

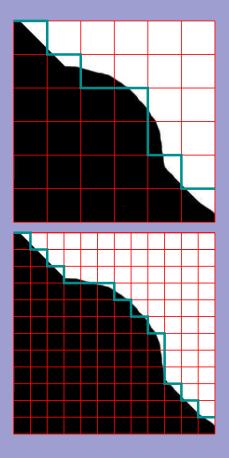
Phase-field method and optimal design

Blaise Bourdin

Dept. of Mathematics, Louisiana State University

Martin Burger
Antonin Chambolle
Gilles Francfort

Fundamental idea

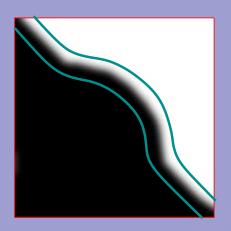


Problem involving a set D and its interface $F(D, \partial D)$:

Page 12 Represent $D \longleftrightarrow \chi$ approximate its volume/area

$$|D| \longleftrightarrow \int_{\Omega} \chi \, dx \longleftrightarrow \int_{\Omega} \chi_h \, dx$$

Represent $\partial D \longleftrightarrow J_{\chi}$ approximate its area/length $\mathcal{H}^{N-1}(\partial D) \longleftrightarrow \mathcal{H}^{N-1}(J_{\chi}) \longleftrightarrow ?$



- Introduce a characteristic length ε .
- Diffuse the interface

Phase field method

- Minimization problem
- Free Discontinuity Problems

$$\min_{D \text{ admissible}} F(D, \partial D) \text{ or } \min_{u \text{ admissible}} F(u, J_u).$$

Mumford-Shah:

$$E(u, J_u) = \int_{\Omega} |\nabla u|^2 dx + \int_{\Omega} (u - g)^2 dx + \mathcal{H}^{N-1}(J_u)$$

- Minimum interface problem: $F(D, \partial D) = \mathcal{H}^{N-1}(\partial D)$.
- Regularization of inverse problems.
- Regularization of optimal design problems.
- Variational approximation of functionals:

$$F_{\varepsilon}(u) \stackrel{?}{\longrightarrow} F(u, J_u), \Gamma$$
-convergence.

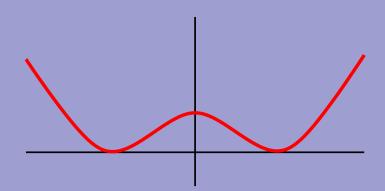
A first example

$$P(\chi, J_{\chi}) = \mathcal{H}^{N-1}(J_{\chi} \cap \Omega)$$

$$P_{\varepsilon}(\varphi) = \int_{\Omega} \varepsilon |\nabla \varphi|^{2} + \frac{1}{\varepsilon} W(\varphi) dx.$$

$$P_{\varepsilon} \xrightarrow{\Gamma} P$$

- $\exists \varphi_{\varepsilon} \longrightarrow \chi, \underline{\lim} P_{\varepsilon}(\varphi_{\varepsilon}) \ge P(\chi, J_{\chi})$ $\exists \varphi_{\varepsilon} \longrightarrow \chi, \overline{\lim} P_{\varepsilon}(\varphi_{\varepsilon}) \le P(\chi, J_{\chi})$
- The minimizers of P_{ε} converge to that of P



Building up

Γ -convergence stable wrt continuous perturbation

- F continuous, then $F + P_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} F + P$, ex. regularization for inverse problems
- Implement constraints by means of Lagrange multiplicators Volume constraints
- Surface terms: $\nabla \varphi_{\varepsilon} \rightharpoonup \mathcal{H}^{N-1} \sqcup J_{\varphi}.\nu_{\varphi}$

Also a numerical method

- Fix ε relatively to the discretization, and minimize
- Only continuous functions
- Only one dimensionality
- Not tied to a specific numerical method

Simple restoration problem

Joint work with M. Burger

Problem: $F(\chi) = \int_{\Omega} |u_{\chi} - f|^2 dx$, where u_{χ} is the solution of $\Delta u_{\chi} = \chi$, $u_{\chi} = 0$ on $\partial \Gamma$.

- "Perimeter penalization": $\min_{\chi} F(\chi) + \lambda \mathcal{H}^{N-1}(J_{\chi}), \lambda$ small.
- Phase field approximation: $\min_{\varphi} \int_{\Omega} |u_{\varphi} f|^2 dx + \lambda P_{\varepsilon}(\varphi)$, where $\Delta u_{\varphi} = \varphi$.
- Finite element discretization.
- Gradient descent.

$$\varphi_{n+1} = \varphi_n + r_n \delta^{-1} \left(\delta^{-1} \varphi_n - f \right) + \lambda \int_{\Omega} \frac{1}{\varepsilon} W'(\varphi_n) - 2\varepsilon \Delta \varphi_n \, dx$$

Phase-field and optimal design

- Admissible designs: Partitions D_1, \ldots, D_p of a ground domain Ω . Fixed volume fractions: $|D_i| = \theta_i |\Omega|, \sum \theta_i = 1$.
- Objective function:

$$F(D_1,\ldots,D_p)$$
 or $F\left(D_1,\ldots,D_p,\left(\partial D_i\cap\partial D_j\right)_{i,j}\right)$

 $\inf_{D_1,...,D_p} F$

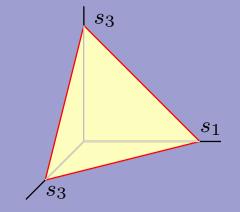
Ill-posed in general

Non-compactness of admissible designs, existence of solutions is not granted, without knowledge of the properties of F.

$$\inf_{D_1,...D_p} F(D_1,...,D_p) + \sum_{i,j} \lambda_{i,j} \mathcal{H}^{N-1} \left(\partial D_i \cap \partial D_j \right)$$

Phase-field approximation

- Phase–field: $\rho \in H^1(\Omega; \mathbb{R}^p)$



• p—wells potential:

$$W(x) > 0 \text{ if } x \notin \{s_1, \dots, s_p\}, W(s_i) = 0$$

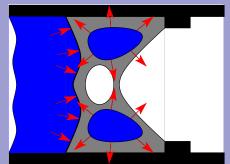
$$\lambda_{i,j} = \sqrt{2} \int_{s_i}^{s_j} W^{1/2}(s) ds$$

Variational approximation of the perimeters

$$\int_{\Omega} \varepsilon |D\rho|^2 + \frac{1}{\varepsilon} W(\rho) \, dx \xrightarrow{\Gamma} \sum_{i,j} \lambda_{i,j} \mathcal{H}^{N-1} \left(\partial D_i \cap \partial D_j \right).$$

- Independent on material interpolation scheme
- Any dimension, any number of materials, multi-physics...

Application: pressurized structures



- Three "phases" S, L, V
- Design-dependent pressure force p (surface load)
- Given volume fractions θ_S , θ_L , θ_V

Objective function: compliance of the structure

$$C(S, L, V) := \int_{\partial S \cap \partial L} p(x) u^* \cdot \nu_{L,S} d\mathcal{H}^{N-1}(x),$$

where

$$\int_{S} Ee(u^*) : e(v) dx = \int_{\partial S \cap \partial L} p(x) v \cdot \nu_{L,S} d\mathcal{H}^{N-1}(x), \forall v$$

Minimum compliance problem:

$$\inf_{S,L,V} \mathcal{C}(S,L,V) + \lambda \mathcal{H}^{1}(\partial S)$$

Phases are "ordered", scalar phase-field

Implementation

- Objective function depends implicitly on the design
 - Explicit expression for $D_{\rho}C$.
 - Gradient–based descent scheme (semi-explicit in ρ .)
- Volume fractions through Lagrange multipliers
- Good approximation of $\mathcal{P}_{\varepsilon}$ requires fine discretization
 - But we don't need very accurate approximation of $\mathcal{P}_{\varepsilon}$
 - Isotropy important: linear finite elements, unstructured triangulations
- Each iteration requires solving an elasticity problem (PDE constrained optimization)
- Non convex problem: local minimizers, stability
 - Continuation method
 - Prediction/correction descent step

Implementation -2-

Semi implicit scheme

• Explicit step:

$$\rho^{n+1} = \rho^n - r\left(\frac{\lambda}{\varepsilon} W'(\rho^n) - 2\lambda \varepsilon \Delta \rho^n + D_\rho C(\rho^n)\right)$$

• take k such that $W(x) + k\frac{x^2}{2}$ is convex in [-1, 1]

$$(1 - \frac{k}{\kappa} \lambda \frac{r}{\varepsilon} - 2r \lambda \varepsilon \Delta) \rho^{n+1} = \rho^n - \lambda \frac{r}{\varepsilon} (W' + k) (\rho^n) - r D_\rho C(\rho^n)$$

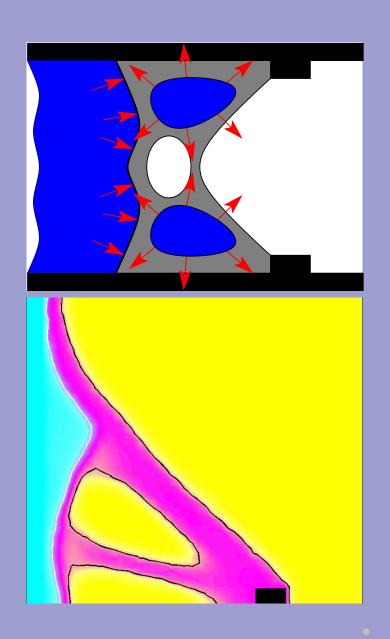
Continuation

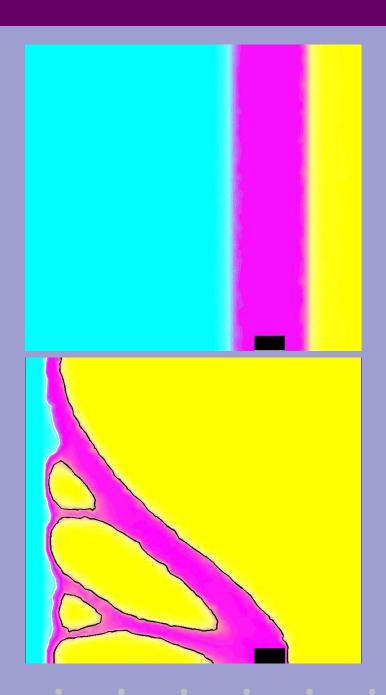
- "Intuitively": gradually increase λ .
- "Front propagation speed" depends on ε .
- Gradually increase r, decrease ε . (Graduate non-convexity)

Prediction / correction

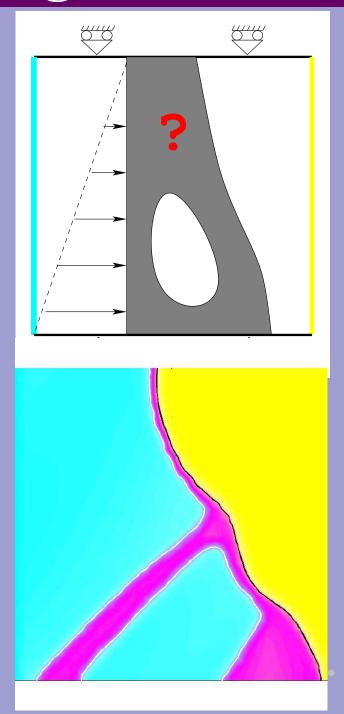
- Gradually increase the step r.
- If the objective function increases, reduce r, roll back a few iterations

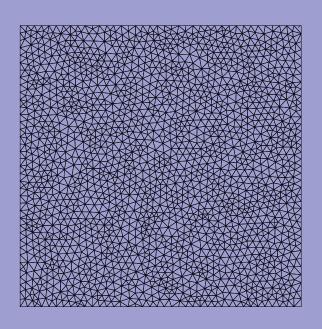
Design of a cork

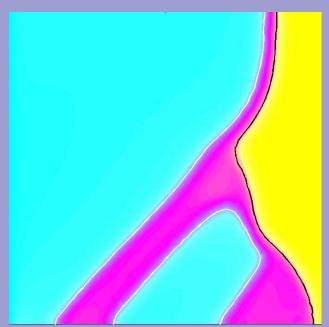




Design of a dam

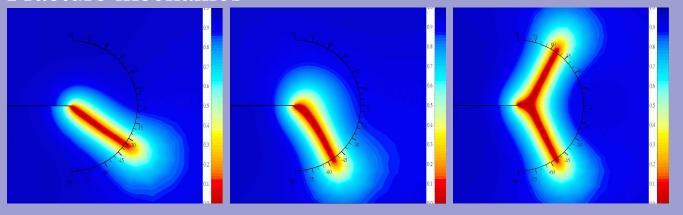






Phase–field method and optimal design – p.13/14

- Not restricted to closed curves, or perimeter.
 - Image segmentation: Mumford Shah problem
 - Fracture mechanics



- Only for minimization problems.

 Γ–convergence doesn't implies convergence of gradient flows, for instance.
- Deals easily with multiple phases. Ordered, or non-ordered.