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Forward problems and distributed parameter
estimation - outline

• The forward problem (a discretized diffusive PDE system)

• The regularized inverse problem
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Forward problem partial differential equation (PDE)

DC resistivity/ EIT/ Hydrology

∇ · (σ∇u) = q

Electromagnetic prospecting

∇× (µ−1∇× E)− ıω σE = ıωs

σ=0

σ>0

(air)

(ground)

(air-earth interface)Γ 

Ω1

2Ω

4



Forward problem partial differential equation (PDE)

Write PDE + BC as

A(m)u = q

where

σ(x)= em(x)> 0, x ∈ Ω.

σ=0

σ>0

(air)

(ground)

(air-earth interface)Γ 

Ω1

2Ω
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Forward problem

Discretize PDE on a grid:

A(m)u = q

A nonsingular, u, q vectors (grid
functions).
Consider a tensor grid, not
necessarily uniform:
e.g. assume the material
properties to be constant in each
cell. ⇒ m

h

h

2Ω

Ω1
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The regularized inverse problem

Goal: Recover m given the measured data b subject to A(m)u− q = 0

But

• There is no unique solution to the inverse problem

• Solutions are very sensitive to noise

Must add information and isolate noise effects
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The regularized inverse problem

Goal: Recover m given the measured data b subject to A(m)u− q = 0

From all the possible models choose the one closest to our a priori
information.

min φ =
1
2
‖Qu− b‖2 + βR(m)

subject to A(m)u− q = 0

Where Q projects to data locations and R(m) is a regularization term
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The regularization term

R(m) =
[∫

Ω

ρ(|∇m|) + α(m−mref)
]
h

• Least squares

ρ(τ) =
1
2
τ2,

R′(m) ← ∇ · ∇m
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• Weighted least squares

R′(m) ← ∇ · a∇m

• Total variation

ρ(τ) = τ,

R′(m) ← ∇ · (
∇m
|∇m|)
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• Huber

ρ(τ) =

{
τ, τ ≥ γ,
τ2/(2γ) + γ/2, τ < γ

R′(m) ← ∇ ·
(

min{1
γ
,

1
|∇m|}∇m

)
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Solving the optimization problem - outline

• Unconstrained approach

• Constrained approach – reduced Hessian

• Balancing iteration accuracies

• Multigrid and preconditioned Krylov methods
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Unconstrained approach

Common approach

[e.g. Tikhonov 1968, Parker 1973, Chan & Golub 1999, Vogel 2000] :

eliminate the constraints

u = A(m)−1q

and obtain a large (dense) unconstrained minimization problem

min φ(m) =
1
2
‖QA(m)−1q − b‖2 + βR(m)
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Unconstrained approach

min φ(m) =
1
2
‖QA(m)−1q − b‖2 + βR(m)

Newton and Gauss-Newton methods are well-known. Iterations
involve positive definite linear systems of the form

(JTJ + βR′′) δm = −p

Conventional wisdom: it is good to have an unconstrained minimization
problem

But in the large, sparse context the superiority of this approach may be
challenged.

16



Constrained approach
Introducing the Lagrangian

Lu,m,λ =
1
2
||Qu− b||2 + βR(m) + λT (A(m)u− q)

λ - Vector of Lagrange multipliers,

Need to find an extremum (saddle) point of the Lagrangian. i.e. solve
large system of nonlinear equations

Lλ = Au− q = 0,

Lu = QT (Qu− b) +ATλ = 0,

Lm = βR′(m) +GTλ = 0; G =
∂A(m)u
∂m
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Lλ = Au− q = 0,

Lu = QT (Qu− b) +ATλ = 0,

Lm = βR′(m) +GTλ = 0; G =
∂A(m)u
∂m

Use a variant of Newton’s method (Lagrange-Newton, SQP, Gauss-
Newton); e.g.  A 0 G

QTQ AT 0
0 GT βR′′

 δu
δλ
δm

 = −

LλLu
Lm
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Tasks at each iteration

1. Calculate the Gradients and Hessian

• Calculation of the gradients and the Hessian is cheap with linear
complexity.

2. Solve the large, sparse Hessian system

• To solve for the update direction, can

3. Update

• There are various well-known techniques for updating the iterate
(damped Newton, trust region, directly updating λ, etc.)

19



Tasks at each iteration

1. Calculate the Gradients and Hessian

• Calculation of the gradients and the Hessian is cheap with linear
complexity.

2. Solve the large, sparse Hessian system

• To solve for the update direction, can

3. Update

• There are various well-known techniques for updating the iterate
(damped Newton, trust region, directly updating λ, etc.)

20



Tasks at each iteration

1. Calculate the Gradients and Hessian

2. Solve the large, sparse Hessian system

• To solve for the update direction, can
– Eliminate δu, δλ and solve a smaller positive system for δm

(reduced Hessian approach).
– Solve the whole thing simultaneously.

3. Update
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Solving for the update direction - Reduced Hessian
approach

Eliminating δu, δλ obtain for δm

Hred δm ≡ (JTJ + βR′′) δm = −p
J = −QA−1G

J is the sensitivity matrix

To solve this use Preconditioned Conjugate Gradients, i.e. CG for

M−1(JTJ + βR′′)δm = −M−1p e.g. M = R′′

But evaluating Hredv is expensive!! The forward and adjoint
problems are solved many times to a relatively high accuracy.
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Balancing iteration accuracies

[Haber & Ascher ’01], [Ascher & Haber ’01]

• When the iterate is far from the optimal solution, it is wasteful to solve
linearized problem to a high accuracy (i.e. balance accuracies of
inner and outer iterations)

• When the iterate for the update direction is far from the solution to the
linear system, it is wasteful to eliminate some variables accurately in
terms of others (i.e. balance accuracies inside linear solver).

So
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Balancing iteration accuracies

• When the iterate is far from the optimal solution, it is wasteful to solve
linearized problem to a high accuracy (i.e. balance accuracies of
inner and outer iterations)

Use inexact Newton-type methods, where linearized problem
is not solved too accurately.
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Balancing iteration accuracies

• When the iterate for the update direction is far from the solution to the
linear system, it is wasteful to eliminate some variables accurately in
terms of others (i.e. balance accuracies inside linear solver).

Solve for correction δu, δλ, δm simultaneously.
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Solving for the update direction simultaneously
(all-at-once)

 A 0 G
QTQ AT 0

0 GT βR′′

 δu
δλ
δm

 = −

LλLu
Lm


No problem if β is large.. But it’s small! Discretization of a strongly

coupled PDE system.
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Solving for the update direction simultaneously
(all-at-once)

 A 0 G
QTQ AT 0

0 GT βR′′

 δu
δλ
δm

 = −

LλLu
Lm


Method we’ve considered:

• Preconditioned QMR for the symmetrized system

See also [Biros & Ghattas, ’99, ’01]

• Multigrid for the linearized PDE system

28



Outline

• Forward problems and distributed parameter estimation

• Solving the optimization problem

• 3D electromagnetic data inversion in frequency and time domain

• Discontinuous solutions and Huber’s norm

• Outline

29



3D electromagnetic data inversion - outline

• The forward problem

– Maxwell’s equations in frequency domain
– Reformulation and discretization
– Maxwell’s equations in time domain

• Examples

[Haber, Ascher & Oldenburg ’02]
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Maxwell’s equations in frequency domain

∇× E + αµH = sH in Ω,

∇× H− σ̂E = sE in Ω,

n×H = 0 on ∂Ω,

where σ̂ = σ + αε and α = −ıω.

Typical parameter regimes in these applications satisfy 0 ≤ ε � 1
and exclude high frequencies ω.

31



Reformulation and discretization

Helmholtz decomposition + Coulomb gauge :

E = A +∇φ
∇·A = 0

Thus, A is the electric field induced by magnetic fluxes, ∇φ is due to
charge accumulation.

Next, differentiate like PPE in CFD and stabilize⇒

∇× (µ−1∇× A)−∇(µ−1∇ · A) + ασ̂(A +∇φ) = αs

∇ · σ̂(A +∇φ) = ∇ · s

For σ̂ = σ > 0 this is an elliptic, diagonally dominant system.
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Boundary conditions:

−(∇× A)× n
∣∣∣
∂Ω

= 0,

A · n
∣∣∣
∂Ω

=
∂φ

∂n

∣∣∣
∂Ω

= 0,∫
Ω

φdV = 0.

[Haber & Ascher ’01]
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Elements of a finite volume
discretization

� � ��� ����� at face centers (like 	 )

� �
��� �� at cell center (like � )

� � � by harmonic averaging at face centers

� � by arithmetic averaging at edge centers (like�
)

���

One cell in a staggered grid

– Typeset by FoilTEX – 1
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Discretized system - multi experiment

(
Lµ + αMσ̂ αMσ̂∇h
∇h · Mσ̂ ∇h · Mσ̂∇h

)(
A
φ

)
=
(

αs
∇h · s

)

In a multiple source/frequency experiment, write above as
Ak(m)uk = qk. Then forward problem is

A(m)u =


A1(m)

A2(m)
. . .

. . .
As(m)



u1

u2
...
...
us

 =


q1

q2
...
...
qs

 = q.
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Example - inversion of frequency domain data

Transmitter and receiver geometry from an actual CSAMT field
survey (Penasquito, Mexico) but conductivity model synthesized.
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• Transmitter is a 1km grounded wire a few km away from survey area
– dealt with using a special procedure.

• Data on 5 field components at frequencies 16, 64 and 512 Hz at 28
stations spaced 50m apart on each of 11 lines with linespacing 100m.
(Total 308 data locations, 4620 data values.)

• “True model” has two conductive bodies and one resistive body

• Generate “true data” and contaminate by Gaussian noise, 2% in
amplitude 2 degrees in phase.

• The 3350m×3000m×2000m volume is discretized into 64×50×30 =
96, 000 cells.
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β = 100 Final misfit = 0.06
Nonlinear iter KKT iter ||Au− q||/||q|| Rel-grad

1 4 3e− 2 2e-1
2 4 2e− 4 3e-2
3 3 2e− 6 5e-4

β = 1e0 Final misfit = 0.03
Nonlinear iter KKT iter ||Au− q||/||q|| Rel-rad

1 8 1e− 6 3e-3
2 6 8e− 7 9e-4
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Maxwell’s equations in time domain

∇× E + µHt = 0 in Ω,

∇× H− σE− εEt = sr(t) in Ω,

n×H = 0 on ∂Ω.

• Parameter regime over non-short time scales yields heavy
dissipation – very stiff problems.

• Measure field only beyond initial, transient layer.
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Maxwell’s equations in time domain

∇× E + µHt = 0 in Ω,

∇× H− σE− εEt = sr(t) in Ω,

n×H = 0 on ∂Ω.

• Cannot expect high accuracy, as sources are typically only
continuous in time.

• Lagrange multipliers (solution of adjoint problem) are of low
continuity.
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⇒ Discretize in time using backward Euler.

αn = (tn − tn−1)−1

σ̂n = σ + αnε

∇× En + αnµHn = αnHn−1 ≡ sH

∇× Hn − σ̂nEn = snr − αnεEn−1 ≡ sE

n×Hn = 0.

This has the same form as in frequency domain. Apply the same
treatment!
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Discretized system - s time steps

 Lµ + αnMσ̂ αnMσ̂∇h 0
∇h · Mσ̂ ∇h · Mσ̂∇h 0

α−1
n M−1

µ ∇h× 0 I

An

φn
Hn

 =

 αns
∇h · s
Hn−1


For the nth time step, write above as Bnun−1 + An(m)un = qn. Then

forward problem is

A(m)u =


A1(m)
B2 A2(m)

. . . . . .
. . . . . .

Bs As(m)



u1

u2
...
...
us

 =


q1

q2
...
...
qs

 = q.
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Example - inversion of time domain data

A square loop 50m× 50m just above earth’s surface. Data acquired
at 20 depths in each of 4 boreholes surrounding conductive body at 18
logarithmically spaced times between 10−4 − 10−1 sec.

“True model” is a conductive sphere radius 15m buried in a uniform
halfspace.
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• Time discretization: 32 steps equally spaced on a log-grid
10−7 − 10−1 sec.

• Inversion grid in space 40× 40× 32.

• Initial guess is uniform halfspace equal to true background
conductivity.
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β = 1e− 1 Final misfit = 0.1
Nonlinear iter KKT iter ||Au− q||/||q|| Rel-grad

1 2 3e− 3 1e-2
2 3 2e− 4 4e-3
3 2 7e− 6 1e-3
4 2 9e− 7 3e-4

β = 1e− 2 Final misfit = 0.04
Nonlinear iter KKT iter ||Au− q||/||q|| Rel-grad

1 7 4e− 6 2e-3
2 5 6e− 7 7e-4

β = 1e− 3 Final misfit = 0.02
Nonlinear iter KKT iter ||Au− q||/||q|| Rel-grad

1 8 2e− 6 3e-3
2 7 8e− 7 9e-4
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Discontinuous solutions and Huber’s norm - outline

• Least squares, TV and Huber

• Choosing the Huber parameter

• Lagged diffusivity, Gauss-Newton and all-at-once

• Example in 2D
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Least squares, TV and Huber

A priori knowledge: model probably contains jump discontinuities!

So, in regularization term

R(m) =
[∫

Ω

ρ(|∇m|) + α(m−mref)
]
h

want to limit effect of penalty through jump. Note:

• For |∇m| → ∞,
∫
|∇m| integrable but

∫
|∇m|2 is not.

• For |∇m| → 0,
∫
|∇m| yields problems but

∫
|∇m|2 does not.
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So, combine: use Huber’s norm

ρ(τ) =

{
τ, τ ≥ γ,
τ2/(2γ) + γ/2, τ < γ

R′(m) ← ∇ ·
(

min{1
γ
,

1
|∇m|}∇m

)
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Choosing the Huber parameter

We choose, depending on the solution,

γ =
h

|Ω|h

[∫
Ω

|∇m|
]
h

.

Others choose this parameter using an expression from robust
statistics involving medians of |∇m|.

Question: Why not choose to penalize less through discontinuities?

Answer: This leads to non-convex functionals and local minima even
when forward problem is the identity, J = I.
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Lagged diffusivity, Gauss-Newton and all-at-once

In the Gauss-Newton iteration step A 0 G
QTQ AT 0

0 GT βR′′

 δu
δλ
δm

 = −

LλLu
Lm


use lagged diffusivity approximation: at current iterate,

R′′δm ≈ ∇ ·
(

min{1
γ
,

1
|∇m|}∇δm

)
.

Our all at once discussion now extends directly, although nonlinear
problem becomes harder.
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Note that for denoising J = I there is essentially a global
convergence proof.

[e.g. Vogel, 2002; Sapiro, 2001]

But is there really enough accurate data in applications to
allow honest identification of discontinuities with our diffusive forward
operators?!
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Example in 2D

Forward mother problem ∇ · m−1∇u = q

Domain Ω = [−1, 1]2

Right hand side with source and sink

q = exp(−10((x+ 0.6)2 + (y+ 0.6)2))− exp(−10((x− 0.6)2 + (y− 0.6)2))

“True model” with discontinuities

Data everywhere with 1% noise

Uniform cell-centered discretization 129× 129

Iterative solver with a multigrid preconditioner
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Data with 1% noise
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“True model”
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Least squares with β = 1.e− 5 ⇒ misfit = 1.66e− 2
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Least squares with β = 3.e− 6 ⇒ misfit = 1.50e− 2
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Huber with β = 1.e− 5 ⇒ γ = 4.6,misfit = 1.01e− 2
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