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- Classification algorithm
(X,d) is a compact metric space (can be a subset of R")
A (binary) classifier is a function f: X — {1,—1} =Y.

It assigns a label (makes a decision) for each input (vector) z € X:

f@)=1 (YES) or f(z)=-1 (NO)

p: (unknown) prob. measure on Z := X XY, px marg. distrib.

p(y|x) the conditional probability measure at x for a given input x:

{ P(y =1|z) is the probability for the output to be 1 (YES)
P(Y = —1Jx) is the probability for the output to be —1 (NO)

Best classifier (Bayes rule) f,:

if P(y = 1lz) > P(

1 = —1x)
felz) = { —1, if P(y =1|z) < P(

Y
Y =—1|z)

- Misclassification error R(f) :

Prob{Y £ [(X)} = fy P(Y £ /(&) |)dpx
Then R(f) > R(f.) forany f: X — Y.

Purpose: find a good approximation f, of f. from training data

z = (z;,y;)™, C Z™, a set of samples drawn according to p

- Convergence (a good classification algorithm f,):
R(fz) = R(f.) with confidence as m — oo

or when f, is found from a function space (not dense) H:

R(fz) — }thR(f) with confidence as m — oo
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- Support Vector Machine (SVM) Classification

Let (H, | - ||») be a space of continuous functions

SVM 1-norm soft margin classifier is sgn(f; + b,) defined by

(fasba) =g min S| IR+ 5 6
subj. to  yi(f*(x:) +0) > 1 =&,
£>0, i=1,...,m.

The most important SVM classification algorithm: H = Hg

- Mercer kernel
K: XxX — R continuous, symmetric, and positive semidefinite:

(K (z4,25)); j—, is positive semidefinite for any £ € N, (z;)i_, C X

Examples of Mercer kernels on X C R"
Vapnik:  K(z,y) = (x-y)? or (1 + - y)?
Gaussian K (x,y) = k(x —y) = e*‘z;—g‘z
RBF:  K(z,y) = [;* e ?#=¥*dB(p)  with a Borel measure /3

Spline kernels

- Reproducing Kernel Hilbert Space Hx
closure of the span of the set of functions {K,; := K(¢,-) : t € X} with
the inner product < , >, satisfying < K,, K, >3, = K(z,y) and

< Zcini’ ZCZKZ'@ >HK: || ZCZK-THH'?{K = ZCZK(xZ’x])C] Z 0
i i i 2

H e is a subspace of C'(X). Hxg = y(R") if K(t,2) = (1+t-2)%
Denote Hxg = Hx + R and for f = f +b € Hy, f* = f1,by = .



- SVM 1-norm soft margin classifier with kernel K : sgn(f,)
(Cortes-Vapnik, 1995)

[z := arg min %||f*||%(+%2ﬁ1fz;
feEHK
subj. to y;(f(z;)) >1-¢,
& 20, i=1,...,m.

Rosenblatt (1962): perceptron K(z,y) =xz-y Hi =1L
Boser-Guyon-Vapnik (1992): K(z,y) = (1+z-y)¢ Hg =1,

- Expected convergence:

R(sgn(fz)) — inf R(sgn(f)) with confidence as m,C — oo
ferk

- Negative result:
WU-Zhou: a counterexample with K(z,y) =z -y, X =[-1,1]

- Positive result:

I. Steinwart, Y. Lin, T. Zhang ...  convergence holds when Hy is
dense, but no convergence rate estimate

Idea: reduce SVM to the empirical risk minimization (ERM)
Vapnik, Evgeniou-Pontil-Poggio, Wahba, Cucker-Smale, Niyogi, ...

Define a loss function V as

V(y, f(2)) =1 = yf@)[xysm<1 = (1 = yf(2))4,

then L m 1
fz = arg min — ZV(yi, flxi)) + %Hf*H?(

feHk M5



- Discrepancy Principle (Morozov) in inverse problems

e += axg min{ IICS = yll3, +7S(5)
where K : Hy — Hs and S : H; — R are functionals.

Let S(f) = || f|l3, and K be a bounded linear map with dense range.
If Kfo =yo and [|ys — yolln, < 0 < ||ys||2,, then we take v = 5 > 0 such
that

H’nyaﬂa - y5||7i2 =9.

Conclusion. 1. f,, ,, — foas 0 — 0.
2. If fy € rangeK*, then || f,, », — follz, = O(6'/?).

The Tikhonov regularization scheme with the loss function V:
argmin g, {2V (0 7 @)dp+ 3515713}
= argmin ez, { Iy f 1o = £@) Xturre)dp(ula)dpx + 551171l )

For the square loss, the scheme is similar to the scheme in inverse

problems:

arg uin { [ 17(2) = fy(o) Pdox + 111"}



- ERM in learning theory
- Error of fis E(f) := [, V(y, f(x))dp.
Regression function f)" the function minimizing the error £(f)

- Target function fy: approximation of f)

Let H be a compact subset of C'(X), and fz minimizes the error:
fu = argmin&(f)

- p is unknown! Hence f)" and fy cannot be found.
- Empirical target function f,

Given z := (x;,y;)™,, f, minimizes the empirical error in H:
f -3V (g S ()
L= a in — ().
gy D V(e S
fu =~ f, when H is large, and f, =~ fy when m is large

- Empirical target function in the RKHS

Take R > 0, and Br := {f € Hgk : ||f||lx < R}. Then we choose
the hypothesis space H to be Ix(Bg), the closure in C'(X) of the image
I (Bg) of the ball Bg under the inclusion map: I : Hx C C(X). The

empirical target function f,:

fomarg min -3 V(g f():

felxg(Br) M ;5

ERM: &(f.) — E(fw) with confidence as m — oo



Theorem 1. For any function f: X — R,
(1) E(f) z&(fo), e, fe=f,  (Y.Lin)
(2)  Rlsgn(f)) —R(fe) <E(f) —&(fe)  (T. Zhang)
(3)  E(f)—&(f) < Ix |f(x) = fe()|dpx
In particular,  R(sgn(fz)) — R(fe) < E(f2) — E(fe)

- Main difficulty: bounding the offset b

E(f
)

Lemma. For any C' > 0,m € N and z € Z™, one minimizer f, satisfies

min [ fa(w:)] < 1.

Hence |b,] <1+ /2||K||C from ||f||x < V2C.

Theorem 2. (Wu-Zhou) Let C > 0,m € N, and z be samples inde-
pendently drawn according to p. Then for every ¢ > 0, with confidence
at least

641+ 2IKC) )
- e NOK(B@)’ 16_6) exp{_ 128(1 + \m/28||K||Ooc)2}

we have

Risgn(f)) ~ R(F) < E(f) ~ E(F) < e+ intrem, {607 — £(1) + IS 1)
<e+inf ez, {1 = Flloy, + 2051

A K-functional represents the last term:

K(fon) = inf {If = Fllag, + 215 W

covering number N (Ix(Bg),n): the minimal integer £ € N such that
there exist ¢ disks with radius 1 covering the set I (Bg) in C(X).
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- Corollaries

Corollary 1. Let p be an arbitrary Borel probability measure on X XY .
Then for any € > 0,1 > 0, we can find dy € N such that for every d > dy
there exist Cy > 0 and mg € N satisfying

Prob,eczm{R(sgu(fz)) — R(f.) <e}>1—n, YV om > my,
where f, is defined with Kq(z,y) = (1 +z-y)¢ and C = Cj.

Corollary 2. If f. lies in the closure of Hy in L})X, then for every ¢ > 0
there is some Cy > 0 such that for each C' > C)y there holds

lim_Probyezn {R(sgn(f,)) - R(fo) < E(f,) — E(f.) S 2} = L.

Example 1. Let K be a Mercer kernel on X = [0,1]:

K(z,y) =3 a;(z-y),
jes
where J is a subset of N, a; > 0 for each j € J, and };c;a; < oo. Then
K is not universal in the sense that Hy is not dense in C(X). But if
Zjel}% = 00, then Hy is dense in C(X). Hence for an arbitrary Borel
probability measure p on X XY, and any € > 0,1 > 0, there exist C > 0
and my € N satisfying

Prob,ezm{R(sgn(f,)) — R(f.) <e} >1—n, V' m > my.



- The separable case: reducing €2 to ¢

Definition. The probability distribution p is strictly separable with
margin v > 0 by Hy if there is a function f, = [y +bp € Hx such that

Iyl =1, and yf,(x) >y almost everywhere.
Then V(y, 1 f,(x)) = 0, hence £(f.) < E(Lf,) =0, and R(f.) =0

Theorem 3. Let C' > 0,m € N. If p is strictly separable with margin
v > 0 by Hg, then for every € > 0, with confidence at least

172(1 + \/IIKlloo/v)}

Rsgn(f,) < E(fa) < = + %

we have

One may take C' = oo in the separable case
Proof follows the idea of Cucker-Smale (Theorem C*), Barron, Lee-

Bartlett-Williamson for square loss with convex hypothesis space

Example 2. (Gaussian kernel in the separable case)

lz —y|
},

K(z,y) = exp{———3

r,y € X =1[0,1]".

If p is strictly separable with margin v > 0, then for any 6 > 0, with

confidence at least 1 — 9§, we have

Risen( ) = O( LB 1 8105 ).



- Gaussian kernel example (in the general case)

Example 3. Let X =1[0,1]", 0 > 0,n/2 > s > 0 and K be the Gaussian

kernel K(x,y) = exp{—'f’:;—.ﬁ’P}. Assume d”f;—x(x) < Cy for almost every

x € X. If f, is the restriction of some function f. € H*(R™) onto X,
then for every ¢ > 0 and C' > exp{180n?/c? + 22n + 6} /512, we have

Probyczn {€(02) = £(7) < con(1+ Co)(log €)1}
>1—¢s,C exp{(log o)t — W};
where c; ,, is a constant depending on s and n.

Two tools: Approximation error and covering number

feis not continuous in general, and [ | f(z)— fo(z)|dpx < ||f—fc||LgX

- Approximation Error: Poggio-Girosi, Smale-Zhou, ...

Example 4. Let 0 > 0 and K(z,y) = exp{—'f”;—.gp}, r,y € X =
[0,1]*. If f, € H*(R™), then

1 s/4
llee(ge)

Conversely, if I(f,, R) = O(R™) for some € > 0, then f, € C*.

I(prR) ::”fp_fHHQZ ||f/)_f||2§0n,s,a

inf
I Fll2 e <R
- Covering number for the Gaussian kernel: ~ (Zhou 2002, 2003)

n/2 n+1
(0w )" < tog (T ) < € (10 )

10



- Uniform stability:  Bousquet-Elisseeff (2002)
The 1-norm soft margin classifier is not uniformly stable, because of
the offset.

- ¢-norm soft margin classifier (Chen-Wu-Ying-Zhou)

- Support vector machine regression with e-insensitive norm loss
function:

converges to the medium function
- Clustering algorithms

- Learning from subspaces (Smale-Zhou)

fu =g min {3 (1) = )* + 1

fe’HKt m =

where for a discrete subset ¢ = {t;}9_,, Hy; = span{ Ky, }J_,
Then fo, =X, ¢;K;; with {¢;}9_, satisfying

[K Kz t+m’YKtt] [ ] =1 :KE,E[yi]?ll'

The coefficient matrix has size d x d, while the matrix Kzz + m~yI[

has size m x m.

For the general loss function, the scheme is

for 1= v min {05V (0 f(0) 3111 |

- Linear programming SVM: Niyogi-Girosi (1996), Wu,
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