface problem: F (D, ∂D) = HN−1(∂D).
Regularization of inverse problems.
Regularization of optimal design problems.

Variational approximation of functionals:

Fε(u)
?−→ F (u, Ju), Γ–convergence.
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A first example

P (χ, Jχ) = HN−1(Jχ ∩ Ω)

Pε(ϕ) =

∫

Ω
ε|∇ϕ|2 +

1

ε
W (ϕ) dx.

Pε
Γ
⇀ P

∀ϕε −→ χ, limPε(ϕε) ≥ P (χ, Jχ)

∃ϕε −→ χ, limPε(ϕε) ≤ P (χ, Jχ)

The minimizers of Pε converge to that of P
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Building up
Γ–convergence stable wrt continuous perturbation

F continuous , then F + Pε
Γ
⇀ F + P , ex. regularization for

inverse problems

Implement constraints by means of Lagrange multiplicators
Volume constraints

Surface terms: ∇ϕε ⇀ HN−1xJϕ.νϕ
Also a numerical method

Fix ε relatively to the discretization, and minimize

Only continuous functions

Only one dimensionality

Not tied to a specific numerical method
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Simple restoration problem
Joint work with M. Burger

Problem: F (χ) =

∫

Ω
|uχ − f |2 dx, where uχ is the solution of

∆uχ = χ, uχ = 0 on ∂Γ.

“Perimeter penalization”: min
χ
F (χ) + λHN−1(Jχ), λ small.

Phase field approximation: min
ϕ

∫

Ω
|uϕ − f |2 dx+ λPε(ϕ),

where ∆uϕ = ϕ.

Finite element discretization.

Gradient descent.

ϕn+1 = ϕn+ rnδ
−1
(
δ−1ϕn − f

)
+λ

∫

Ω

1

ε
W ′(ϕn)−2ε∆ϕn dx
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Phase–field and optimal design

Admissible designs:
Partitions D1, . . . , Dp of a ground domain Ω.
Fixed volume fractions: |Di| = θi|Ω|,

∑
θi = 1.

Objective function:
F (D1, . . . , Dp) or F

(
D1, . . . , Dp, (∂Di ∩ ∂Dj)i,j

)

inf
D1,...,Dp admissible

F

E Ill-posed in general
Non-compactness of admissible designs, existence of solutions is
not granted, without knowledge of the properties of F .

inf
D1,...Dp

F (D1, . . . , Dp) +
∑

λi,jHN−1 (∂Di ∩ ∂Dj)
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Phase–field approximation

si: vertices of p–dimensional simplex

Phase–field:
ρ ∈ H1 (Ω ; Rp)

p–wells potential:
W (x) > 0 if x 6∈ {s1, . . . , sp}, W (si) = 0

λi,j =
√

2

∫ sj

si

W 1/2(s) ds

Variational approximation of the perimeters

PSfrag replacements

s1
s2

s3

s3

∫

Ω
ε|Dρ|2 + 1

εW (ρ) dx
Γ
⇀
∑

λi,jHN−1 (∂Di ∩ ∂Dj).

Independent on material interpolation scheme
Any dimension, any number of materials, multi-physics...
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Application: pressurized structures

•Three “phases” S, L, V
•Design-dependent pressure force p (surface load)
•Given volume fractions θS , θL, θV

Objective function: compliance of the structure

C(S,L, V ) :=

∫

∂S∩∂L
p(x) u∗ · νL,S dHN−1(x),

where∫

S
Ee (u∗) : e(v) dx =

∫

∂S∩∂L
p(x) v · νL,S dHN−1(x), ∀v

Minimum compliance problem:

inf
S,L,V
C(S, L, V ) + λH1(∂S)

Phases are “ordered”, scalar phase–field
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Implementation

Objective function depends implicitly on the design
Explicit expression for DρC .
Gradient–based descent scheme (semi-explicit in ρ.)

Volume fractions through Lagrange multipliers

Good approximation of Pε requires fine discretization
But we don’t need very accurate approximation of Pε
Isotropy important: linear finite elements, unstructured
triangulations

Each iteration requires solving an elasticity problem (PDE
constrained optimization)

Non convex problem: local minimizers, stability
Continuation method
Prediction/correction descent step
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Implementation -2-

Semi implicit scheme
Explicit step:
ρn+1 = ρn − r

(
λ
εW

′(ρn)− 2λε∆ρn +DρC(ρn)
)

take k such that W (x) + k x
2

2 is convex in [−1, 1]

(1−kλ rε − 2rλε∆)ρn+1 = ρn − λ rε (W ′ + k)(ρn)− rDρC(ρn)

Continuation
“Intuitively”: gradually increase λ.
“Front propagation speed” depends on ε.
Gradually increase r, decrease ε.
(Graduate non-convexity)

Prediction / correction
Gradually increase the step r.
If the objective function increases, reduce r, roll back a few
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Design of a cork
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Design of a dam

?
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What else...

Not restricted to closed curves, or
perimeter.

Image segmentation: Mumford Shah problem
Fracture mechanics

Only for minimization problems.
Γ–convergence doesn’t implies convergence of gradient flows,
for instance.

Deals easily with multiple phases.
Ordered, or non-ordered.
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