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1 Introduction

Let Ω be a bounded domain in Rn, n = 2, 3, with the Lipschitz boundary and connected
complement Ω+ = Rn \ Ω̄. We consider the acoustical pressure field u of frequency k
satisfying the Helmholtz equation

∆u+ k2u = 0 in Ω (or in Ω+ = Rn \ Ω). (1)

We are interested in applications where Ω is a cabin of an aircraft or a car. Solutions to
(1) in Ω+ are assumed to satisfy the Sommerfeld radiation condition

lim r
n−1

2 (∂ru− iku)(x) = 0, as r = |x| → ∞

Such functions u are called radiating solutions. Pressure measurements are taken by
acoustical sensors located in a domain Ω0 inside or outside the cabin or on a surface Γ0 =
∂Ω0 . Our goal is to reconstruct u inside Ω, or the normal velocity v = ∂νu on Γ = ∂Ω,
(ν is the unit exterior normal to ∂Ω). This is a mathematical model of the nearfield
acoustic holography [W], [Wu].

H(m)(Ω) denotes the Sobolev space of functions on Ω whose partial derivatives up
to order m are square integrable over Ω, and ‖ ‖(m) denotes the standard norm on this
space. We set ‖ ‖2 = ‖ ‖(0) to be the norm in the space L2(Ω).

2 Uniqueness and stability for the inverse problem

In this section we discuss uniqueness and stability of the continuation of solutions to (1).
We denote by Ω0 a Lipschitz domain with the closure Ω̄0 in Ω for the interior problem
and in Ω+ for the exterior one.
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Lemma 2.1 Let k2 be distinct from a Dirichlet eigenvalue of Ω0. If Γ0 = ∂Ω0, then
u ∈ H(1)(Ω) solving (1) is uniquely determined by its values on Γ0.

To prove uniqueness, we assume that u = 0 on Γ0 and we have to conclude that u = 0
in Ω. Since k2 is not a Dirichlet eigenvalue, a solution to the Dirichlet problem in Ω0

is unique, so u = 0 in Ω0. From uniqueness of the continuation from Ω0 onto Ω, we
conclude that u = 0 in Ω.

For the exterior problem uniqueness also holds when Ω̄ ⊂ Ω0. Indeed, since a solution
of the (exterior) Dirichlet problem with the data on ∂Ω0 is unique, then u = 0 on Γ0

implies that u = 0 outside Ω0 and hence, by uniqueness of the continuation, in Ω+.
Nonuniqueness caused by the Dirichlet eigenvalues of Ω0 cannot be avoided, but we

can modify the eigenvalues by changing the measurement surface Γ0. If k2 is away from
them, the Dirichlet problem in Ω0 is stable in classical Sobolev (or Hölder) spaces. The
problem of the continuation of solutions of elliptic equtions (from Ω0 onto Ω) is noto-
riously unstable; however, assuming that ‖u‖2(Ω) < M0, one can control exponentially
growing solutions and obtain the following conditional Hölder estimate

‖u‖(k)(Ω1) ≤ CM1−λ‖u‖λ
2(Ω0),

where C and λ (0 < λ < 1) depend on Ω,Ω0, k, and on the distance from Ω1 ⊂ Ω to ∂Ω.
We now present a stability estimate for a special case when the domains in question

are spheres in R3: Ω = {|x| < r1} and Ω0 = {|x| < r0}. A solution u to the Helmholtz
equation (1) in Ω admits the expansion u(x) =

∑

um,njn(kr)Ym,n(σ), where jn is the
n-th spherical Bessel function, r = |x|, σ = x

r
, and Ym,n are the spherical harmonics on

the unit sphere. We denote by u0 the sum of the terms with n ≤ n1 =
kr2

1
−3

2
, and by u1

the sum of the remaining terms of the series.

Theorem 2.1 Let u be a solution to the Helmholtz equation (1) in the ball Ω(r1) and

‖u‖2(Ω(r1)) ≤M0, ‖∇u‖2(Ω(r1)) ≤M1.

Then
r3
0

r2
‖u‖2

2(∂Ω(r)) ≤ C1(r)ε
2
0 + C2ε

2λ
1 , r < r1

where ε2
j = ‖uj‖

2
2(∂Ω(r0)), C1(r) = max| jn(kr)

jn(kr0)
|2 over n ≤ n1, C2 = 5M2, M2 =

4M2
0 + r2

1M
2
1 , and λ = lnr1−lnr

lnr1−lnr0

. Moreover,

‖u‖2
2(∂Ω(r1)) ≤ C1(r1)ε

2
0 + C3ε2(C4 − lnε2),

where C3 = 1
r0

max(k2M2
0 ,M

2
1 )ln r1

r0

, ε2 = − 1
ln

ε1

M

, and C4 = 1 − ln
r3

0
C3

5M2 .
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This stability estimate is given in [DIVW2]. Since the number of terms included in u1

grows, one expects an increased stability with increasing frequency. Indeed, it happens
in practical computations for the nearfield acoustical holography [DIVW1], [DIVW2] for
relatively small wave numbers k. However, according to classical results of Fritz John
[J], stability of interior problems does not increase with frequency over the whole range
of k.

In the next theorem Ω∗ is an open subset of {x2
1 + ... + x2

n−1 < r2, 0 < xn < h}
with the Lipschitz boundary, Ω∗

d = Ω∗ ∩ {d < xn}, and Ω0 is an open subset of Ω∗

with ∂Ω ∩ {0 < xn} ⊂ ∂Ω) such that Γ0 \ ∂Ω∗ is at the distance d0 from ∂Ω∗. Let
F = ‖u‖(1)(Ω0) + ‖f‖(0)(Ω).

Theorem 2.2 There is a constant C not depending on d, k such that

‖u‖(Ωd) ≤ C(F +
‖u‖(1)(Ω)1−λF λ

d2−2λ(k + 1)
)

for all solutions u to the Helmholtz equation (1). Here

λ =
16r2d+ 3d2

32r2h + 8h2d+ 2d2h+ 3d2 + 24r2d
.

This bound and its implications are obtained in [HI] by using Carleman estimates for
the Helmholtz equation with constants not depending on k.

3 Representation by potentials.

In the first approach we use the single and double layer potentials

SΓϕ(x) =

∫

Γ

Φ(x, y)ϕ(y)dΓ(y),

DΓϕ(x) =

∫

Γ

∂ν(y)Φ(x, y)ϕ(y)dΓ(y), x ∈ Ω (or x ∈ Ω+),

where Φ is the free space radiating fundamental solution to (1) in Rn. We recall that

Φ(x, y) =
1

4π

eik|x−y|

|x− y|
when n = 3,

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|) when n = 2,

where H
(1)
0 is the Hankel function. We fix a ball B containing Ω.
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Theorem 3.1 For any solution u ∈ H(1)(Ω) to the Helmholtz equation (1), there is a
unique function ϕ ∈ H(− 1

2
)(Γ) such that u(x) = SΓϕ(x) for all x ∈ Ω. Moreover, for

some constant C depending only on Ω, we have

C−1‖u‖(1)(Ω) ≤ ‖ϕ‖(− 1

2
)(Γ) ≤ C‖u‖(1)(Ω).

We outline a proof of Theorem 3.1 referring for details to [DIVW2]. It is well-known,
that the single layer potential S with density in H(− 1

2
)(Γ) has the following properties:

−∆S− − k2S− = 0 in Ω, −∆S+ − k2S+ = 0 in Ω+,

S− − S+ = 0, ∂νS− − ∂νS+ = ϕ on Γ, (2)

and S+ satisfies the radiation condition at infinity. Here S− coincides with S on Ω and S+

coincides with S outside Ω. Let g ∈ H( 1

2
)(Γ) be the trace of the function u on Γ. It is well-

known, that for exterior problems there is a unique radiating solution u+ ∈ H(1)(B\Ω) to
the Helmholtz equation in Ω+ with the Dirichlet data g on Γ. In addition, the solutions
u, u+ of the interior and of the exterior Dirichlet problems in Ω with the Dirichlet data
g, have their traces ∂νu, ∂νu

+ in the Sobolev space H(− 1

2
)(Γ). Let ϕ = ∂νu− ∂νu

+ on Γ.
We claim that Theorem 3.1 holds for this ϕ.

Indeed, the functions u and Sϕ on Ω, and u+ and S+ϕ on its complement, satisfy the
same Helmholtz equations and the same transmission conditions at Γ (2), as well as the
radiation condition at infinity. A solution of this transmission problem is unique. Hence
u = Sϕ in Ω.

A similar result holds for exterior problems, provided that k2 is not a Dirichlet eigen-
value of Ω.

Theorem 3.2 Let k2 be distinct from a Dirichlet eigenvalue of Ω. For any radiating
solution u ∈ H(1)(B \ Ω) to the Helmholtz equation (1), there is a unique function ϕ in
H(− 1

2
)(Γ) such that u(x) = SΓϕ(x) for x ∈ Ω+. Moreover, for some constant C depending

only on Ω, we have

C−1‖u‖(1)(B \ Ω) ≤ ‖ϕ‖(− 1

2
)(Γ) ≤ C‖u‖(1)(B \ Ω).

Now our problem is reduced to solving the linear integral equation

∫

Γ

Φ(x, y)ϕ(y)dΓ(y) = u(x), x ∈ Γ0. (3)

After determining ϕ in the interior problem, one can find the normal velocity from the
formula

v(x) =
1

2
ϕ(x) +

∫

Γ

∇xΦ(x, y) · ν(x)ϕ(y)dΓ(y), x ∈ Γ. (4)
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Lemma 3.1 If u ∈ H(1)(Ω) is a solution to (1), then there exist unique functions
ϕj ∈ H( 1

2
−j)(Γ), (j = 0, 1), such that

u(x) = SΓϕ1(x) −DΓϕ0(x), x ∈ Ω,

1

2
ϕ0(z) = SΓϕ1(z) −DΓϕ0(z), z ∈ Γ.

Lemma 3.2 Let u ∈ H(1)(B \ Ω) (for any B) be a solution to (1) in Ω+. There exist
functions ϕj ∈ H( 1

2
−j)(Γ), (j = 0, 1), such that

u(x) = −SΓϕ1(x) +DΓϕ0(x), x ∈ Ω+,

1

2
ϕ0(z) = −SΓϕ1(z) +DΓϕ0(z), z ∈ Γ.

The function ϕ0 is unique. If k2 is not a Dirichlet eigenvalue of Ω, then ϕ1 is unique.

Now we can write the Helmholtz-Kirchhoff system of integral equations for the interior
inverse problem

u(x) = SΓϕ1(x) −DΓϕ0(x), x ∈ Γ0 ⊂ Ω, (5)

1

2
ϕ0(z) = SΓϕ1(z) −DΓϕ0(z), z ∈ Γ, (6)

and for the exterior problem

u(x) = −SΓϕ1(x) +DΓϕ0(x), x ∈ Γ0 ⊂ Ω+, (7)

1

2
ϕ0(z) = −SΓϕ1(z) +DΓϕ0(z), z ∈ Γ. (8)

Finally, we discuss uniqueness for integral equations (3), (5)-(8).

Lemma 3.3 (Interior problem)
If k2 is not a Dirichlet eigenvalue of Ω0, then under the conditions of Lemma 3.1, a
solution ϕ ∈ H(− 1

2
)(Γ) to the equation (3) is unique, and a solution (ϕ0, ϕ1) ∈ H( 1

2
)(Γ)×

H(− 1

2
)(Γ) to the Helmholtz-Kirchhoff system (5), (6) is unique.

This follows directly from Theorem 3.1, Lemma 2.1 and Lemma 3.1.

Lemma 3.4 (Exterior problem)
If k2 is not a Dirichlet eigenvalue of Ω0, then under the conditions of Lemma 3.2 on Γ0

a solution ϕ ∈ H( 1

2
)(Γ) to the equation (3) is unique and a solution (ϕ0, ϕ1) ∈ H( 1

2
) ×

H(− 1

2
)(Γ) to the Helmholtz-Kirchhoff system (7),(8) is unique.

This follows directly from Theorem 3.2, Lemma 2.2 and Lemma 3.2.
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4 Approximation and completeness results

Now we discuss approximation of general solutions u by simple solutions. Our goal is to
interpolate our data on Γ0 for further solution of integral equations. This can be crucial
for larger k. More importantly, we justify the very efficient HELS method of Sean Wu,
see [IW], [Wu].

Theorem 4.1 Let Ω be a bounded Lipschitz domain in Rn, and let u ∈ H(1)(B \ Ω) be
a radiating solution to the Helmholtz equation ∆u+ k2u = 0 in Ω+. For any a ∈ Ω and
any positive ε, there is a radiating solution uε to the Helmholtz equation outside a such
that

‖u− uε‖(1)(Ω+ ∩B) < ε.

This result follows from the Runge property and basic theorems about Soblev spaces.
In some applications in R3, it is very helpful to use the special family of radiating

solutions to the Helmholtz equation qiven by

el,m(x) = h
(1)
l (kr)Yl,m(σ),

where h
(1)
l is the spherical Hankel function of the first kind and Yl,m are spherical harmon-

ics orthonormal in L2(S2) on the unit sphere S2. We set out to approximate solutions u
to the Helmholtz equation by linear combinations of the form

ue(x) =
∑

ul,mel,m(x), m = 0, ..., 2n+ 1, l = 0, ..., N. (9)

The following lemma demonstrates that such approximation is indeed possible.

Lemma 4.1 Let 0 ∈ Ω and u ∈ H(1)(B \ Ω) be a radiating solution to the Helmholtz
equation. For any positive ε there is ue of the form (9) such that

‖u− ue‖(1)(B \ Ω) < ε. (10)

This follows from Theorem 4.1 by expanding uε into the series in el,m and approximating
by partial sums of this series.

A similar result is valid for interior problems, if one replaces the functions el,m by the
functions El,m(x) = jl(kr)Yl,m(σ).

We now discuss how to use these results to approximate u by ue. Let Ω∗ be a
subdomain of B \ Ω. Setting ε = 1 in (10), we conclude that for ε < 1 there exist
approximating functions ue such that

‖ue‖(1)(Ω∗) ≤M1 = ‖u‖(1)(B \ Ω̄) + 1. (11)

A weaker version of this constraint is

‖ue‖(0)(Ω∗) < M0 ≤ M1. (12)
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Since the data are given on Ω0, one can try to approximate u by ue by solving the
minimization problem

min ‖u− ue‖(1)(Ω0) (13)

subject to the constraint (11) or the weaker constraint (12). Solving this problem for
sufficiently large N = N(δ), one finds ue(; δ) such that

‖u− ue(; δ)‖(1)(Ω0) < δ,

and that the constraint (12) holds.
In the following lemma, we denote by Ω∗,d the collection of points of Ω∗ which are at

distance d from Ω.

Lemma 4.2 Let Ω0 be a bounded domain and Ω̄0 ⊂ Ω+.
Then there are positive constants C and λ < 1 depending on Γ,Ω∗, d and k, such that

‖u− ue‖(0)(Ω∗,d) ≤ C
(

δ + ‖u‖(1)(B \ Ω)1−λδλ
)

.

In addition, if Ω∗ ⊂ conv(Ω0), the convex hull of Ω0, then there are constants C and
λ < 1 depending on Γ, Ω∗ and d, such that

‖u− ue‖(1)(Ω∗,d) ≤ C

(

δ +
‖u‖(1)(B \ Ω)1−λδλ

1 + k

)

.

This lemma follows from known stability estimates in the Cauchy problem for elliptic
equations [I] and from Theorem 2.2.

5 Numerical results.

We give two examples of numerical calculations illustrating our theoretical results. In
Example 1, we illustrate the effectiveness of the single layer approach combined with the
CGNE (Conjugate Gradient for Normal Equations) stopping rule on a three dimensional
problem using actual experimental data taken on Ω, the interior of a cylindrical aircraft
fuselage section. In Example 2, we compare the single layer approach with the HELS
method in two dimension for a problem on the exterior of a disk where data are taken
and recovered locally on arcs.

We solve the discretized equation (3) for a range of wave numbers k. Recall that
k = ω/c, where ω denotes the frequency and c is the speed of sound. In the case of the
interior aircraft and the range of interest of k is 0.06π < k < 3π.
Example 1. This example uses data taken on a cylindrical test section (Γ) from a Cessna
business jet at the U. S. Naval Research Laboratory. A 64 × 32 array of microphone
measurements is taken on a concentric cylindrical surface (Γ0) in the nearfield. The
(exact) velocity on Γ was also measured. The pressure data is Fourier analyzed into over
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1000 frequencies. We only analyze two frequencies, 98.9MHz in Figure 1 and 164.8MHz
in Figure 2 corresponding to k ≈ 1.8/m and k ≈ 3.0/m, respectively. We use single layer
alone, to demonstrate the effectiveness of the combination of our new stopping rule with
the single layer representation to reconstruct the velocity on the fuselage.

The upper left hand frame in Figures 1 and 2 displays the exact velocity. The x-
axis of the plot is parallel to the center axis of the cylinder and the y-axis is parallel
to the circumference. The upper right hand plot is the stopping rule ψi (solid line)
with the minimum circled. Often a local minimum gives a good choice for the optimal
solution. The dashed line is the norm of the difference between successive iterates i of
the density ||ϕi+1 −ϕi||. When these successive variations have settled down, it provides
an indication that the optimal regularized solution has been reached. It is useful, in
practice, to have more than one method to choose the regularization parameter.) The
remaining four frames in the Figures display the reconstructed velocity at the indicated
CGNE iterates. The optimal solution is displayed. Note that it captures many of the
features of the exact velocity. The early iterates are overregularized (oversmoothed) and
the latter iterates become underregularized (undersmoothed) and exhibit the effects of
amplified measurement errors. The matrices S and K are 1282×1282 and it takes about
2 seconds per CGNE iteration to produce the velocity plots. One can therefore easily
watch the successive iterates “tune”to the optimal solution. The BEM construction of
the matrices S and K. The SVD of the full matrix S for the TSVD take about 20 minutes
each on a 950 MHz PC.

We note that only about every second NRL circumferential data point was used in
our computations (hence, the different scales on the y-axes of the displays), so that our
higher frequency calculation may be somewhat underresolved. In addition, the endcap
data may have been slightly missaligned. Nevertheless, the reconstructions are quite
reasonable. The bright “hotspots” are at the window locations. We plan more extensive
tests on laboratory data in the future.
Example 2. In this example we describe our numerical experiments devoted to the
reconstruction of the normal velocity along a curve from the acoustical pressure in two
dimensions. We consider three concentric arcs Γ, Γ01 and Γ02 defined as follows:

Γ = {x : ‖x‖ = r0, θ1 < arg(x) < θ2}, (14)

Γ01 = {x : ‖x‖ = r1, φ1 < arg(x) < φ2}, Γ02 = {x : ‖x‖ = r2, φ1 < arg(x) < φ2}. (15)

We attempt to recover the outward normal velocity v = ∂νu on arc Γ from the acoustic
pressure measurements u on arcs Γ01 and Γ02. We employ two methods: one based on
a single layer representation of the potential, and the HELS method proposed by Sean
Wu, see [Wu].

The charge density ϕ is computed from the pressures u(x) on arcs Γ01 and Γ02, and
then the normal velocity on arc Γ is found from the formula (4). The operator K used
above is defined as the second term in (4).
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Figure 1: Iterative reconstruction for the cylindrical test sec-
tion at the US Naval Research Laboratory: lower frequency.

We perturb the exact pressures u by adding noise of the relative intensity δ > 0.
Our simulated measurements are thus uδ = u + ξ, where ξ is a random vector with
‖ξ‖2 = δ‖u‖2. The system Snϕ = uδ is solved using the Conjugate Gradient on the
Normal Equations (CGNE). For each m = 1, 2, . . ., we obtain a regularized charge density
ϕm. Then we create a sequence of approximate normal velocities vN = KNϕN . We choose
the iteration number m0 to minimize the relative L2 error of the normal velocities

errm =
‖v − vm‖2

‖v‖2

.

We denote the minimal error by err0:

err0 = min
m

errm. (16)

Experiment 1. We first consider arcs Γ01 and Γ02, respectively, described by equations
(15) with parameters φ1 = 7π

8
, φ2 = 9π

8
, r1 = 1.05, and r2 = 1.10. Arc Γ is given

by (14) with parameters r = 1, θ1 = 7π
8

, θ1 = 9π
8

. We place acoustic charges with
strengthsw1, w2, ..., wp at the points x1, x2, ..., xp, and thus the resulting pressure u is
given by

u(x) =

p
∑

i=1

wi Φ(x, xi).
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Meas. vel. at freq = 164.7945 Hz, ihol = 270
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Figure 2: Iterative reconstruction for the cylindrical test sec-
tion at the US Naval Research Laboratory: higher frequency.

We use p = 5 charges with strengths and locations given in Table 1. The pressures are
perturbed with noise of the relative intensity δ = 0.01.

Table 2 presents the minimal relative errors of the normal velocities vm as defined
in (16) for wave numbers k = 1, 3, 6, 12. The second column of the table contains err1

0
,

the minimal error corresponding to the wave numbers in the first column when φ1 = 7π
8

,
φ2 = 9π

8
. The last column contains the relative error err2

0
when φ1 = 3π

4
, φ2 = 5π

4
. Each

relative error err1
0

and err2
0

is the average over 20 trials.

Experiment 2. We solve the same problems using the HELS method. We approximate
the potential with n = 15 radial wave functions centered at the origin. The normal
velocities are approximated by formally differentiating the basis functions. The relative

1.0 (-0.73910, 0.30615)
4.0 (-0.78463, 0.15607)
5.0 (-0.80000, 0.00000)
2.0 (-0.78463, -0.15607)
3.0 (-0.73910, -0.30615)

Table 1: The strengths and locations of the acoustic charges.
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k err1
0

err2
0

1.0 0.084 0.026
3.0 0.065 0.011
6.0 0.036 0.011

12.0 0.029 0.004

Table 2: Relative errors of the normal velocities for the single layer method.

k err1
0

err2
0

1.0 0.024 0.017
3.0 0.011 0.014
6.0 0.010 0.005

12.0 0.025 0.008

Table 3: Relative errors of the normal velocities for the HELS method.

errors are presented in Table 3. As before, the errors are averged over 20 trials.
We observe immediately that for the layer method, the reconstruction of the normal

velocities improves as the wave number k increases. When the HELS method is used,
the relative errors are very close to the noise level for all wave numbers considered, so
increased stability is visible to a limited extent. In both cases err1

0
> err2

0
, which only

shows that a better reconstruction is possible with more measurement data.
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