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Given a dataset S ={z; = (x1,Y1), ..., Zn = (Xn, Yn)} drawn i.i.d. from a
distribution P(x,y).

An algorithm is the map A:S — fs.

Empirical risk minimization

: f — > V(f
A s € argmin nZ (xi), yi).
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Definitions

Empirical error: Remp[fl =1 5 V(f(x1),us)
Expected error: R[f] = [, V(f(x),y)dP(x,y)
Target function: fy = arg min R[f] foeg
Best function in the class: fy; € arg mingey R[f]

Function output: fs € arg mingesy Remp [f]
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Approximation and estimation errors

R[fs] — R[fo] = Rl[fs] — R[fx] + R[fy] — R[fo]

generalization error = estimation error 4+ approximation error

As |’H| increases: approximation error decreases

estimation error increases.
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Analysis of the tradeoff

. Niyogi and Girosi: Approximation-estimation analysis for Radial Basis Functions

. Barron, Li and Barron: Approximation estimation analysis for neural networks
and mixtures of densities

. Cucker and Smale: Best choices for regularization parameters for RKHS

. Smale and Zhou: Estimating the approximation error for RKHS
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Two problems

. Permutation tests for classification: uses label permutations to compute a bias
variance tradeoff for classification.

. Risk bounds for mixture of densities: approximation and estimation bounds for
mixture of densities models.
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Permutation tests for classification

The permutation procedure described here is used extensively in
and

o : detect neuroanatomical chances induced by diseases
and predict disease development.

o : classify tissue morphology, lineage, treatment outcome,
or drug sensitivity using DNA microarray data.
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The practical problem

x € Ry e{=1,1} and |S| & 50.

We compute a statistic 7 [S]:
.l n
raining error n; (fs(xi),yi)

.ln
L eave-one-out — > V(fsi(xi), ui)-
eave-one-out error n; (fsi(xi), Y1)

Can we trust 7S] ?
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Approximation estimation breakdown

T'[S] is the proxy for approximation error.

Var{T [1(S)], ..., T [tm(S)]} is the proxy for estimation error:

e Repeat m =1, ..., M times
permute the labels: 71,,,(S),
tm = 7 [t (S)]

e construct an empirical cummulative distribution
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Toy example

T1S] =.39,.27,.25,.2 for Hqy C H3 C H; C H;.
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Leukemia

38 samples from 2 types of leukemia, picking k in leave-k-out.
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Leukemia

38 samples from 2 types of leukemia, picking k in leave-k-out.
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Generalization of the permutation process

Given H with target fo. For a permutation 7t(S) the smallest training error is

enln(S)) = minPu(fAR)

-] n
— ' — E (zi € fzl &fo)+ 1z & f, 2 €f
{crém 2 (z; € 2z & 0) (zi & yZy € o),

where z; is the ith sample zI" is the ith sample after permutation.
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-] n
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For a fixed f € H the expected error (over permutations) is
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Generalization of the permutation process

Given H with target fo. For a permutation 7t(S) the smallest training error is

enln(S)) = minPu(fAR)

-] n
— ' — E (zi € fzl &fo)+ 1z & f, 2 €f
{crém 2 (z; € 2z & 0) (zi & yZy € o),

where z; is the ith sample zI" is the ith sample after permutation.

For a fixed f € H the expected error (over permutations) is

IE P .(fAfy) =P(z € f)(1 —P(z € fy)) + (1 —P(z € f))P(z € fy) = P(z € fy) = P(fp).

For appropriate complexity assumptions on H prove that e, (7t(S)) is close to P(fy).
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Concentration of the permutation process

The following maximization problem is equivalent to minimizing the empirical error on permuted
data

enln(S)) = Pulz € fo) — sup |~ 3 I(zi € N2 € fo) 1)
fer | M

13



Concentration of the permutation process

The following maximization problem is equivalent to minimizing the empirical error on permuted
data

enln(S)) = Pulz € fo) — sup |~ 3 I(zi € N2 € fo) 1)
fer | M

By Chernoff’'s inequality P,,(z € fy) is close to P(z € fy).

13



Concentration of the permutation process

The following maximization problem is equivalent to minimizing the empirical error on permuted
data

en(n1(S)) = Pu(z € fo) — sup [lz I(zi € f)(21(z] € fo) — 1)] .
fer | M

By Chernoff’'s inequality P,,(z € fy) is close to P(z € fy).

So we need only bound the following process

1 & .
Gn(7t(S)) = 2175) [E; I(z; € f)(21(z; € fo) — 1)] :

13



Bound on G, (7t(S))

Theorem 1. If the H has VC dimension V then with probability 1 — Ke ¥/¥

V1 V1 Kt
Gn(7(S)) < Kmin (\/ ce oem ) + 4/ —.

n  'n(1—2P(fy))? n
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Bound on G, (7(S))

Theorem 1. If the H has VC dimension V then with probability 1 — Ke ¥/¥

V1 V1 Xt
e < xo (|7 _Vimn Y &

n ' n(1—2P(fy))? n

Therefore with probability 1 — Ke ¥/X

V1 V1
P(ZGfo)SPn(Zefo)—i—Kmin<\/ ogn ogn )

n ' n(1 = 2P(fy))?

Kt

n
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Proof sketch (Part 1)

The process can be rewritten

where ¢; = 2I(z]" € fo) — 1 = %1 are Bernoulli random variables with P(e; = 1) = P(fy) and (&)
depend on (z;) only through the cardinality of {z; € fy}.
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Proof sketch (Part 1)

The process can be rewritten

where ¢; = 2I(z] € fo) — 1 = *£1 are Bernoulli random variables with P(e; = 1) = P(fy) and (
depend on (z;) only through the cardinality of {z; € fy}.

A Bernoulli sequence (¢;) independent of z can be constructed if a term is added

1ot ety
ni:1 l ni:1 |

G = su I(z; € fe
(( fe?I-?[TlZ

The second term can be bounded by applying Chernoff's inequality twice.

£i)

15



Proof sketch (Part 2)

We need to bound the following process

n
sup R[f, ¢'] = sup I(z; € f)e
feH feH [Tl Z

where P(e] = 1) = P(fo).
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Proof sketch (Part 2)

We need to bound the following process

n
sup R[f, ¢'] = sup I(z; € f)e
feH feH [Tl 1Z

where P(e] = 1) = P(fo).

By Talagrand’s inequality on the cube with probability 1 — e **

t
sup R[f, ¢'] < IE_,supR[f, '] + \/—.

feH feH n

If P(¢] = 1) = 1/2 this is a Rademacher process and Dudley’s entropy integral can be used to

control IE,, sup;4 RIf, €'].
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Proof sketch (Part 3)
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17



Proof sketch (Part 3)

We transform the problem into such a form by adding and subtracting an independent sequence
(¢{") such that IEe{ = IEe!” = (2P(fo) — 1)

1 n
IE.,sup RI[f,e'] <IE. usup |RIf,e] —RIf,e"] + =) I(z € f)(2P(fo) — 1)

fecH feH n-

17



Proof sketch (Part 3)

We transform the problem into such a form by adding and subtracting an independent sequence
(¢{") such that IEe{ = IEe!” = (2P(fo) — 1)

fecH feH n-

1 n
IE, sup R[f,e'] < IE./ ./ sup [R[f, e —RIf,e"] + =) I(zi € f)(2P(fo) — 1)

< IE;sup RIf, 1] + l Z I(zy € f)(2P(fo) — 1)]
n

fEH —

where ny = (&] — ¢{')/2 takes values {—1,0,1} and P(ni = 1) = P(my = —1).
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Proof sketch (Part 3)

We transform the problem into such a form by adding and subtracting an independent sequence
(¢!') such that [Ee{ = IEe!" = (2P(fo) — 1)

1 n
IE, sup R[f,e'] < IE./ ./ sup [R[f, e —RIf,e"] + =) I(zi € f)(2P(fo) — 1)

fecH feH n-

< IE;sup [R[f,n/] -+ l Z I(zy € f)(2P(fo) — 1)]
feH n

=1
where ny = (&] — ¢{')/2 takes values {—1,0,1} and P(ni = 1) = P(my = —1).

Since 1); satisfy
2

n _ t
2
P (Zniai > t) <e 22?21 4

i=1

we can use the entropy integral.

17



Proof sketch (Part 4)

By the entropy integral bound

v log N (u, H)du

<k gl
where 1 = %Z?ﬂ I[z; € f].

The result of the theorem is obtained by computing the entropy integral and optimizing. [
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Moral

e If P(fy) < 1/2 then ignoring the “one dimensional terms” the rate of convergence
IS
0 (Vlogn) |
n

e The weak dependency between (z;) and a sequence (¢;) can be broken with very
little cost.
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Risk bounds for mixture of densities

Given a dataset S = {x1, ..., Xn} drawn i.i.d. from an unknown bounded (from above and below)
density fo estimate this density using k-component mixtures fy where

k k
fi € Cx = conv(H) = {f f(x) =) Ado(x),) A=1,0; € @} ,
i=1 i=1

where H = {¢po(x) : 0 € ® C IRY}.
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Risk bounds for mixture of densities

Given a dataset S = {x1, ..., Xn} drawn i.i.d. from an unknown bounded (from above and below)
density fo estimate this density using k-component mixtures fy where

k

k
fi € Cx = conv(H) = {f f(x) =) Ado(x),) A=1,0; € @} ,
i=1 i=1

where H = {¢po(x) : 0 € ® C IRY}.

We are given an algorithm
A:S — fk

where '/f\k € Cy.

We want to bound
IEs[D (fol[fk)] < Approx(Cy) + Est(Cy, n),

where D(f||g) = [ f(x) log %

20



The algorithms and some definitions

The following algorithms will be used

AMLE : fk = arg max Z log Z A; d)e
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The algorithms and some definitions

The following algorithms will be used

AMLE : fk = arg max Z log [Z A; d)e ]

AGreeay : Tk = argmax ) log [(1 — A)fici(z) + Aedo(z1)] -

We define the class
C =conv(H) = {f : f(x) —J cl)e(x)P(dG)}
)

and
D(fo||C) = inf D(fo||g).
geC

21



Approximation estimation tradeoff

Li and Barron proved the following:

Theorem 2. Assume that © bounded and Lipschitz

d
sup | log do(x) — log dor(x)| < B > 18, — 6]
xX€ j=1

for any 0,0’ € O.
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Approximation estimation tradeoff

Li and Barron proved the following:

Theorem 2. Assume that © bounded and Lipschitz

d
sup | log do(x) — log dor(x)| < B > 18, — 6]
xX€ j=1

for any 0,0’ € O.

For either Amie or AGreedy

IEs [D (o] f)] — D(follC) < % + o og(nes).
n

n

The rate of convergence for optimal k is O (\/ loﬂ) :
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There is no tradeoff in this problem

Alexander Rakhlin proved the following

Theorem 3. For any bounded fy (a < fo < b) then for either Amie or Agreedy

A C] Cz b
ES [D(fO”fk)] - D(fO”C) S E + ]ES [%J@ \/lOgN(H,LL, dx)du y

where N'(H,u, dy) is the covering number of H with respect to the empirical distance.
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Alexander Rakhlin proved the following

Theorem 3. For any bounded fy (a < fo < b) then for either Amie or Agreedy

A C] Cz b
IEs [D(fo|lfi)] — D(fo]|C) < P IEs [%L V1og N(H,u, dy)du|,

where N'(H,u, dy) is the covering number of H with respect to the empirical distance.

Under the conditions Li and Barron examined

IEs [D(fo||fi)] — D(fo]|C) < % + %

There is no optimal k and only the complexity of H is involved.
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Why only H (Part 1)

t

By McDiarmid'’s inequality with probability T — e~

1 b h(Xi) h
sup | — lo — IE log —
hec [N ; ® %s(x) %

1 i h(Xi)
n Z log fo(xi)

i=1

< IEs sup
hec

h _
—IElogf— + Cy/t/n.
0
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t

By McDiarmid'’s inequality with probability T — e~

1 b h(Xi) h 1 i h(Xi) h —
sup | — lo — IElog —| < IEgsup |— log — IElog —| + Cy/ t/n.
heC | T ; ® folx) fo Vhee 1 ; fo(xi) fo v
By symmetrization
1 bk h(Xi) h 1 i h(Xi)
IEs sup |— lo — IElog —| < 2IEs.sup |— ¢ lo ,
S et n; ® Folxt) 5% S hec n; ® Folx1)

where P(¢; = 1) =P(gg = —1) = 1/2.

24



Why only H (Part 1)

t

By McDiarmid'’s inequality with probability T — e~

1 b h(Xi) h 1 i h(Xi) h —
sup | — lo — IElog —| < IEssup |— lo — IElog —| + Cy/ t/n.
net n; ® folx) 5T T e n; ® Folx) 5, T CV
By symmetrization
1 bk h(Xi) h 1 i h(Xi)
IEs sup |— lo — IElog —| < 2IEs.sup |— ¢ lo ,
S et n; ® Folxt) 5% S hec n; ® Folx1)

where P(¢; = 1) =P(gg = —1) = 1/2.

We will see that the Rademacher average above can be controlled only using H.
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Why only H (Part 2)

Lemma 1. Comparison inequality for Rademacher processes

If G : IR — IR convex and non-decreasing and ¢ :

(i =1,..,n) contractions (\Pi(0) = 0 and [Pi(s)

feF

IE.G [SUPZ eqi(f(xi))

R —- IR

—Wi(t)] < |s — t]), then

< IE.G SUpZ&l X4

feF -,

] |
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Why only H (Part 2)

Lemma 1. Comparison inequality for Rademacher processes
If G : IR — IR convex and non-decreasing and ¢; : IR — IR

(i =1,..,n) contractions (\i(0) = 0 and [Pi(s) — i(t)| < |s —t]), then

SupZE,l Xl] .

feF -,

IE)G[supZ ehi(f(xi)) | < IE:G

feF

Applying the above lemma multiple times gives us the following bound

Z €i log

IEs . sup
hel

< Ky IEs ¢ sup
hel

<I n
— ) &h(x)
n i=1
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Why only H (Part 3)

The Rademacher averages of a class are equal to those of the convex hull, since a linear functional
of convex combinations achieves its maximum value at the vertices. Therefore,

-] n
— ) _&h(x)

i=1

IE, sup
heC

= IK, sup
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Why only H (Part 3)

The Rademacher averages of a class are equal to those of the convex hull, since a linear functional
of convex combinations achieves its maximum value at the vertices. Therefore,

-] n
— ) _&h(x)

i=1

IE, sup
heC

= IK, sup

Using the Dudley integral bound

b
< iJ’ log v/ N (H,u, dy)du.
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Moral

e For estimates that are convex combinations of Lipschitz functionals the estima-
tion error bound should be a function of the complexity of the base class H and
not the convex combination C.

27



Moral

e For estimates that are convex combinations of Lipschitz functionals the estima-
tion error bound should be a function of the complexity of the base class H and

not the convex combination C.

e When using mixture models control the complexity of the base class and use as
many combinations as you want.
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