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The learning problem

Given a dataset S = {z1 = (x1, y1), ..., zn = (xn, yn)} drawn i.i.d. from a
distribution P(x, y).

An algorithm is the map A : S → fS.

Empirical risk minimization

A : fS ∈ arg min
f∈H

1

n

n∑

i=1

V(f(xi), yi).
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Definitions

• Empirical error: Remp[f] = 1
n

∑n
i=1 V(f(xi), yi)

• Expected error: R[f] =
∫

X×Y
V(f(x), y)dP(x, y)

• Target function: f0 = arg minR[f] f0 ∈ G

• Best function in the class: fH ∈ arg minf∈H R[f]

• Function output: fS ∈ arg minf∈H Remp[f]
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Approximation and estimation errors

R[fS] − R[f0] = R[fS] − R[fH] + R[fH] − R[f0]

generalization error = estimation error + approximation error

As |H| increases: approximation error decreases

estimation error increases.
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Analysis of the tradeoff

1. Niyogi and Girosi: Approximation-estimation analysis for Radial Basis Functions

2. Barron, Li and Barron: Approximation estimation analysis for neural networks
and mixtures of densities

3. Cucker and Smale: Best choices for regularization parameters for RKHS

4. Smale and Zhou: Estimating the approximation error for RKHS
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S. Mukherjee, P. Golland and D. Panchenko.
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Two problems

1. Permutation tests for classification: uses label permutations to compute a bias
variance tradeoff for classification.
S. Mukherjee, P. Golland and D. Panchenko.

2. Risk bounds for mixture of densities: approximation and estimation bounds for
mixture of densities models.
A. Rakhlin, D. Panchenko, and S. Mukherjee
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Permutation tests for classification

The permutation procedure described here is used extensively in gene expression
analysis and image based clinical studies.

• Image-based clinical studies: detect neuroanatomical chances induced by diseases
and predict disease development.

• Gene expression analysis: classify tissue morphology, lineage, treatment outcome,
or drug sensitivity using DNA microarray data.
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The practical problem

x ∈ IR16,000, y ∈ {−1, 1} and |S| ≈ 50.

We compute a statistic T [S]:

Training error
1

n

n∑

i=1

V(fS(xi), yi)

Leave-one-out error
1

n

n∑

i=1

V(fSi(xi), yi).

Can we trust T [S] ?
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Approximation estimation breakdown

T [S] is the proxy for approximation error.

Var{T [π1(S)], ..., T [πM(S)]} is the proxy for estimation error:

• Repeat m = 1, ..., M times

? permute the labels: πm(S),

? tm = T [πm(S)]

• construct an empirical cummulative distribution

ÎP(T ≤ t) =
1

M

M∑

m=1

Θ(t − tm),

• the p-value of T [S] is ÎP(T ≤ T [S]).
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Generalization of the permutation process

Given H with target f0. For a permutation π(S) the smallest training error is

en(π(S)) = min
f∈H

Pn(f4f0)

= min
f∈H

[
1

n

n∑

i=1

I(zi ∈ f, z
π
i 6∈ f0) + I(zi 6∈ f, z

π
i ∈ f0)

]
,

where zi is the ith sample zπ
i is the ith sample after permutation.
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Generalization of the permutation process

Given H with target f0. For a permutation π(S) the smallest training error is

en(π(S)) = min
f∈H

Pn(f4f0)

= min
f∈H

[
1

n

n∑

i=1

I(zi ∈ f, z
π
i 6∈ f0) + I(zi 6∈ f, z

π
i ∈ f0)

]
,

where zi is the ith sample zπ
i is the ith sample after permutation.

For a fixed f ∈ H the expected error (over permutations) is

IEπPn(f4f0) = P(z ∈ f)(1 − P(z ∈ f0)) + (1 − P(z ∈ f))P(z ∈ f0) = P(z ∈ f0) ≡ P(f0).

For appropriate complexity assumptions on H prove that en(π(S)) is close to P(f0).
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Concentration of the permutation process

The following maximization problem is equivalent to minimizing the empirical error on permuted

data

en(π(S)) = Pn(z ∈ f0) − sup
f∈H

[
1

n

n∑

i=1

I(zi ∈ f)(2I(z
π
i ∈ f0) − 1)

]
.
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Concentration of the permutation process

The following maximization problem is equivalent to minimizing the empirical error on permuted

data

en(π(S)) = Pn(z ∈ f0) − sup
f∈H

[
1

n

n∑

i=1

I(zi ∈ f)(2I(z
π
i ∈ f0) − 1)

]
.

By Chernoff’s inequality Pn(z ∈ f0) is close to P(z ∈ f0).

So we need only bound the following process

Gn(π(S)) = sup
f∈H

[
1

n

n∑

i=1

I(zi ∈ f)(2I(z
π
i ∈ f0) − 1)

]
.
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Bound on Gn(π(S))

Theorem 1. If the H has VC dimension V then with probability 1 − Ke−t/K

Gn(π(S)) ≤ K min

(√
V log n

n
,

V log n

n(1 − 2P(f0))2

)
+

√
Kt

n
.
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Bound on Gn(π(S))

Theorem 1. If the H has VC dimension V then with probability 1 − Ke−t/K

Gn(π(S)) ≤ K min

(√
V log n

n
,

V log n

n(1 − 2P(f0))2

)
+

√
Kt

n
.

Therefore with probability 1 − Ke−t/K

P(z ∈ f0) ≤ Pn(z ∈ f0) + K min

(√
V log n

n
,

V log n

n(1 − 2P(f0))2

)
+

√
Kt

n
.
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Proof sketch (Part 1)

The process can be rewritten

Gn(π(S)) = sup
f∈H

[
1

n

n∑

i=1

I(zi ∈ f)εi

]
,

where εi = 2I(zπ
i ∈ f0) − 1 = ±1 are Bernoulli random variables with P(εi = 1) = P(f0) and (εi)

depend on (zi) only through the cardinality of {zi ∈ f0}.
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1
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]
,

where εi = 2I(zπ
i ∈ f0) − 1 = ±1 are Bernoulli random variables with P(εi = 1) = P(f0) and (εi)

depend on (zi) only through the cardinality of {zi ∈ f0}.

A Bernoulli sequence (ε ′i) independent of z can be constructed if a term is added

Gn(π(S)) = sup
f∈H

[
1

n

n∑

i=1

I(zi ∈ f)ε
′
i

]
+

∣∣∣∣∣
1

n

n∑

i=1

εi −
1

n

n∑

i=1

ε
′
i

∣∣∣∣∣ .
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The process can be rewritten
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[
1

n

n∑

i=1

I(zi ∈ f)εi

]
,

where εi = 2I(zπ
i ∈ f0) − 1 = ±1 are Bernoulli random variables with P(εi = 1) = P(f0) and (εi)

depend on (zi) only through the cardinality of {zi ∈ f0}.

A Bernoulli sequence (ε ′i) independent of z can be constructed if a term is added

Gn(π(S)) = sup
f∈H

[
1

n

n∑

i=1

I(zi ∈ f)ε
′
i

]
+

∣∣∣∣∣
1

n

n∑

i=1

εi −
1

n

n∑

i=1

ε
′
i

∣∣∣∣∣ .

The second term can be bounded by applying Chernoff’s inequality twice.
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Proof sketch (Part 2)

We need to bound the following process

sup
f∈H

R[f, ε
′
] = sup

f∈H

[
1

n

n∑

i=1

I(zi ∈ f)ε
′
i

]
,

where P(ε ′i = 1) = P(f0).
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We need to bound the following process

sup
f∈H

R[f, ε
′
] = sup

f∈H

[
1

n

n∑

i=1

I(zi ∈ f)ε
′
i

]
,

where P(ε ′i = 1) = P(f0).

By Talagrand’s inequality on the cube with probability 1 − e−Kt

sup
f∈H

R[f, ε
′
] ≤ IEε ′ sup

f∈H
R[f, ε

′
] +

√
t

n
.
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Proof sketch (Part 2)

We need to bound the following process

sup
f∈H

R[f, ε
′
] = sup

f∈H

[
1

n

n∑

i=1

I(zi ∈ f)ε
′
i

]
,

where P(ε ′i = 1) = P(f0).

By Talagrand’s inequality on the cube with probability 1 − e−Kt

sup
f∈H

R[f, ε
′
] ≤ IEε ′ sup

f∈H
R[f, ε

′
] +

√
t

n
.

If P(ε ′i = 1) = 1/2 this is a Rademacher process and Dudley’s entropy integral can be used to

control IEε ′ supf∈H R[f, ε ′].
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(ε ′′i ) such that IEε ′i = IEε ′′i = (2P(f0) − 1)
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We transform the problem into such a form by adding and subtracting an independent sequence

(ε ′′i ) such that IEε ′i = IEε ′′i = (2P(f0) − 1)

IEε ′ sup
f∈H

R[f, ε
′
] ≤ IEε ′,ε ′′ sup

f∈H

[
R[f, ε

′
] − R[f, ε

′′
] +

1

n

n∑

i=1

I(zi ∈ f)(2P(f0) − 1)

]
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R[f, ε
′
] ≤ IEε ′,ε ′′ sup

f∈H

[
R[f, ε

′
] − R[f, ε

′′
] +

1

n

n∑

i=1

I(zi ∈ f)(2P(f0) − 1)

]

≤ IEη sup
f∈H

[
R[f, η

′
] +

1

n

n∑

i=1

I(zi ∈ f)(2P(f0) − 1)

]

where ηi = (ε ′i − ε ′′i )/2 takes values {−1, 0, 1} and P(ηi = 1) = P(ηi = −1).
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Proof sketch (Part 3)

We transform the problem into such a form by adding and subtracting an independent sequence

(ε ′′i ) such that IEε ′i = IEε ′′i = (2P(f0) − 1)

IEε ′ sup
f∈H

R[f, ε
′
] ≤ IEε ′,ε ′′ sup

f∈H

[
R[f, ε

′
] − R[f, ε

′′
] +

1

n

n∑

i=1

I(zi ∈ f)(2P(f0) − 1)

]

≤ IEη sup
f∈H

[
R[f, η

′
] +

1

n

n∑

i=1

I(zi ∈ f)(2P(f0) − 1)

]

where ηi = (ε ′i − ε ′′i )/2 takes values {−1, 0, 1} and P(ηi = 1) = P(ηi = −1).

Since ηi satisfy

IP

(
n∑

i=1

ηiai > t

)
≤ e

− t2

2
∑n

i=1
a2
i

we can use the entropy integral.
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Proof sketch (Part 4)

By the entropy integral bound

IEηi
sup
f∈H

[
1

n

n∑

i=1

I[zi ∈ f]ηi

]
≤ K

1√
n

∫√µ

0

√
logN (u,H)du

where µ = 1
n

∑n
i=1 I[zi ∈ f].

The result of the theorem is obtained by computing the entropy integral and optimizing. ¤
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Moral

• If P(f0) < 1/2 then ignoring the “one dimensional terms” the rate of convergence
is

O

(
V log n

n

)
.

• The weak dependency between (zi) and a sequence (εi) can be broken with very
little cost.
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Risk bounds for mixture of densities

Given a dataset S = {x1, ..., xn} drawn i.i.d. from an unknown bounded (from above and below)

density f0 estimate this density using k-component mixtures fk where

fk ∈ Ck = convk(H) =

{
f : f(x) =

k∑

i=1

λiφθi
(x),

k∑

i=1

λi = 1, θi ∈ Θ

}
,

where H = {φθ(x) : θ ∈ Θ ⊂ IRd}.
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Risk bounds for mixture of densities

Given a dataset S = {x1, ..., xn} drawn i.i.d. from an unknown bounded (from above and below)

density f0 estimate this density using k-component mixtures fk where

fk ∈ Ck = convk(H) =

{
f : f(x) =

k∑

i=1

λiφθi
(x),

k∑

i=1

λi = 1, θi ∈ Θ

}
,

where H = {φθ(x) : θ ∈ Θ ⊂ IRd}.

We are given an algorithm

A : S → f̂k

where f̂k ∈ Ck.

We want to bound

IES[D(f0‖f̂k)] ≤ Approx(Ck) + Est(Ck, n),

where D(f‖g) =
∫

f(x) log f(x)

g(x)
.
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The algorithms and some definitions

The following algorithms will be used

AMLE : f̂k = arg max
λ,θ

n∑

i=1

log




k∑

j=1

λjφθj
(zi)
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λ,θ
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i=1

log
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j=1

λjφθj
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AGreedy : f̂k = arg max
θ,λk

n∑

i=1

log
[
(1 − λk)f̂k−1(zi) + λkφθ(zi)

]
.
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The algorithms and some definitions

The following algorithms will be used

AMLE : f̂k = arg max
λ,θ

n∑

i=1

log




k∑

j=1

λjφθj
(zi)




AGreedy : f̂k = arg max
θ,λk

n∑

i=1

log
[
(1 − λk)f̂k−1(zi) + λkφθ(zi)

]
.

We define the class

C = conv(H) =

{
f : f(x) =

∫

Θ

φθ(x)P(dθ)

}

and

D(f0‖C) = inf
g∈C

D(f0‖g).
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Approximation estimation tradeoff

Li and Barron proved the following:

Theorem 2. Assume that Θ bounded and Lipschitz

sup
x∈X

| log φθ(x) − log φθ ′(x)| ≤ B

d∑

j=1

|θj − θ
′
j |

for any θ, θ ′ ∈ Θ.
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Approximation estimation tradeoff

Li and Barron proved the following:

Theorem 2. Assume that Θ bounded and Lipschitz

sup
x∈X

| log φθ(x) − log φθ ′(x)| ≤ B

d∑

j=1

|θj − θ
′
j |

for any θ, θ ′ ∈ Θ.

For either AMLE or AGreedy

IES

[
D(f0‖f̂k)

]
− D(f0‖C) ≤ c1

k
+

c2k

n
log(nc3).

The rate of convergence for optimal k is O

(√
log n

n

)
.
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There is no tradeoff in this problem

Alexander Rakhlin proved the following

Theorem 3. For any bounded f0 (a ≤ f0 ≤ b) then for either AMLE or AGreedy

IES

[
D(f0‖f̂k)

]
− D(f0‖C) ≤ c1

k
+ IES

[
c2√
n

∫b

0

√
logN (H, u, dx)du

]
,

where N (H, u, dx) is the covering number of H with respect to the empirical distance.
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There is no tradeoff in this problem

Alexander Rakhlin proved the following

Theorem 3. For any bounded f0 (a ≤ f0 ≤ b) then for either AMLE or AGreedy

IES

[
D(f0‖f̂k)

]
− D(f0‖C) ≤ c1

k
+ IES

[
c2√
n

∫b

0

√
logN (H, u, dx)du

]
,

where N (H, u, dx) is the covering number of H with respect to the empirical distance.

Under the conditions Li and Barron examined

IES

[
D(f0‖f̂k)

]
− D(f0‖C) ≤ c1

k
+

c2√
n

.

There is no optimal k and only the complexity of H is involved.
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Why only H (Part 1)

By McDiarmid’s inequality with probability 1 − e−t

sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

log
h(xi)

f0(xi)
− IE log

h

f0

∣∣∣∣∣ ≤ IES sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

log
h(xi)

f0(xi)
− IE log

h

f0

∣∣∣∣∣ + C
√

t/n.
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log
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f0(xi)
− IE log

h

f0

∣∣∣∣∣ ≤ IES sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

log
h(xi)

f0(xi)
− IE log

h

f0

∣∣∣∣∣ + C
√

t/n.

By symmetrization

IES sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

log
h(xi)

f0(xi)
− IE log

h

f0

∣∣∣∣∣ ≤ 2IES,ε sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

εi log
h(xi)

f0(xi)

∣∣∣∣∣ ,

where P(εi = 1) = P(εi = −1) = 1/2.
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By McDiarmid’s inequality with probability 1 − e−t

sup
h∈C
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1

n

n∑

i=1

log
h(xi)

f0(xi)
− IE log

h

f0

∣∣∣∣∣ ≤ IES sup
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log
h(xi)

f0(xi)
− IE log
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f0

∣∣∣∣∣ + C
√
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By symmetrization

IES sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

log
h(xi)

f0(xi)
− IE log

h

f0

∣∣∣∣∣ ≤ 2IES,ε sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

εi log
h(xi)

f0(xi)

∣∣∣∣∣ ,

where P(εi = 1) = P(εi = −1) = 1/2.

We will see that the Rademacher average above can be controlled only using H.
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Why only H (Part 2)

Lemma 1. Comparison inequality for Rademacher processes

If G : IR → IR convex and non-decreasing and φi : IR → IR

(i = 1, .., n) contractions (ψi(0) = 0 and |ψi(s) − ψi(t)| ≤ |s − t|), then

IEεG

[
sup
f∈F

n∑

i=1

εiψi(f(xi))

]
≤ IEεG

[
sup
f∈F

n∑

i=1

εif(xi)

]
.
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Lemma 1. Comparison inequality for Rademacher processes

If G : IR → IR convex and non-decreasing and φi : IR → IR

(i = 1, .., n) contractions (ψi(0) = 0 and |ψi(s) − ψi(t)| ≤ |s − t|), then

IEεG

[
sup
f∈F

n∑

i=1

εiψi(f(xi))

]
≤ IEεG

[
sup
f∈F

n∑

i=1

εif(xi)

]
.

Applying the above lemma multiple times gives us the following bound

IES,ε sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

εi log
h(xi)

f0(xi)

∣∣∣∣∣ ≤ K1 IES,ε sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

εih(xi)

∣∣∣∣∣ .
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Why only H (Part 3)

The Rademacher averages of a class are equal to those of the convex hull, since a linear functional

of convex combinations achieves its maximum value at the vertices. Therefore,

IEε sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

εih(xi)

∣∣∣∣∣ = IEε sup
θ∈Θ

∣∣∣∣∣
1

n

n∑

i=1

εiφθ(xi)

∣∣∣∣∣ .
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Why only H (Part 3)

The Rademacher averages of a class are equal to those of the convex hull, since a linear functional

of convex combinations achieves its maximum value at the vertices. Therefore,

IEε sup
h∈C

∣∣∣∣∣
1

n

n∑

i=1

εih(xi)

∣∣∣∣∣ = IEε sup
θ∈Θ

∣∣∣∣∣
1

n

n∑

i=1

εiφθ(xi)

∣∣∣∣∣ .

Using the Dudley integral bound

IEε sup
φ∈H

∣∣∣∣∣
1

n

n∑

i=1

εiφθ(xi)

∣∣∣∣∣ ≤
c1√
n

∫b

0

log
√
N (H, u, dx)du.

¤
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Moral

• For estimates that are convex combinations of Lipschitz functionals the estima-
tion error bound should be a function of the complexity of the base class H and
not the convex combination C.
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Moral

• For estimates that are convex combinations of Lipschitz functionals the estima-
tion error bound should be a function of the complexity of the base class H and
not the convex combination C.

• When using mixture models control the complexity of the base class and use as
many combinations as you want.


