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1. Learning: well-posedness and predictivity

Two key, separate motivations in recent work in the area of learning:

• in “classical” learning theory: learning must be predictive, that is
it must generalize. For ERM generalization implies consistency.
Conditions for consistency of ERM.

• for several algorithms: learning is ill-posed and algorithms must
restore well-posedness, especially stability.

In other words...there are two key issues in solving the learning problem:

1. predictivity (which translates into generalization)

2. stability (eg well-posedness) of the solution

A priori no connection between generalization and stability. In fact
there is and we show that for ERM they are equivalent.



Learning, a direction for future research:
beyond classical theory

The classical learning theory due to Vapnik et al consists of necessary
and sufficient conditions for learnability ie generalization in the case
of about ERM. It would be desirable to have more general conditions
that guarantee generalization for arbitrary algorithms and subsume the
classical theory in the case of ERM.

Our results show that some specific notions of stability may provide
a more general theory than the classical condtions on H and subsume
them for ERM.



Preliminary: convergence in probability

Let {Xn} be a sequence of random variables. We say that

lim
n→∞Xn = X in probability

if

∀ε > 0 lim
n→∞ IP{‖Xn −X‖ ≥ ε} = 0.

or

if for each n there exists a εn and a δn such that

IP {‖Xn −X‖ ≥ εn} ≤ δn,

with εn and δn going to zero for n→∞.



2. The supervised learning problem and
generalization

• The learning problem

• Classification and regression

• Loss functions

• Empirical error, generalization error, generalization



The learning problem

There is an unknown probability distribution on the prod-

uct space Z = XxY , written µ(z) = µ(x, y). We assume

that X is a compact domain in Euclidean space and Y a

closed subset of IRk.

The training set S = {(x1, y1), ..., (xn, yn)} = z1, ...zn con-

sists of n samples drawn i.i.d. from µ.

H is the hypothesis space, a space of functions f : X → Y .

A learning algorithm is a map L : Zn → H that looks

at S and selects from H a function fS : x → y such that

fS(x) ≈ y in a predictive way.



Classification and regression

If y is a real-valued random variable, we have regression.

If y takes values from a finite set, we have pattern classi-

fication. In two-class pattern classification problems, we

assign one class a y value of 1, and the other class a y

value of −1.



Loss Functions

In order to measure goodness of our function, we need a

loss function V . We let V (f(x), y) = V (f, z) denote the

price we pay when we see x and guess that the associated

y value is f(x) when it is actually y. We require that for

any f ∈ H and z ∈ Z V is bounded, 0 ≤ V (f, z) ≤ M .

We can think of the set L of functions �(z) = V (f, z) with

� : Z → IR, induced by H and V .

The most common loss function is square loss or L2 loss:

V (f(x), y) = (f(x)− y)2



Empirical error, generalization error,

generalization

Given a function f , a loss function V , and a probability distribution µ
over Z, the expected or true error of f is:

I[f ] = IEzV [f, z] =

∫
Z

V (f, z)dµ(z)

which is the expected loss on a new example drawn at random from
µ.

We would like to make I[f ] small, but in general we do not know µ.

Given a function f , a loss function V , and a training set S consisting
of n data points, the empirical error of f is:

IS[f ] =
1

n

∑
V (f, zi)



Empirical error, generalization error,

generalization

A very natural requirement for fS is distribution independent general-
ization

∀µ, lim
n→∞ |IS[fS]− I[fS]| = 0 in probability

A desirable additional requirement is universal consistency

∀ε > 0 lim
n→∞ sup

µ
IPS

{
I[fS] > inf

f∈H
I[f ] + ε

}
= 0.



3. ERM and conditions for generalization
(and consistency)

Given a training set S and a function space H, empirical
risk minimization (Vapnik) is the algorithm that looks at
S and selects fS as

fS = argmin
f∈H

IS(f)

This problem does not in general show generalization and
is also ill-posed, depending on the choice of H.

If the minimum does not exist we can work with the infi-
mum.

Notice: For ERM generalization and consistency are equiv-
alent



Classical conditions for consistency of ERM

Uniform Glivenko-Cantelli Classes

L = {H, V } is a (weak) uniform Glivenko-Cantelli (uGC) class

if

∀ε > 0 lim
n→∞ sup

µ
IPS

{
sup
�∈L
|I[�]− IS[�]| > ε

}
= 0.

Theorem [Vapnik and Červonenkis (71), Alon et al (97), Dudley, Giné, and Zinn
(91)]

A necessary and sufficient condition for consistency of ERM is that

L is uGC.



...mapping notation and results in
CuckerSmale...

ε(f)←→ I(f)

εz(f)←→ IS(f)

Thus

Lz ←→ I(f)− IS(f)

For ERM

fz ←→ fS

Theorem B (for H compact) ←→ generalization, see Theorem a (for
general algorithms and general H)

Theorem C (eg εH(fz) → 0) ←→ Theorem b (consistency of ERM)
where εH(f) = ε(f)− ε(fH),
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Given a certain number of samples...

x

f(x)



here is one (say, the true) solution...

x

f(x)



... but here is another (and very different)
one!

x

f(x)



Both have zero empirical error: which one
should we pick? Issue: stability (and

uniqueness)

x

f(x)



Well-posed and Ill-posed problems

Hadamard introduced the definition of ill-posedness. Ill-posed prob-
lems are typically inverse problems.

As an example, assume g is a function in Y and u is a function in
X, with Y and X Hilbert spaces. Then given the linear, continuous
operator L, consider the equation

g = Lu.

The direct problem is is to compute g given u; the inverse problem is
to compute u given the data g. In the learning case L is somewhat
similar to a “sampling” operation.

The inverse problem of finding u is well-posed when

• the solution exists,

• is unique and

• is stable, that is depends continuously on the initial data g.

Ill-posed problems fail to satisfy one or more of these criteria. Often
the term ill-posed applies to problems that are not stable, which in a
sense is the key condition.



Stability of learning

For the learning problem it is clear, but often neglected, that ERM is in
general ill-posed for any given S. ERM defines a map L (“inverting”
the “sampling” operation) which maps the discrete data S into a
function f , that is

LS = fS.

Consider the following simple, “classical” example.

Assume that the x part of the n examples (x1, ..., xn) is fixed.

Then L as an operator on (y1, ..., yn) can be defined in terms of a set
of evaluation functionals Fi on H, that is yi = Fi(u).

If H is a Hilbert space and in it the evaluation functionals Fi are
linear and bounded, then H is a RKHS and the Fi can be written as
Fi(u) = (u, Kxi)K where K is the kernel associated with the RKHS and
we use the inner product in the RKHS.

For simplicity we assume that K is positive definite and sufficiently
smooth (see Cucker, Smale).



Stability of ERM (example cont.)

The ERM case corresponds to

min
f∈BR

1

n

n∑
i=1

(f(xi)− yi)
2.

Well-posedness can be ensured by Ivanov regularization that is by en-
forcing the solution f – which is has the form f(x) =

∑n
1=1 ciK(xi,x)

since it belongs to the RKHS – to be in the ball BR of radius R in H
(eg ‖f‖2K ≤ R), because H = IK(BR) – where IK : HK → C(X) is the
inclusion and C(X) is the space of continuous functions with the sup
norm – is compact.

In this case the minimizer of the generalization error I[f ] is well-posed.

Minimization of the empirical risk is also well-posed: it provides a set
of linear equations to compute the coefficients c of the solution f as

Kc = y (1)

where y = (y1, ..., yn) and (K)i,j = K(xi,xj).



Stability of ERM (example cont.)

In this example, stability of the empirical risk minimizer provided by
equation (1) can be characterized using the classical notion of condi-
tion number of the problem. The change in the solution f due to a
perturbation in the data y can be bounded as

‖∆f‖
‖f‖ ≤ ‖K‖‖(K)−1‖‖∆y‖

‖y‖ , (2)

where ‖K‖(K)−1‖ is the condition number.



Stability of ERM (example cont.)

Tikhonov regularization – which unike Ivanov regularization is not ERM
– replaces the previous equation with

min
f∈H

1

n

n∑
i=1

(f(xi)− yi)
2 + γ‖f‖2K (3)

which gives the following set of equations for c (with γ ≥ 0)

(K + nγI)c = y (4)

which reduces for γ = 0 to equations (1). In this case, stability de-
pends on the condition number ‖K + nγI‖‖(K + nγI)−1‖ which is now
controlled by nγ. A large value of nγ gives condition numbers close to
1.

In general, however, the operator L induced by ERM cannot be ex-
pected to be lineara and thus the definition of stability has to be
extended beyond condition numbers...



Motivations for stability: inverse problems
and beyond ERM

In summary there are two motivations for looking at sta-

bility of learning algorithms:

• can we generalize the concept of condition number to

measure stability of L? Is stability related to general-

ization?

• through stability can one have a more general theory

that provides generalization for general algorithms and

subsumes the classical theory in the case of ERM?



5. Stability definitions

S = z1, ..., zn

Si = z1, ..., zi−1, zi+1, ...zn

The learning map L has distribution-independent, CV loo

stability if

for each n there exists a β
(n)
CV and a δ

(n)
CV such that

∀µ IPS

{∣∣∣V (fSi, zi)− V (fS, zi)
∣∣∣ ≤ β

(n)
CV

}
≥ 1− δ

(n)
CV ,

with β
(n)
CV and δ

(n)
CV going to zero for n→∞.



Stability definitions (cont.)
Bousquet and Elisseeff’s uniform stability:

the map L induced by a learning algorithm is uniformly stable if

limn→∞ β(n) = 0 with β(n) satisfying

∀S ∈ Zn, ∀i ∈ {1, ..., n} sup
z∈Z
|V (fS, z)− V (fSi, z)| ≤ β(n).

and β(n) = O(1
n
).

• Uniform stability implies good generalization.

• Tikhonov regularization algorithms are uniformly stable.

• Most algorithms are not uniformly stable: ERM, even with a hypothesis space
H containing just two functions, is not guaranteed to be uniformly stable.

• Uniform stability implies CVloo stability.



Stability definitions (cont.)

• The learning map L has distribution-independent, Eloo stability if

for each n there exists a β(n)
Er and a δ(n)

Er such that for all i = 1...n

∀µ IPS

{
|I[fSi]− I[fS]| ≤ β(n)

Er

}
≥ 1− δ(n)

Er ,

with β(n)
Er and δ(n)

Er going to zero for n→∞.

• The learning map L has distribution-independent, EEloo stability if

for each n there exists a β
(n)
EE and a δ

(n)
EE such that for all i = 1...n

∀µ IPS

{
|ISi[fSi]− IS[fS]| ≤ β(n)

EE

}
≥ 1− δ(n)

EE,

with β(n)
EE and δ(n)

EE going to zero for n→∞.

• The learning map L is CVEEEloo stable if it has CVloo, Eloo and
EEloo stability.



Preview

Two theorems:

• (a) says that CVEEEloo stability is sufficient to guar-

antee generalization of any algorithm

• (b) says that CVEEEloo (and CVloo) stability subsumes

the “classical” conditions for generalization and con-

sistency of ERM
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6. Theorem a: stability implies
generalization

Theorem (a)

If a learning map is CVEEEloo stable and the loss function

is bounded by M , then

IES(I[fS]−IS[fS])
2 ≤ (2MβCV +2M2δCV +3MβEr+3M2δEr+5MβEE+5M2δEE)1/4.

Thus CVEEEloo stability is strong enough to imply gen-

eralization of general algorithms. The question then is

whether it is general enough to subsume the “classical”

theory, that is the fundamental conditions for consistency

of ERM.



7. Theorem b: ERM stability is necessary
and sufficient for consistency

Theorem (b)

For “good” loss functions the following statements are

equivalent for almost ERM:

1. L is distribution independent CVEEEloo stable.

2. almost ERM is universally consistent

3. H is uGC.



Theorem b, proof sketch: ERM stability is
necessary and sufficient for consistency

First, ERM is Eloo and EEloo stable, as it can be seen rather directly
from its definition.

Here isFor CVloo stability, here is a sketch of the proof it in the special
case of exact minimization of IS and of I.

1. The first fact used in the proof is that CVloo stability is equivalent
to

lim
n→∞ IES[|V (fSi, zi)− V (fS, zi)|] = 0.

The equivalence holds since the definition of CVloo stability implies
the condition on the expectation, since V is bounded; the opposite
direction is obtained using Markov’s inequality.



Theorem b: ERM stability is necessary and
sufficient for consistency (cont.)

2. The following positivity property of exact ERM is the second and
key fact used in proving the theorem:

∀i ∈ {1, ..., n} V (fSi, zi)− V (fS, zi) ≥ 0.

By the definition of empirical minimization we have

IS[fSi]− IS[fS] ≥ 0
ISi[fSi]− ISi[fS] ≤ 0.

Note that the first inequality can be rewritten as
1

n

∑
zj∈Si

V (fSi, zj)− 1

n

∑
zj∈Si

V (fS, zj)


 +

1

n
V (fSi, zi)− 1

n
V (fS, zi) ≥ 0.

The term in the bracket is non-positive (because of the second in-
equality) and thus the positivity property follows.



Theorem b: ERM stability is necessary and
sufficient for consistency (cont.)

3. The third fact used in the proof is that – for ERM – distribu-
tion independent convergence of the expectation of empirical error to
the expectation of the expected error of the empirical minimizer is
equivalent to (universal) consistency.

The first two properties imply the following equivalences:

(β, δ) CVloo stability ⇔ lim
n→∞ IES[|V (fSi, zi)− V (fS, zi)|] = 0,

⇔ lim
n→∞ IES[V (fSi, zi)− V (fS, zi)] = 0,

⇔ lim
n→∞ IESI[fSi]− IESIS[fS] = 0,

⇔ lim
n→∞ IESI[fS] = lim

n→∞ IESIS[fS].

Notice that a weaker form of stability (eg CVloo stability without the
absolute value) is necessary and sufficient for consistency of ERM.

The third property implies that CVloo stability is necessary and suf-
ficient for the distribution independent convergence I[fS] → I[f∗] in
probability (where f∗ is the best function in H), that is for (universal)
consistency. It is well known that the uGC property of H is necessary
and sufficient for universal consistency of ERM.



8. Stability of non-ERM algorithms

• Regularization and SVMs are CVEEEloo stable

• Bagging (with number of regressors increasing with

n)is CVEEEloo stable

• kNN (with k increasing with n)is CVEEEloo stable

• Adaboost??



In summary...

H is
u GC

ERM

CVloo

stability

For general
symmetric
algorithms

Consistency

ERM

Eloo+EEloo

stability

ERM

ERM

Generalization
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9. Open problems: other sufficient
conditions.

CVEEEloo stability answers all the requirements we need: each one is
sufficient for generalization in the general setting and subsumes the
classical theory for ERM, since it is equivalent to consistency of ERM.
It is quite possible, however, that CVEEEloo stability may be equivalent
to other, even “simpler” conditions. In particular, we know that other
conditions are sufficient for generalizations:

The learning map L is Elooerr stable in a distribution-independent way,
if for each n there exists a β(n)

EL and a δ(n)
EL such that

∀µ IPS

{ ∣∣∣∣∣I[fS]− 1

n

n∑
i=1

V (fSi, zi)

∣∣∣∣∣ ≤ βEL

}
≥ 1− δ(n)

EL,

with β(n)
EL and δ(n)

EL going to zero for n→∞.

Theorem: CVloo and Elooerr stability together imply generalization.



Open problems: expected error stability
and hypothesis stability.

We conjecture that

• CVloo and EEloo stability are sufficient for generalization for general
algorithms (without Eloo stability);

• alternatively, it may be possible to combine CVloo stability with
a “strong” condition such as hypothesis stability. We know that
hypothesis stability together with CVloo stability implies general-
ization ; we do not know whether or not ERM on a uGC class
implies hypothesis stability, though we conjecture that it does.

The learning map L has distribution-independent, leave-one-out hy-
pothesis stability if for each n there exists a β(n)

H

∀µ IESIEz[|V (fS, z)− V (fSi, z)|] ≤ β(n)
H ,

with β(n)
H going to zero for n→∞.

Notice that Elooerr property is implied – in the general setting – by
hypothesis stability.
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10. On-line algorithms: stability and
generalization?

Online learning algorithms take as inputs a hypothesis f ∈
H and a new example z = x, y and return a new hypothesis

f ′ ∈ H. Given an input sequence S ∈ Zn with S = z1, · · · , zn,

the online algorithm will use z1 and the zero hypothesis f0
to generate the first hypothesis f1.

Notice that since it depends on the random example z1, the hypothesis
f1 is a random element of H. After seeing the whole Zn sequence the
algorithm has generated a sequence of hypothesis f0, · · · , fn and has
“memory” only of the last example zn.



On-line algorithms: stability and
generalization (cont.)

A natural adaptation of the definition of CVloo stability to
(non-symmetric) online algorithms is:

An online algorithm is distribution-independent, CVnoo sta-
ble if

∀µ IPS {|V (fn−1, zn)− V (fn, zn)| ≤ β} ≥ 1− δ,

where for n→∞ a sequence of β and a sequence of δ exist
that go simultaneously to zero.

Notice that V (fn−1, zn) is the out-of-sample-error since
fn−1 does not depend on zn whereas V (fn, zn) is the in-
sample-error since fn depends on zn (and fn−1).



On-line algorithms: stability and
generalization (cont.)

Open question: what does CVnoo stability imply in terms of stability and generaliza-
tion of the dynamical process associated with an online algorithm?

A few sparse observations:

1. The empirical error IS(f) is not a natural choice for an online algorithm.

2. The CVnoo definition depends on the “last” zn only (consider |V (fn−1, zn) −
V (fn, zn)|). A completely equivalent definition can be formulated in terms of
|V (fn, zn+1) − V (fn, zn)|, in which both terms depend on the single hypothesis
fn.

3. In online algorithms the hypothesis fn−1 based on the sequence of n−1 examples
is modified after seeing zn to yield a new hypothesis fn. For some online
algorithms – that we call monotonic online algorithms – the change is always
such that the error on zn does not increase, e.g. V (fn, zn) − V (fn−1, zn) ≤ 0.
This is, for instance, always the case for the online realizable setting in which
an hypothesis fn exists such that V (fn, zn) = 0 and is chosen by the algorithm.



On-line algorithms and stochastic
approximation (cont.)

Stochastic approximation We want to minimize the functional

I[f ] =

∫
V (f, z)dµ(z),

where V is bounded and convex in f . Assume that H consists of hypotheses of
the form f(x) =

∑
wiφi(x) = wφ. Then stochastic approximation is the stochastic

discrete dynamical system defined by

wn+1 = wn − γn(gradwV (wn−1, zn) + ξn),

where

lim
n→∞

γn = 0

n=∞∑
n=1

γn =∞.

Theorem (Litvakov; see also Vapnik If

1. I(f) is bounded from below

2. IE|gradV (f, z)|2 ≤M(1 + |w|2)
3. the noise ξ is zero-mean and bounded variance

then the stochastic process I(fn) converges in probability to inf I(f).



On-line algorithms and stochastic
approximation (cont.)

Note that stochastic approximation is CVnoo stable under
the same classical conditions that ensure consistency (see
for instance Litvakov, see Vapnik p. 384). Stochastic
approximation under similar conditions asymptotically finds
the minimum of the expected risk and the ERM solution
(see Devroye et al., chapter 29).

Thus...the stochastic approximation case suggests that CVnoo

stability may be a general property of online algorithms for
ensuring generalization and consistency.

1. The Perceptron algorithm. This online algorithm for binary classification is
CVnoo stable for separable distributions since the hypothesis fn – which corre-
spond to the vector of coefficient wn – does not change after a finite number
of iterations.

2. LMS. This online algorithm for regression is CVnoo stable when it converges
since |V (fn, zn)− V (fn−1, zn)| ≤ γMεn where εn is the error at iteration n.
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