Analysis of Support Vector Machine Classification

Ding-Xuan Zhou

Department of Mathematics

City University of Hong Kong

E-mail: mazhou@math.cityu.edu.hk
http://www.cityu.edu.hk/ma
Joint work with Qiang Wu

Supported in part by Research Grants Council of Hong Kong

· Classification algorithm

(X,d) is a compact metric space (can be a subset of \mathbb{R}^n)

A (binary) classifier is a function $f: X \to \{1, -1\} = Y$.

It assigns a label (makes a decision) for each input (vector) $x \in X$:

$$f(x) = 1$$
 (YES) or $f(x) = -1$ (NO)

 ρ : (unknown) prob. measure on $Z := X \times Y$, ρ_X marg. distrib. $\rho(y|x)$ the conditional probability measure at x for a given input x:

$$\begin{cases} P(y=1|x) & \text{is the probability for the output to be 1 (YES)} \\ P(Y=-1|x) & \text{is the probability for the output to be } -1 \text{ (NO)} \end{cases}$$

Best classifier (Bayes rule)
$$f_c$$
:
 $f_c(x) = \begin{cases} 1, & \text{if } P(y=1|x) \ge P(Y=-1|x) \\ -1, & \text{if } P(y=1|x) < P(Y=-1|x) \end{cases}$

· Misclassification error $\mathcal{R}(f)$:

Prob
$$\{Y \neq f(X)\} = \int_X P(Y \neq f(x)|x) d\rho_X$$

Then $\mathcal{R}(f) \geq \mathcal{R}(f_c)$ for any $f: X \to Y$.

Purpose: find a good approximation $f_{\mathbf{z}}$ of f_c from training data $\mathbf{z} = (x_i, y_i)_{i=1}^m \subset \mathbb{Z}^m$, a set of samples drawn according to ρ

· Convergence (a good classification algorithm f_z):

$$\mathcal{R}(f_{\mathbf{z}}) \to \mathcal{R}(f_c)$$
 with confidence as $m \to \infty$

or when $f_{\mathbf{z}}$ is found from a function space (not dense) \mathcal{H} :

$$\mathcal{R}(f_{\mathbf{z}}) \to \inf_{f \in \mathcal{H}} \mathcal{R}(f)$$
 with confidence as $m \to \infty$

· Support Vector Machine (SVM) Classification

Let $(\mathcal{H}, \|\cdot\|_{\mathcal{H}})$ be a space of continuous functions SVM 1-norm soft margin classifier is $\operatorname{sgn}(f_{\mathbf{z}}^* + b_{\mathbf{z}})$ defined by

$$(f_{\mathbf{z}}^{*}, b_{\mathbf{z}}) := \arg \min_{f^{*} \in \mathcal{H}, b \in \mathbf{R}} \frac{\frac{1}{2} \|f^{*}\|_{\mathcal{H}}^{2} + \frac{C}{m} \sum_{i=1}^{m} \xi_{i},}{\text{subj. to } y_{i}(f^{*}(x_{i}) + b) \geq 1 - \xi_{i},}$$
$$\xi_{i} \geq 0, \qquad i = 1, \dots, m.$$

The most important SVM classification algorithm: $\mathcal{H} = \mathcal{H}_K$

· Mercer kernel

 $K: X \times X \to \mathbf{R}$ continuous, symmetric, and positive semidefinite: $(K(x_i, x_j))_{i,j=1}^{\ell}$ is positive semidefinite for any $\ell \in \mathbf{N}, (x_i)_{i=1}^{\ell} \subset X$

Examples of Mercer kernels on $X \subset \mathbf{R}^n$

Vapnik:
$$K(x,y) = (x \cdot y)^d$$
 or $(1 + x \cdot y)^d$
Gaussian $K(x,y) = k(x-y) = e^{-\frac{|x-y|^2}{\sigma^2}}$

Gaussian
$$K(x,y) = k(x-y) = e^{-\frac{|x-y|^2}{\sigma^2}}$$

RBF:
$$K(x,y) = \int_0^{+\infty} e^{-\rho|x-y|^2} d\beta(\rho)$$
 with a Borel measure β

Spline kernels

- Reproducing Kernel Hilbert Space \mathcal{H}_K

closure of the span of the set of functions $\{K_t := K(t,\cdot) : t \in X\}$ with the inner product $\langle , \rangle_{\mathcal{H}_K}$ satisfying $\langle K_x, K_y \rangle_{\mathcal{H}_K} = K(x, y)$ and

$$<\sum_{i} c_{i}K_{x_{i}}, \sum_{i} c_{i}K_{x_{i}}>_{\mathcal{H}_{K}} = \|\sum_{i} c_{i}K_{x_{i}}\|_{\mathcal{H}_{K}}^{2} = \sum_{i,j} c_{i}K(x_{i}, x_{j})c_{j} \ge 0.$$

$$\mathcal{H}_K$$
 is a subspace of $C(X)$. $\mathcal{H}_K = \Pi_d(\mathbf{R}^n)$ if $K(t,x) = (1+t\cdot x)^d$.
Denote $\overline{\mathcal{H}}_K = \mathcal{H}_K + \mathbf{R}$ and for $f = f_1 + b \in \overline{\mathcal{H}}_K$, $f^* = f_1, b_f = b$.

· SVM 1-norm soft margin classifier with kernel $K : sgn(f_z)$ (Cortes-Vapnik, 1995)

$$f_{\mathbf{z}} := \arg \min_{f \in \overline{\mathcal{H}}_K} \quad \frac{1}{2} \|f^*\|_K^2 + \frac{C}{m} \sum_{i=1}^m \xi_i,$$

subj. to $y_i(f(x_i)) \ge 1 - \xi_i,$
 $\xi_i > 0, \quad i = 1, \dots, m.$

Rosenblatt (1962): perceptron $K(x,y) = x \cdot y$ $\overline{\mathcal{H}}_K = \Pi_1$ Boser-Guyon-Vapnik (1992): $K(x,y) = (1+x\cdot y)^d$ $\overline{\mathcal{H}}_K = \Pi_d$

· Expected convergence:

$$\mathcal{R}(\operatorname{sgn}(f_{\mathbf{z}})) \to \inf_{f \in \overline{\mathcal{H}}_K} \mathcal{R}(\operatorname{sgn}(f))$$
 with confidence as $m, C \to \infty$

· Negative result:

WU-Zhou: a counterexample with $K(x, y) = x \cdot y, X = [-1, 1]$

- · Positive result:
- I. Steinwart, Y. Lin, T. Zhang ... convergence holds when \mathcal{H}_K is dense, but no convergence rate estimate

Idea: reduce SVM to the empirical risk minimization (ERM) Vapnik, Evgeniou-Pontil-Poggio, Wahba, Cucker-Smale, Niyogi, ...

Define a loss function V as

$$V(y, f(x)) := |1 - yf(x)|\chi_{yf(x)<1} = (1 - yf(x))_+,$$

then

$$f_{\mathbf{z}} = \arg\min_{f \in \overline{\mathcal{H}}_K} \frac{1}{m} \sum_{i=1}^m V(y_i, f(x_i)) + \frac{1}{2C} ||f^*||_K^2.$$

· Discrepancy Principle (Morozov) in inverse problems

$$f_{y,\gamma} := \arg\min_{f \in \mathcal{H}_1} \left\{ \|\mathcal{K}f - y\|_{\mathcal{H}_2}^2 + \gamma \mathcal{S}(f) \right\},$$

where $\mathcal{K}:\mathcal{H}_1\to\mathcal{H}_2$ and $\mathcal{S}:\mathcal{H}_1\to\mathbf{R}_+$ are functionals.

Let $\mathcal{S}(f) = ||f||_{\mathcal{H}_1}^2$ and \mathcal{K} be a bounded linear map with dense range. If $\mathcal{K}f_0 = y_0$ and $||y_\delta - y_0||_{\mathcal{H}_2} \le \delta < ||y_\delta||_{\mathcal{H}_2}$, then we take $\gamma = \gamma_\delta > 0$ such that

$$\|\mathcal{K}f_{y_{\delta},\gamma_{\delta}} - y_{\delta}\|_{\mathcal{H}_2} = \delta.$$

Conclusion. 1. $f_{y_{\delta},\gamma_{\delta}} \to f_0$ as $\delta \to 0$.

2. If
$$f_0 \in \text{range}\mathcal{K}^*$$
, then $||f_{y_\delta,\gamma_\delta} - f_0||_{\mathcal{H}_1} = O(\delta^{1/2})$.

The Tikhonov regularization scheme with the loss function V:

$$\arg \min_{f \in \overline{\mathcal{H}}_K} \left\{ \int_Z V(y, f(x)) d\rho + \frac{1}{2C} \|f^*\|_K^2 \right\}
= \arg \min_{f \in \overline{\mathcal{H}}_K} \left\{ \int_X \int_Y |y - f(x)| \chi_{\{yf(x) \le \}} d\rho(y|x) d\rho_X + \frac{1}{2C} \|f^*\|_K^2 \right\}.$$

For the square loss, the scheme is similar to the scheme in inverse problems:

$$\arg \min_{f \in \mathcal{H}_K} \left\{ \int_X |f(x) - f_{\rho}(x)|^2 d\rho_X + \gamma ||f^*||_K^2 \right\}.$$

- · ERM in learning theory
- Error of f is $\mathcal{E}(f) := \int_Z V(y, f(x)) d\rho$.

Regression function f_{ρ}^{V} the function minimizing the error $\mathcal{E}(f)$

· Target function $f_{\mathcal{H}}$: approximation of f_{ρ}^{V} Let \mathcal{H} be a compact subset of C(X), and $f_{\mathcal{H}}$ minimizes the error:

$$f_{\mathcal{H}} = \arg\min_{f \in \mathcal{H}} \mathcal{E}(f)$$

- · ρ is unknown! Hence f_{ρ}^{V} and $f_{\mathcal{H}}$ cannot be found.
- \cdot Empirical target function $f_{\mathbf{z}}$

Given $\mathbf{z} := (x_i, y_i)_{i=1}^m$, $f_{\mathbf{z}}$ minimizes the empirical error in \mathcal{H} :

$$f_{\mathbf{z}} := \arg\min_{f \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} V(y_i, f(x_i)).$$

 $f_{\mathcal{H}} \approx f_{\rho}$ when \mathcal{H} is large, and $f_{\mathbf{z}} \approx f_{\mathcal{H}}$ when m is large

· Empirical target function in the RKHS

Take R > 0, and $B_R := \{ f \in \mathcal{H}_K : ||f||_K \leq R \}$. Then we choose the hypothesis space \mathcal{H} to be $\overline{I_K(B_R)}$, the closure in C(X) of the image $I_K(B_R)$ of the ball B_R under the inclusion map: $I_K : \mathcal{H}_K \subset C(X)$. The empirical target function $f_{\mathbf{z}}$:

$$f_{\mathbf{z}} = \arg\min_{f \in \overline{I_K(B_R)}} \frac{1}{m} \sum_{i=1}^m V(y_i, f(x_i)).$$

ERM: $\mathcal{E}(f_{\mathbf{z}}) \to \mathcal{E}(f_{\mathcal{H}})$ with confidence as $m \to \infty$

Theorem 1. For any function $f: X \to \mathbf{R}$,

(1) $\mathcal{E}(f) \ge \mathcal{E}(f_c)$, i.e., $f_c = f_o^V$ (Y. Lin)

(2)
$$\mathcal{R}(\operatorname{sgn}(f)) - \mathcal{R}(f_c) \le \mathcal{E}(f) - \mathcal{E}(f_c)$$
 (T. Zhang)

(3)
$$\mathcal{E}(f) - \mathcal{E}(f_c) \le \int_X |f(x) - f_c(x)| d\rho_X$$

In particular, $\mathcal{R}(\operatorname{sgn}(f_{\mathbf{z}})) - \mathcal{R}(f_c) \leq \mathcal{E}(f_{\mathbf{z}}) - \mathcal{E}(f_c)$

· Main difficulty: bounding the offset b

Lemma. For any $C > 0, m \in \mathbb{N}$ and $\mathbf{z} \in \mathbb{Z}^m$, one minimizer $f_{\mathbf{z}}$ satisfies

$$\min_{1 \le i \le m} |f_{\mathbf{z}}(x_i)| \le 1.$$

Hence $|b_{\mathbf{z}}| \le 1 + \sqrt{2\|K\|_{\infty}C}$ from $\|f_{\mathbf{z}}^*\|_K \le \sqrt{2C}$.

Theorem 2. (Wu-Zhou) Let $C > 0, m \in \mathbb{N}$, and **z** be samples independently drawn according to ρ . Then for every $\varepsilon > 0$, with confidence at least

$$1 - \frac{64(1 + \sqrt{2\|K\|_{\infty}C})}{\varepsilon} \mathcal{N}\left(\overline{I_K(B_{\sqrt{2C}})}, \frac{\varepsilon}{16}\right) \exp\left\{-\frac{m\varepsilon^2}{128(1 + \sqrt{2\|K\|_{\infty}C})^2}\right\}$$

we have

$$\mathcal{R}(sgn(f_{\mathbf{z}})) - \mathcal{R}(f_c) \leq \mathcal{E}(f_{\mathbf{z}}) - \mathcal{E}(f_c) \leq \varepsilon + \inf_{f \in \overline{\mathcal{H}}_K} \left\{ \mathcal{E}(f) - \mathcal{E}(f_c) + \frac{1}{2C} \|f^*\|_K^2 \right\}$$
$$\leq \varepsilon + \inf_{f \in \overline{\mathcal{H}}_K} \left\{ \|f - f_c\|_{L_{\rho_X}^1} + \frac{1}{2C} \|f^*\|_K^2 \right\}.$$

A K-functional represents the last term:

$$K(f_c, \gamma) := \inf_{f \in \overline{\mathcal{H}}_K} \left\{ \|f - f_c\|_{L^1_{\rho_X}} + \gamma \|f^*\|_K^2 \right\}.$$

covering number $\mathcal{N}(\overline{I_K(B_R)}, \eta)$: the minimal integer $\ell \in \mathbb{N}$ such that there exist ℓ disks with radius η covering the set $\overline{I_K(B_R)}$ in C(X).

· Corollaries

Corollary 1. Let ρ be an arbitrary Borel probability measure on $X \times Y$. Then for any $\varepsilon > 0$, $\eta > 0$, we can find $d_0 \in \mathbb{N}$ such that for every $d \geq d_0$ there exist $C_d > 0$ and $m_d \in \mathbb{N}$ satisfying

$$Prob_{\mathbf{z}\in Z^m}\{\mathcal{R}(sgn(f_{\mathbf{z}})) - \mathcal{R}(f_c) \leq \varepsilon\} \geq 1 - \eta, \quad \forall m \geq m_d,$$

where $f_{\mathbf{z}}$ is defined with $K_d(x,y) = (1 + x \cdot y)^d$ and $C = C_d$.

Corollary 2. If f_c lies in the closure of $\overline{\mathcal{H}}_K$ in $L^1_{\rho_X}$, then for every $\varepsilon > 0$ there is some $C_0 > 0$ such that for each $C > C_0$ there holds

$$\lim_{m\to\infty} \operatorname{Prob}_{\mathbf{z}\in Z^m} \left\{ \mathcal{R}(\operatorname{sgn}(f_{\mathbf{z}})) - \mathcal{R}(f_c) \leq \mathcal{E}(f_{\mathbf{z}}) - \mathcal{E}(f_c) \leq \varepsilon \right\} = 1.$$

Example 1. Let K be a Mercer kernel on X = [0, 1]:

$$K(x,y) = \sum_{j \in J} a_j (x \cdot y)^j,$$

where J is a subset of \mathbb{N} , $a_j > 0$ for each $j \in J$, and $\sum_{j \in J} a_j < \infty$. Then K is not universal in the sense that \mathcal{H}_K is not dense in C(X). But if $\sum_{j \in J} \frac{1}{j} = \infty$, then $\overline{\mathcal{H}}_K$ is dense in C(X). Hence for an arbitrary Borel probability measure ρ on $X \times Y$, and any $\varepsilon > 0$, $\eta > 0$, there exist C > 0 and $m_0 \in \mathbb{N}$ satisfying

$$Prob_{\mathbf{z}\in Z^m}\{\mathcal{R}(sgn(f_{\mathbf{z}})) - \mathcal{R}(f_c) \leq \varepsilon\} \geq 1 - \eta, \quad \forall m \geq m_0.$$

• The separable case: reducing ε^2 to ε

Definition. The probability distribution ρ is **strictly separable** with margin $\gamma > 0$ by $\overline{\mathcal{H}}_K$ if there is a function $f_p = f_p^* + b_p \in \overline{\mathcal{H}}_K$ such that

$$||f_p^*||_K = 1$$
, and $yf_p(x) \ge \gamma$ almost everywhere.

Then
$$V(y, \frac{1}{\gamma}f_p(x)) = 0$$
, hence $\mathcal{E}(f_c) \leq \mathcal{E}(\frac{1}{\gamma}f_p) = 0$, and $\mathcal{R}(f_c) = 0$.

Theorem 3. Let $C > 0, m \in \mathbb{N}$. If ρ is strictly separable with margin $\gamma > 0$ by $\overline{\mathcal{H}}_K$, then for every $\varepsilon > 0$, with confidence at least

$$1 - \frac{32(1 + \sqrt{\|K\|_{\infty}/\gamma})}{\varepsilon} \mathcal{N}\left(\overline{I_K(B_{1/\gamma})}, \frac{\varepsilon}{16}\right) \exp\left\{-\frac{m\varepsilon}{172(1 + \sqrt{\|K\|_{\infty}/\gamma})}\right\}$$

we have

$$\mathcal{R}(sgn(f_{\mathbf{z}})) \leq \mathcal{E}(f_{\mathbf{z}}) \leq \varepsilon + \frac{1}{\gamma C}.$$

One may take $C = \infty$ in the separable case

Proof follows the idea of Cucker-Smale (Theorem C*), Barron, Lee-Bartlett-Williamson for square loss with convex hypothesis space

Example 2. (Gaussian kernel in the separable case)

$$K(x,y) = \exp\{-\frac{|x-y|^2}{\sigma^2}\}, \qquad x,y \in X = [0,1]^n.$$

If ρ is strictly separable with margin $\gamma > 0$, then for any $\delta > 0$, with confidence at least $1 - \delta$, we have

$$\mathcal{R}(sgn(f_{\mathbf{z}})) = O\left(\frac{(\log m)^{n+1}}{m\gamma} + \frac{\delta}{\gamma}(\log \frac{1}{\delta})^{n+1}\right).$$

· Gaussian kernel example (in the general case)

Example 3. Let $X = [0,1]^n$, $\sigma > 0$, n/2 > s > 0 and K be the Gaussian kernel $K(x,y) = \exp\{-\frac{|x-y|^2}{\sigma^2}\}$. Assume $\frac{d\rho_X(x)}{dx} \le C_0$ for almost every $x \in X$. If f_c is the restriction of some function $\tilde{f}_c \in H^s(\mathbf{R}^n)$ onto X, then for every $\varepsilon > 0$ and $C \ge \exp\{180n^2/\sigma^2 + 22n + 6\}/512$, we have

$$Prob_{\mathbf{z} \in Z^{m}} \left\{ \mathcal{E}(f_{\mathbf{z}}) - \mathcal{E}(f_{c}) \le c_{s,n} (1 + C_{0}) (\log C)^{-s/4} \right\}$$
$$\ge 1 - c_{s,n} C \exp \left\{ (\log C)^{n+1} - \frac{m}{C(\log C)^{s/2}} \right\},$$

where $c_{s,n}$ is a constant depending on s and n.

Two tools: Approximation error and covering number f_c is not continuous in general, and $\int_X |f(x)-f_c(x)| d\rho_X \leq \|f-f_c\|_{L^2_{\rho_X}}$

· Approximation Error: Poggio-Girosi, Smale-Zhou, ...

Example 4. Let $\sigma > 0$ and $K(x,y) = \exp\{-\frac{|x-y|^2}{\sigma^2}\}, \quad x,y \in X = [0,1]^n$. If $f_{\rho} \in H^s(\mathbf{R}^n)$, then

$$I(f_{\rho}, R) := \|f_{\rho} - f_{\mathcal{H}}\|_{2} = \inf_{\|f\|_{\mathcal{H}_{K}} \le R} \|f_{\rho} - f\|_{2} \le C_{n,s,\sigma} \|f_{\rho}\|_{s,2} \left(\frac{1}{\log R}\right)^{s/4}.$$

Conversely, if $I(f_{\rho}, R) = O(R^{-\epsilon})$ for some $\epsilon > 0$, then $f_{\rho} \in C^{\infty}$.

· Covering number for the Gaussian kernel: (Zhou 2002, 2003)

$$C\left(\log \frac{R}{\eta}\right)^{n/2} \le \log \mathcal{N}\left(\overline{I_K(B_R)}, \eta\right) \le C'\left(\log \frac{R}{\eta}\right)^{n+1}$$

· Uniform stability: Bousquet-Elisseeff (2002)

The 1-norm soft margin classifier is not uniformly stable, because of the offset.

- · q-norm soft margin classifier (Chen-Wu-Ying-Zhou)
- · Support vector machine regression with ϵ -insensitive norm loss function:

converges to the medium function

- · Clustering algorithms
- · Learning from subspaces (Smale-Zhou)

$$f_{\mathbf{z},\gamma} := \arg\min_{f \in \mathcal{H}_{K,\overline{t}}} \left\{ \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2 + \gamma ||f||_K^2 \right\},$$

where for a discrete subset $\overline{t} = \{t_j\}_{j=1}^d$, $\mathcal{H}_{K,\overline{t}} = \operatorname{span}\{K_{t_j}\}_{j=1}^d$.

Then $f_{\mathbf{z},\gamma} = \sum_{j=1}^{d} c_j K_{t_j}$ with $\{c_j\}_{j=1}^{d}$ satisfying

$$[K_{\overline{t},\overline{x}}K_{\overline{x},\overline{t}} + m\gamma K_{\overline{t},\overline{t}}] [c_j]_{j=1}^d = K_{\overline{t},\overline{x}}[y_i]_{i=1}^m.$$

The coefficient matrix has size $d \times d$, while the matrix $K_{\overline{x},\overline{x}} + m\gamma I$ has size $m \times m$.

For the general loss function, the scheme is

$$f_{\mathbf{z},\gamma} := \arg\min_{f \in \mathcal{H}_{K,\overline{t}}} \left\{ \frac{1}{m} \sum_{i=1}^{m} V(y_i, f(x_i)) + \gamma ||f||_K^2 \right\}.$$

· Linear programming SVM: Niyogi-Girosi (1996), Wu, ...