A Variational Approach to Non-Rigid Morphological Image Registration

Inverse Problems Workshop Series I Emerging Applications of Inverse Problems Techniques to Imaging Science

> Marc Droske University Duisburg–Essen «droske@math.uni-duisburg.de»

with Ulrich Clarenz, Martin Rumpf (Univ. Duisburg-Essen),

Robert Strzodka (caesar Research center Bonn)

and Carlo Schaller (Neurosurgery Bonn)

UNIVERSITÄT

1

- Unimodal Registration
- Gradient flow perspective
- Relations to Tikhonov-Regularization

UNIVERSITÄT

- Unimodal Registration
- Gradient flow perspective
- Relations to Tikhonov-Regularization
- Multimodal Registration
- Hyperelastic polyconvex Regularization

- Unimodal Registration
- Gradient flow perspective
- Relations to Tikhonov-Regularization
- Multimodal Registration
- Hyperelastic polyconvex Regularization
- Practical issues for solving the minimization problem

UNIVERSITÄT

Registration of a pair of unimodal images

Given two C^1 -images $R, T: \Omega \to \mathbb{R}^d$, find a deformation $\phi = 1 + u: \Omega \to \Omega$, such that

 $T \circ \phi \approx R$ in the sense of image intensities.

 Analysis of medical "time-series" of a single patient (intraindividual)

UNIVERSITÄT

Registration of a pair of unimodal images

Given two C^1 -images $R, T: \Omega \to \mathbb{R}^d$, find a deformation $\phi = 1 + u: \Omega \to \Omega$, such that

 $T \circ \phi \approx R$ in the sense of image intensities.

- Analysis of medical "time-series" of a single patient (intraindividual)
- Registration into a digital database (interindividual)

UNIVERSITÄT

Registration of a pair of unimodal images

Given two C^1 -images $R, T: \Omega \to \mathbb{R}^d$, find a deformation $\phi = 1 + u: \Omega \to \Omega$, such that

 $T \circ \phi \approx R$ in the sense of image intensities.

- Analysis of medical "time-series" of a single patient (intraindividual)
- Registration into a digital database (interindividual)
- Subtraction of angiographic images

UNIVERSITÄT

Requirements of the deformation

Deformation maps on the background of the data:

- Bijectivity & topology-preservation: → Homeomorphisms!!
- Rich space of deformations, allowing local dilations and contraction to resolve very fine anatomical details.
- Desirable: preservation of geometric features \rightarrow Diffeomorphisms.

UNIVERSITÄT

Relation to *optical flow models*

Here, consider a time-dependent sequence of images: $I : \Omega \times \mathbb{R}_0^+ \to \mathbb{R}$. The *brightness constancy assumption* I(x(t), t) = const for moving points described by x(t) leads to the optical flow equation:

 $(\nabla I(x,t), \vec{v}(x,t)) + I_t(x,t) = 0,$

where \vec{v} describes the optical flow of the image.

This approach is *differential* and aims at determining of the movements in images, which are very close together.

Due to underdetermination of the equation, various variational approaches are considered (see *Hinterberger*, *Scherzer*, *Schnörr*, *Weickert '01*):

$$E[\vec{v}] := \int_{\Omega} \phi((\nabla I(x,t), \vec{v}(x,t)) + I_t(x,t)) + \psi(x, \vec{v}, \nabla \vec{v}) dx \to \min!$$

UNIVERSITÄT

The Unimodal Registrationenergy

Images $T, R: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{R}^n$, n = 2, 3. Find $\phi \in \mathcal{V}$, $\mathcal{V} \subset \{\psi : \mathbb{R}^d \to \mathbb{R}^d\}$ such that the energy

$$E_m[\phi] := \frac{1}{2} \int\limits_{\Omega} |T \circ \phi - R|^2 dx$$

is minimal and $\phi(\Omega) = \Omega$. Gradient is given by

The Unimodal Registrationenergy

Images $T, R: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{R}^n$, n = 2, 3. Find $\phi \in \mathcal{V}$, $\mathcal{V} \subset \{\psi : \mathbb{R}^d \to \mathbb{R}^d\}$ such that the energy

$$E_m[\phi] := \frac{1}{2} \int\limits_{\Omega} |T \circ \phi - R|^2 dx$$

is minimal and $\phi(\Omega) = \Omega$. Gradient is given by

$$\operatorname{grad} E_m[\phi] = (T \circ \phi - R) \nabla T \circ \phi$$

Highly nonlinear problem since the image T is nonlinear.

Assymmetric definition of the energy.

UNIVERSITÄT

III-posedness

Define $\mathcal{M}_c^T := \{x \in \Omega \mid T(x) = c\}$ Consider deformation Λ , s. d. $\Lambda(\mathcal{M}_c) = \mathcal{M}_c, \forall c \in \mathbb{R}$.

Furthermore: Let T constant on $\tilde{\Omega} \subset \Omega$. $\tilde{x} \in T^{-1}(\tilde{\Omega})$.

$$\Lambda = 1\!\!1\chi_{\Omega \setminus \{ ilde{x}\}} + z\chi_{\{ ilde{x}\}}$$
 for $z \in ilde{\Omega}$ arbitrary.

UNIVERSITÄT

III-posedness

Define $\mathcal{M}_c^T := \{x \in \Omega \mid T(x) = c\}$ Consider deformation Λ , s. d. $\Lambda(\mathcal{M}_c) = \mathcal{M}_c, \forall c \in \mathbb{R}.$

Furthermore: Let T constant on $\tilde{\Omega} \subset \Omega$. $\tilde{x} \in T^{-1}(\tilde{\Omega})$.

$$\Lambda = 1 I \chi_{\Omega \setminus \{\tilde{x}\}} + z \chi_{\{\tilde{x}\}}$$
 for $z \in \tilde{\Omega}$ arbitrary.

In both cases the following holds:

$$E_m[\Lambda \circ \phi] = E_m[\phi].$$

Set of minimizers is very irregular, depending on the variability of the images.

UNIVERSITÄT

Non-overlapping shapes

Consider even very *simple* input images

UNIVERSITÄT

 $\nabla T = 0 \text{ or } T \circ \phi = R \Rightarrow \text{grad}E = 0.$

Gradient drives the deformation only at the transitions of flat regions, i. e. where $\nabla T \neq 0$. Here, this leads to a **concentration of the level sets, i. e. without** regularization the gradient flow converges to a degenerate solution.

UNIVERSITÄT

 $\nabla T = 0 \text{ or } T \circ \phi = R \Rightarrow \operatorname{grad} E = 0.$

Gradient drives the deformation only at the transitions of flat regions, i. e. where $\nabla T \neq 0$. Here, this leads to a **concentration of the level sets, i. e. without** regularization the gradient flow converges to a degenerate solution.

Matching of hypersurfaces: *Liao, Khuu, Bergschneider, Vese, Huang, Osher* use level sets combined with distance maps for converging globally.

UNIVERSITÄT

- Unimodal Registration
- Gradient flow perspective
- Relations to Tikhonov-Regularization
- Multimodal Registration
- Hyperelastic polyconvex Regularization
- Practical issues for solving the minimization problem

UNIVERSITÄT

Regularization approaches

1. Additional Regularization Energy:

$$E[\phi] := E_m[\phi] + E_{\mathsf{reg}}[\phi] \to min!$$

→ Tikhonov-Regularization, (Grötsch, Scherzer, Weickert)

UNIVERSITÄT

Regularization approaches

1. Additional Regularization Energy:

$$E[\phi] := E_m[\phi] + E_{\mathsf{reg}}[\phi] \to min!$$

→ Tikhonov-Regularization, (Grötsch, Scherzer, Weickert)

2. Gradient flows w.r.t. regularizing metric:

$$\partial_t \phi = -\operatorname{grad}_g E[\phi]$$

UNIVERSITÄT

Regularization approaches

1. Additional Regularization Energy:

$$E[\phi] := E_m[\phi] + E_{\mathsf{reg}}[\phi] \to min!$$

→ Tikhonov-Regularization, (Grötsch, Scherzer, Weickert)

2. Gradient flows w.r.t. regularizing metric:

$$\partial_t \phi = -\operatorname{grad}_g E[\phi]$$

UNIVERSITÄT

3. Iterative smoothing of data:

$$E_m^{\sigma_k}[\phi] := \int_{\Omega} |T^{\sigma_k} \circ \phi - R^{\sigma_k}| \, \mathrm{d}\mu \quad k = 1, 2, \dots \quad I^{\sigma} = \text{smoothed version of}I$$

DUISBURG

Regularization of gradient flows

Introduce a **metric** g on the space of deformations and consider the gradient of E with respect to this metric, i. e.:

$$g(\operatorname{grad}_g E, \psi) = \langle E'[\phi], \psi \rangle \qquad \forall \psi \in \mathcal{V}$$

The general gradient flows becomes:

$$\partial_t \phi(t) = -\operatorname{grad}_g E_m[\phi(t)]$$

which means $g(\partial_t \phi(t), \psi) = -\langle E'_m[\phi(t)], \psi \rangle$ $\forall \psi \in \mathcal{V}$ Every metric g inhibits a linear representation $A : \mathcal{V} \to \mathcal{V}'$, $g(u, v) = \langle Au, v \rangle_{\mathcal{V}' \times \mathcal{V}}$, hence, we can also write

$$\partial_t \phi(t) = -A^{-1} \operatorname{grad}_{L^2} E_m[\phi(t)]$$

•
$$\mathcal{V} = [H^{s,2}(\Omega)]^d$$
, $g(u,v) = (u,v)_{H^{s,2}(\Omega)}$

•
$$\mathcal{V} = [H^{s,2}(\Omega)]^d$$
, $g(u,v) = (u,v)_{H^{s,2}(\Omega)}$

• Weighted
$$H^{1,2}$$
 metric:
 $g(u,v) = (u,v)_{L^2(\Omega)} + \frac{\sigma^2}{2} (\nabla u, \nabla v)_{L^2(\Omega)}$ with $\sigma > 0$
 $\Rightarrow g(u,v) = \langle Au, v \rangle$ mit $A = 1 I + \frac{\sigma^2}{2} \Delta$

 \boldsymbol{A} implicit time step of the linear diffusion equation.

UNIVERSITÄT

•
$$\mathcal{V} = [H^{s,2}(\Omega)]^d$$
, $g(u,v) = (u,v)_{H^{s,2}(\Omega)}$

- Weighted $H^{1,2}$ metric: $g(u,v) = (u,v)_{L^2(\Omega)} + \frac{\sigma^2}{2} (\nabla u, \nabla v)_{L^2(\Omega)}$ with $\sigma > 0$ $\Rightarrow g(u,v) = \langle Au, v \rangle$ mit $A = 1I + \frac{\sigma^2}{2} \Delta$ A implicit time step of the linear diffusion equation.
- anisotropic, inhomogenous metrics

UNIVERSITÄT

•
$$\mathcal{V} = [H^{s,2}(\Omega)]^d$$
, $g(u,v) = (u,v)_{H^{s,2}(\Omega)}$

- Weighted $H^{1,2}$ metric: $g(u,v) = (u,v)_{L^2(\Omega)} + \frac{\sigma^2}{2} (\nabla u, \nabla v)_{L^2(\Omega)}$ with $\sigma > 0$ $\Rightarrow g(u,v) = \langle Au, v \rangle$ mit $A = 1I + \frac{\sigma^2}{2} \Delta$ A implicit time step of the linear diffusion equation.
- anisotropic, inhomogenous metrics

UNIVERSITÄT

Numerical Results

T original, T with noise, \underline{R} with noise, \underline{R} original

deformation (ϕ), result of registration $T \circ \phi$ noise: 20% Salt and Pepper noise

UNIVERSITÄT

Numerical Results

UNIVERSITÄT

- Unimodal Registration
- Gradient flow perspective
- Relations to Tikhonov-Regularization
- Multimodal Registration
- Hyperelastic polyconvex Regularization
- Practical issues for solving the minimization problem

UNIVERSITÄT

Tikhonov Regularization: Linearization

Given $\phi^{(k)}$, find $\phi^{(k+1)}$, such that

 $E_m[\phi^{(k+1)}] < E_m[\phi^{(k)}]$

 $\mathsf{Linearization}: E_m[\phi^{(k+1)}] \approx E_m[\phi^{(k)}] + \langle E'_m[\phi^{(k)}], \phi^{(k+1)} - \phi^{(k)} \rangle$

UNIVERSITÄT

Tikhonov Regularization: Linearization

Given $\phi^{(k)}$, find $\phi^{(k+1)}$, such that

 $E_m[\phi^{(k+1)}] < E_m[\phi^{(k)}]$

Linearization: $E_m[\phi^{(k+1)}] \approx E_m[\phi^{(k)}] + \langle E'_m[\phi^{(k)}], \phi^{(k+1)} - \phi^{(k)} \rangle$ Additional bilinearform $g(\phi^{(k+1)} - \phi^{(k)}, \phi^{(k+1)} - \phi^{(k)})$ for regularization (*Henn*, *Witsch*): find

$$\arg\min_{\phi^{(k+1)}\in\mathcal{V}} \left\{ \langle E'_m[\phi^{(k)}], \phi^{(k+1)} - \phi^{(k)} \rangle + \frac{\alpha}{2} g(\phi^{(k+1)} - \phi^{(k)}, \phi^{(k+1)} - \phi^{(k)}) \right\}$$
$$\alpha g(\phi^{(k+1)} - \phi^{(k)}, \psi) = -\langle E'_m[\phi^{(k)}], \psi \rangle$$

DEU ISEBURG

Tikhonov Regularization: The non-linear case

Consider the following non-linear minimization problem

$$\min_{\phi} \left\{ E[\phi] + \frac{\alpha}{2} Q[\phi] \right\}$$

residual error $(E) \leftrightarrow$ variability of the solution ϕ (Q).

UNIVERSITÄT

Tikhonov Regularization: The non-linear case

Consider the following non-linear minimization problem

$$\min_{\phi} \left\{ E[\phi] + \frac{\alpha}{2} Q[\phi] \right\}$$

residual error $(E) \leftrightarrow$ variability of the solution ϕ (Q).

Inspect the behaviour for decreasing α :

$$\phi^{(k+1)} = \arg\min_{\phi} \{ E[\phi] + \frac{\alpha_k}{2} g(\phi - \phi^{(k)}, \phi - \phi^{(k)}) \}$$

 \rightsquigarrow iterative Tikhonov Regularization (*Henn*, *Witsch*).

UNIVERSITÄT

Important Regularization Methods for Registration

• *Horn-Schunk*-model (1981):

$$Q_{\mathsf{diff}}[\phi] := \frac{1}{2} \sum_{i=1}^{n} \int_{\Omega} |\nabla \phi_i|^2 dx$$

• Curvature-model *Modersitzki*, *Fischer '03*

$$Q_{\mathsf{curv}}[\phi] := \frac{1}{2} \sum_{i=1}^{n} \int_{\Omega} (\Delta \phi_i)^2 dx \qquad Q_{\mathsf{curv}}[Cx+B] = 0 \quad \forall C \in \mathbb{R}^{n,n}, \ b \in \mathbb{R}^n$$

• Nagel-Enkelmann-model: (1987)

$$Q_{NE}[\phi] := g_{NE}(\phi, \phi)$$
 where

$$g(\phi,\psi) := \int \operatorname{tr} \left\{ \frac{1}{|\nabla R|^2 + 2\lambda} \left((\nabla R)^{\perp} \otimes (\nabla R)^{\perp} + \lambda^2 \mathrm{II} \right) \nabla \phi \cdot \nabla \psi \right\} dx$$

image based weight: preserve corners and edges, related to anisotropic diffusion (*Weickert*)

linear elastic models

$$Q_{\mathsf{elast}}[\phi] := \int_{\Omega} 2\mu \epsilon(\phi) : \epsilon(\phi) + \frac{\lambda}{2} (\mathsf{div}\phi)^2 dx$$

• nonlinear elastic models

$$Q_{NLE}[\phi] := \int_{\Omega} W^*(D\phi, \mathbf{Cof} \, D\phi, \mathbf{det} \, D\phi)$$

UNIVERSITÄT

Relation between reg. gradient flows \leftrightarrow iterative Tikhonov

$$\begin{array}{rcl} \text{linearized:} \\ \alpha g(\phi^{(k+1)} - \phi^{(k)}, \psi) &=& -\langle E'_m[\phi^k], \psi \rangle \quad \forall \psi \in \mathcal{V} \\ \\ \Rightarrow \phi^{(k+1)} &=& \phi^{(k)} - \frac{1}{\alpha} \mathrm{grad}_g E_m[\phi^{(k)}] \quad g \text{ Metrik} \end{array}$$

Interpretation: explicit time step of the regularized gradient flow.
Relation between reg. gradient flows \leftrightarrow iterative Tikhonov

linearized:

$$\alpha g(\phi^{(k+1)} - \phi^{(k)}, \psi) = -\langle E'_m[\phi^k], \psi \rangle \quad \forall \psi \in \mathcal{V}$$

$$\Rightarrow \phi^{(k+1)} = \phi^{(k)} - \frac{1}{\alpha} \operatorname{grad}_g E_m[\phi^{(k)}] \quad g \text{ Metrik}$$

Interpretation: explicit time step of the regularized gradient flow.

2. **non-linear:** Sequence of minimization problems for $\alpha \rightarrow 0$.

1.

$$\begin{split} E_m[\phi] + \frac{\alpha_k}{2} g(\phi - \phi^{(k)} \quad , \quad \phi - \phi^{(k)}) \\ \text{Euler-Lagrange} \qquad \alpha_k g(\phi - \phi^k, \psi) \quad = \quad -\langle E'_m[\phi], \psi \rangle \\ \phi^{(k+1)} \quad = \quad \phi^{(k)} - \frac{1}{\alpha_k} \text{grad}_g E_m[\phi^{(k+1)}] \end{split}$$

Interpretation: **implicit** time step of length α_k^{-1} .

UNIVERSITÄT

Metric $g_{NE}(\phi, \psi) = \operatorname{tr}(D(\nabla R)\nabla\phi \cdot \nabla\psi).$

With eigenvalues $\lambda_1 > \lambda_2 > 0$. Eigenvector v_1 in direction of ∇R^{\perp} . λ_1 large. Eigenvector v_2 in direction of ∇R . λ_2 small.

Corresponds to a stronger regularization in the set of deformations which are invariant under the registration energy.

UNIVERSITÄT

input images

UNIVERSITÄT

input images

homogeneous metric

UNIVERSITÄT

input images

homogeneous metric heterogenous metric intensity corresponds to $|\phi - \mathbf{II}| = |u|$

UNIVERSITÄT

Outline

- Unimodal Registration
- Gradient flow perspective
- Relations to Tikhonov-Regularization
- Multimodal Registration
- Hyperelastic polyconvex Regularization
- Practical issues for solving the minimization problem

UNIVERSITÄT

Multimodal Registration

 Detailed multimodal *in vivo* image information is routinely collected, very commonly MRI and CT, providing significant enhancements for functional study of anatomy and surgerical planning.

Multimodal Registration

- Detailed multimodal *in vivo* image information is routinely collected, very commonly MRI and CT, providing significant enhancements for functional study of anatomy and surgerical planning.
 Identification (Segmentation) of tumours in MRI, while stereotactical technology is based on CT.
- changes of image intensities due to histological changes (tumours), injections of substances

UNIVERSITÄT DUISBURG ESSEN

Multimodal Registration

- Detailed multimodal *in vivo* image information is routinely collected, very commonly MRI and CT, providing significant enhancements for functional study of anatomy and surgerical planning.
 Identification (Segmentation) of tumours in MRI, while stereotactical technology is based on CT.
- changes of image intensities due to histological changes (tumours), injections of substances

• variations in illuminations for the study of image sequences (cf. optical flow)

UNIVERSITÄT

Overview of Multimodal similarity measures

• Global Mutual information (Viola, Wells '96, Collignon, et al. '95)

$$MI(X,Y) = \underbrace{H(X) + H(Y)}_{\text{entropy of } X \text{ resp. } Y} + \underbrace{H(X,Y)}_{\text{joint entropy of } X \text{ and } Y}$$
$$H(x) := -\int p(x) \ln p(x) dx \qquad H(x,y) := -\int p(x,y) \ln p(x,y) dx \, dy$$

Local Cross-Covariance

$$CC(X,Y) := -\int_{\Omega} \frac{V_{X,Y}^2}{V_X \cdot V_Y} dx$$

 $V_{X,Y}$ local correlation of X and Y V_X local variance of X

UNIVERSITÄT

Morphological Methods in Image Processing

Contrast invariant description of images: Def. Morphology $M[I] := \{\mathcal{M}_c^I | c \in \mathbb{R}\}$ Upper topographic map $UTM[I] := \{[I \ge c] | c \in \mathbb{R}\}$ (*Caselles, Coll, Morel*).

UNIVERSITÄT

Morphological filter \mathcal{F} :

$$\mathcal{CC} \circ \mathcal{F} = \mathcal{F} \circ \mathcal{CC}$$

where \mathcal{CC} is a contrast-change of the image, i. e. $\mathcal{CC}(I)=g(I)$ for a nondecreasing function g.

 \rightsquigarrow morphological filters do only depend on M[I] resp. UTM[I].

Motivation:

- Nonlinear response of sensors
- Different display devices in general have different contrast.

Example: Level-Set-Methods with evolution speed only depending on the shape of the level sets of a function $\phi : \Omega \to \mathbb{R}$.

$$\partial_t + F(S) \| \nabla \phi \| = 0$$
 in $(0, T) \times \Omega$ $\phi(0, \cdot) = I$

Shape operator
$$S := DN = \frac{1}{\|\nabla \phi\|} (\mathbbm{I} - N \otimes N) D^2 \phi$$
 $N = \frac{\nabla \phi}{\|\nabla \phi\|}$
corresponding to the *Weingarten-Map* $DX^{-1} \circ DN$ on the tangent space $T_r M_c \phi$

- Mean-Curvature-Flow $F_{MCM}(S) = -trS = -div\left(\frac{\nabla\phi}{\|\nabla\phi\|}\right)$
- Affine morphological scale space (*Alvarez, et al.*) $F_{AMSS}(S) = -(trS)^{\frac{1}{3}}$.
- Anisotropic curvature flow (*Preusser*, *Rumpf*) $F_{aniso}(S) = -div \left(a^{\sigma} \frac{\nabla \phi}{\|\nabla \phi\|} \right)$

UNIVERSITÄT

Multimodal Registration based on Image Morphology

Aim: Construct a geometric similarity measure as registration energy.

Identification $M[I] \leftrightarrow T\mathcal{M}_c^I \quad c \in \mathbb{R}$

Find $\phi: \Omega \to \Omega$ such that

$$M[T \circ \phi] = M[R]$$

Consider Gauss map: $N_I : \Omega \to S^{d-1}, x \mapsto \frac{\nabla I(x)}{\|\nabla I(x)\|}.$

Alignment of tangent spaces \rightsquigarrow matching of Gauss maps

UNIVERSITÄT

where N_R^{ϕ} is the transformed normal from R onto $T_{\phi(x)}\phi(\mathcal{M}_{R(x)}^R)$ which is given by

$$D\phi u \times D\phi v = \operatorname{Cof} D\phi (u \times v) \Rightarrow N_R^{\phi} = \frac{\operatorname{Cof} D\phi N_R}{|\operatorname{Cof} D\phi N_R|}$$

where $\operatorname{Cof} A = \operatorname{det} A \cdot A^{-T}$ for invertible A.

UNIVERSITÄT

General Framework for a Multimodal Registrationenergy

Define function $g: S^{d-1} \times S^{d-1} \times R^{d,d}$ measuring the deviation of the normals.

$$\begin{split} E_m[\phi] &:= \int_{\Omega} g_0(\nabla T \circ \phi, \nabla R, \operatorname{Cof} \nabla \phi) \, \mathrm{d}\mu \\ g_0(v, w, A) &= \begin{cases} 0 & ; v = 0 \text{ or } w = 0 \\ g(\frac{v}{|v|}, \frac{w}{|w|}, A) & ; \text{ else} \end{cases} \\ g. \quad g(v, w, A) &= \hat{g}\left((1 - v \otimes v) \frac{Aw}{|Aw|}\right). \end{split}$$

where \hat{g} convex.

e.

General Framework for a Multimodal Registrationenergy

Define function $g: S^{d-1} \times S^{d-1} \times R^{d,d}$ measuring the deviation of the normals.

$$\begin{split} E_m[\phi] &:= \int_{\Omega} g_0(\nabla T \circ \phi, \nabla R, \operatorname{Cof} \nabla \phi) \, \mathrm{d}\mu \\ g_0(v, w, A) &= \begin{cases} 0 & ; v = 0 \text{ or } w = 0 \\ g(\frac{v}{|v|}, \frac{w}{|w|}, A) & ; \text{ else} \end{cases} \\ g. & g(v, w, A) &= \hat{g}\left((1 - v \otimes v) \frac{Aw}{|Aw|}\right). \end{split}$$

where \hat{g} convex. We need convexity in A.

e.

$$g(u, v, A) := \|(1 \mathbb{I} - v \otimes v) \cdot Aw\|^{\gamma} \quad 1 \le \gamma$$

$$\to E_m[\phi] = \int_{\Omega} \|(1 \mathbb{I} - (N_T \circ \phi) \otimes (N_T \circ \phi)) \cdot \mathbf{Cof} \, D\phi N_R \|^{\gamma}$$

UNIVERSITÄT

Microstructures

$$N_T \equiv e_1 \quad N_R \equiv e_2$$

$$\phi_{\epsilon}(x) = 1 \mathbf{I} + \epsilon^{\alpha} \psi \left(\frac{x_2}{\epsilon}\right) e_1 \qquad 1 < \alpha < 2$$

UNIVERSITÄT

Microstructures

$$N_T \equiv e_1 \quad N_R \equiv e_2$$

$$\phi_{\epsilon}(x) = 1 \mathbf{I} + \epsilon^{\alpha} \psi \left(\frac{x_2}{\epsilon}\right) e_1 \qquad 1 < \alpha < 2$$

UNIVERSITÄT

Microstructures

$$N_T \equiv e_1 \quad N_R \equiv e_2$$

$$\phi_{\epsilon}(x) = 1 \mathbf{I} + \epsilon^{\alpha} \psi \left(\frac{x_2}{\epsilon}\right) e_1 \qquad 1 < \alpha < 2$$

UNIVERSITÄT DEUSSENURG

$$Microstructures$$

$$N_T \equiv e_1 \quad N_R \equiv e_2$$

$$\phi_{\epsilon}(x) = \mathrm{II} + \epsilon^{\alpha}\psi\left(\frac{x_2}{\epsilon}\right)e_1 \quad 1 < \alpha < 2$$

$$\phi_{\epsilon} \rightarrow \mathrm{II} \text{ in } H^{1,2}$$

but

$$E[1I] = |\Omega|g_0(e_1, e_2, 1I) > 0 = \liminf_{\epsilon \to 0+} E[\phi_\epsilon]$$

Thus, we don't have existence without regularization of the matching energy.

UNIVERSITÄT

$$Microstructures$$

$$N_T \equiv e_1 \quad N_R \equiv e_2$$

$$\phi_{\epsilon}(x) = 1 + \epsilon^{\alpha} \psi\left(\frac{x_2}{\epsilon}\right) e_1 \quad 1 < \alpha < 2$$

$$\phi_{\epsilon} \rightarrow 1 \text{I in } H^{1,2}$$

but

$$E[1I] = |\Omega| g_0(e_1, e_2, 1I) > 0 = \liminf_{\epsilon \to 0+} E[\phi_\epsilon]$$

Thus, we don't have existence without regularization of the matching energy.

and

The simpler the images, the higher the degree of ill-posedness.

UNIVERSITÄT

Outline

- Unimodal Registration
- Gradient flow perspective
- Relations to Tikhonov-Regularization
- Multimodal Registration
- Hyperelastic polyconvex Regularization
- Practical issues for solving the minimization problem

UNIVERSITÄT

Hyperelastic polyconvex Regularization

$$E[\phi] := E_m[\phi] + E_{reg}[\phi] \to \min!$$

Consider an elastic *polyconvex* regularizationenergy, i.e.,

$$E_{reg}[\phi] = \int \hat{W}(D\phi) = \int W^*(D\phi, \operatorname{Cof} D\phi, \det D\phi)$$

and W^* convex.

UNIVERSITÄT

Hyperelastic polyconvex Regularization

 $E[\phi] := E_m[\phi] + E_{reg}[\phi] \to \min!$

Consider an elastic *polyconvex* regularizationenergy, i.e.,

$$E_{reg}[\phi] = \int \hat{W}(D\phi) = \int W^*(D\phi, \operatorname{Cof} D\phi, \det D\phi)$$

and W^* convex.

E. g.: *Mooney-Rivlin-Energy* for elastic compressible materials.

$$E_{MR}[\phi] := \int_{\Omega} \alpha \|D\phi\|^2 + \beta \|\mathbf{Cof} \, D\phi\|^2 + \Gamma(\det D\phi) dx$$

with $\Gamma(s) \to \infty$ for $s \to 0, \infty$, corresponding to the *a priori* information, that deformation must be a homeomorphism.

UNIVERSITÄT

Space of Images

Set of degenerate points $\mathcal{D}_I := \{x \in \Omega \mid \nabla I = 0\}$

We suppose that for the Lebesgue measure

$$\mu(B_{\epsilon}(\mathcal{D}_I)) \xrightarrow{\epsilon \to 0} 0$$

and the corresponding space of images

$$\begin{split} \mathcal{I}(\Omega) &:= \left\{ \left. I:\Omega \to \mathbb{R} \right| \, I \in C^1(\bar{\Omega}), \exists \, \mathcal{D}_I \subset \Omega \text{ s. t. } \nabla I \neq 0 \text{ on } \Omega \setminus \mathcal{D}_I, \right. \\ & \left. \mu(B_\epsilon(\mathcal{D}_I)) \xrightarrow{\epsilon \to 0} 0 \right\} \,. \end{split}$$

UNIVERSITÄT

Theorem 1. [Existence in three dimensions] , $T, R \in \mathcal{I}(\Omega)$, admissible deformations

$$\mathcal{A} := \{ \phi : \Omega \to \Omega \mid \phi \in H^{1,p}(\Omega), \operatorname{Cof} D\phi \in L^{q}(\Omega), \\ \det D\phi \in L^{r}(\Omega), \det D\phi > 0 \text{ a.e. in } \Omega, \phi = 1 \text{I on } \partial\Omega \}$$

where p, q > 3 and r > 1. W be polyconvex, $\exists ! \beta, s \in \mathbb{R}$, $\beta > 0$, and $s > \frac{2q}{q-3}$ such that

$$W(A, C, D) \ge \beta \left(\|A\|_{2}^{p} + \|C\|_{2}^{q} + D^{r} + D^{-s} \right) \quad \forall A, C \in \mathbb{R}^{3,3}, D \in \mathbb{R}^{+}$$
(1)
$$g_{0}(v, w, A) = g\left(\frac{v}{|v|}, \frac{w}{|w|}, A\right) \text{ be continuous in } \frac{v}{|v|}, \frac{w}{|w|}, \text{ convex in } A \text{ and for } m < q$$
$$g(v, w, A) - g(u, w, A) \le C_{g} \|v - u\| (1 + \|A\|_{2}^{m}).$$
holds.
$$\Rightarrow \exists \text{ homeomorphism } \phi \in \mathcal{A}.$$

UNIVERSITÄT

Boundary conditions

Dirichlet cond. $\phi = 1$ on $\partial \Omega$ is not always approviate. We have to allow $\phi(\Omega) \not\subset \Omega$, but integrand is only defined on $\phi^{-1}(\operatorname{Im}(\phi) \cap \Omega)$.

 $\Rightarrow \text{ define energy on } \Omega^{\phi} := \{ x \in \Omega \, | \, \phi(x) \in \Omega \} \text{ and consider} \\ \text{ the energy } \tilde{E}_m[\phi] := \int_{\Omega^{\phi}} g_0(\nabla T \circ \phi, \nabla R, \operatorname{\mathbf{Cof}} D\phi) \, \mathrm{d}\mu.$

But then

$$\tilde{E}_m[\phi] = 0$$
 for all ϕ s.t. $\phi(\Omega) \cap \Omega = \emptyset$.

To avoid the problem, minimize

$$\tilde{E}_m + E_{\mathsf{reg}} + \int_{\Omega} |d(\phi(\cdot), \mathcal{F}_T) - d(\cdot, \mathcal{F}_R)|^2 \,\mathrm{d}\mu,$$

where \mathcal{F}_T , \mathcal{F}_R are corresponding selected features of T and R. $d(x, A) := \hat{d} \circ \operatorname{dist}(x, A)$.

UNIVERSITÄT

38

Spine Registration CT-MR

Top Left: reference R, CT, Top Right: template T, MR. Bottom Left: after feature based registration $T \circ \phi_f$. Bottom Right: final deformed template $T \circ \phi$.

UNIVERSITÄT

Spine Registration CT-MR

Comparison of superimposed template and reference before (left) and after (right) registration and deformation after the preregistration (feature-based) against final deformation.

UNIVERSITÄT

Validation

Generation of pair of test images.

original T

deformed $T \circ \phi^*$ contrast change $g \circ T \circ \phi^*$

Use $R := g \circ T \circ \phi^*$ for computation and compare solution ϕ to ϕ^*

Numerical Mathematics and Scientific Computing, University of Duisburg-Essen, Duisburg

UNIVERSITÄT

Comparison of deformation

exact solution ϕ^{\ast}

computed solution $\boldsymbol{\phi}$

UNIVERSITÄT

Comparison to unimodal Registration

In regions of *low contrast* but *high geometric variability*, the morphological registration can be superior to the unimodal registration, even if only one modality is considered.

UNIVERSITÄT

Outline

- Unimodal Registration
- Gradient flow perspective
- Relations to Tikhonov-Regularization
- Multimodal Registration
- Hyperelastic polyconvex Regularization
- Practical issues for solving the minimization problem

Multiscale minimization approach

Energy E_m in general possesses many local minima for given images T and R.

Strategy: Consider a continuous scale of images T^{σ} , R^{σ} , generated by a scale-space-operator $S(\sigma)$, where $\sigma \geq 0$ denotes the scale-parameter.

$$I^{\sigma} = S(\sigma)I$$
 e.g. $S(\sigma) = HESG(\frac{\sigma^2}{2}), S(\sigma) = MCM(\sigma)$

$$E_m^{\sigma}[\phi] \quad := \quad \frac{1}{2} \int |T^{\sigma} \circ \phi - R^{\sigma}|^2 \,\mathrm{d}\mu \text{ resp. } \int g_0(\nabla T^{\sigma}, \nabla R^{\sigma}, \mathbf{Cof} \, D\phi) \,\mathrm{d}\mu$$

UNIVERSITÄT
Multiscale minimization approach

Energy E_m in general possesses many local minima for given images T and R.

Strategy: Consider a continuous scale of images T^{σ} , R^{σ} , generated by a scale-space-operator $S(\sigma)$, where $\sigma \geq 0$ denotes the scale-parameter.

$$I^{\sigma} = S(\sigma)I$$
 e.g. $S(\sigma) = HESG(\frac{\sigma^2}{2}), S(\sigma) = MCM(\sigma)$

$$\begin{split} E_m^{\sigma}[\phi] &:= \frac{1}{2} \int |T^{\sigma} \circ \phi - R^{\sigma}|^2 \,\mathrm{d}\mu \text{ resp. } \int g_0(\nabla T^{\sigma}, \nabla R^{\sigma}, \mathbf{Cof} \, D\phi) \,\mathrm{d}\mu \\ g(\partial_t \phi_{\sigma}, \psi) &= -\langle E_m^{\sigma'}[\phi_{\sigma}], \psi \rangle \\ \phi_{\sigma}(0) &= \phi_{0,\sigma} \\ \sigma_k &= \beta_1 2^{-\beta_2 k} \quad \beta_1, \beta_2 > 0 \\ \phi_{\sigma_k}(0) &= \phi_{\sigma_{k-1}}(T_k) \end{split}$$

UNIVERSITÄT

UNIVERSITÄT

UNIVERSITÄT

UNIVERSITÄT

UNIVERSITÄT

Refinement of the solution w.r.t. to scale

scale 1

scale 2

scale 3

scale 4

UNIVERSITÄT

Numerical Mathematics and Scientific Computing, University of Duisburg–Essen, Duisburg

UNIVERSITÄT

Coupling Scale and Resolution

Multiscale onf images: $T^{\sigma_k} = S(\sigma_k)T$, $R^{\sigma_k} = S(\sigma_k)R$ given by the scale-operator $S(\sigma_k)$ and $\sigma_k \to 0$ for $k \to \infty$.

Solve the problem on a **multilevel hierarchy** $(\mathcal{M}_{h_l}, \mathcal{V}_{h_l})$ of grids, with $\mathcal{M}_{h_{l_{\max}}} \subset \ldots \subset \mathcal{M}_{h_{l+1}} \subset \mathcal{M}_{h_l} \subset \mathcal{M}_{h_{l-1}} \subset \ldots \mathcal{M}_{h_{l_0}}$ and corresponding discrete functionspaces \mathcal{V}^l .

During step k with assigned scaleparameter σ_k find minimal $l(k) \in \mathbb{N}$, such that

 $h_{l(k)} \le \alpha \sigma_k$

50

UNIVERSITÄT

Coupling Scale and Resolution

Multiscale onf images: $T^{\sigma_k} = S(\sigma_k)T$, $R^{\sigma_k} = S(\sigma_k)R$ given by the scale-operator $S(\sigma_k)$ and $\sigma_k \to 0$ for $k \to \infty$.

Solve the problem on a **multilevel hierarchy** $(\mathcal{M}_{h_l}, \mathcal{V}_{h_l})$ of grids, with $\mathcal{M}_{h_{l_{\max}}} \subset \ldots \subset \mathcal{M}_{h_{l+1}} \subset \mathcal{M}_{h_l} \subset \mathcal{M}_{h_{l-1}} \subset \ldots \mathcal{M}_{h_{l_0}}$ and corresponding discrete functionspaces \mathcal{V}^l .

During step k with assigned scaleparameter σ_k find minimal $l(k) \in \mathbb{N}$, such that

 $h_{l(k)} \le \alpha \sigma_k$

change the scale $k \rightarrow k+1$, if

$$\|\phi_k^{n+1} - \phi_k^n\| \le \gamma \sigma_k$$

Numerical Mathematics and Scientific Computing, University of Duisburg-Essen, Duisburg

UNIVERSITÄT

Multigrid for regularized metric and scales

Consider HESG (heat equation semi-group)

F

$$\begin{split} g(u,v) &= (u,v)_{L^2} + \frac{\sigma^2}{2} (\nabla u, \nabla v)_{L^2} \\ &\to \partial_t \phi &= -\left(\mathrm{II} - \frac{\sigma^2}{2} \Delta \right)^{-1} E'_m[\phi] \\ \mathrm{urthermore} \quad I^\sigma &= \left(\mathrm{II} - \frac{\sigma^2}{2} \Delta \right)^{-1} I \end{split}$$

Solve $(1I - \frac{\sigma^2}{2}\Delta)^{-1}$ by multigrd V-cycle. Smoothing properties \rightarrow robustness of gradient flow.

UNIVERSITÄT

Step size control

Gradient flow perspective with metric g allows to apply well-known step-control criteria.

E. g. Armijo's Rule: $\sigma \in (0, 1)$

$$E[\phi^{(k+1)}] - E[\phi^{(k)}] \leq -\sigma\tau \langle E'[\phi^{(k)}], A^{-1}E'[\phi^{(k)}] \rangle \\ = -\sigma\tau \|A^{-1}E'[\phi^{(k)}]\|_g^2$$

UNIVERSITÄT

Step size control

Gradient flow perspective with metric g allows to apply well-known step-control criteria.

E. g. Armijo's Rule: $\sigma \in (0, 1)$

$$E[\phi^{(k+1)}] - E[\phi^{(k)}] \leq -\sigma\tau \langle E'[\phi^{(k)}], A^{-1}E'[\phi^{(k)}] \rangle \\ = -\sigma\tau \|A^{-1}E'[\phi^{(k)}]\|_g^2$$

Given $\beta \in (0,1)$ (typically $\beta = \frac{1}{2}$), find minimal $k \in \mathbb{Z}$, such that

$$E[\phi^{(k)} - \beta^k A^{-1} E'[\phi^{(k)}]] - E[\phi^{(k)}] \le \sigma \beta^k \|A^{-1} E'[\phi^{(k)}]\|_g^2$$

Other linesearch criteria easily incorporated in the regularized gradient flow framework.

UNIVERSITÄT

Morphological Registration: MRT T1 \leftrightarrow FLAIR

UNIVERSITÄT

Issues & Outlook

Registration may stop, when edges are only parallel

 e. tangent spaces coincide) but not correctly aligned.
 Classical approaches using gradient magnitudes may not be
 used without leaving the morphological framework. Registra tion may aim at additionally align discontinuity sets.

$$u \in SBV(\Omega) \Rightarrow Du = D^{ac}u + D^{j}u = \nabla u\mu + (u^{+} - u^{-})\nu_{u}\mathcal{H}^{n-1} \llcorner S(u)$$

Let integrand g_0 vanish where Du = 0 and use normals ν_I of essential boundary $\partial^* \{I < t\}$ as N_I to generalize the theorem.

Application of $\Gamma\text{-convergence}$ for a PDE-based approach to compute the jump set S(u).

In practice, multimodal pairs of images are obviously not morphologically equivalent.

UNIVERSITÄT

Implementation in DX9 Graphics Hardware by R. Strzodka, caesar, Germany

- Discrete scheme of the gradient descent is well suited for parallel computing.
 - ★ Many identical computations ~→ good for SIMD (Single Instruction Multiple Data).
 - ★ **Requires only local data** ~→ good for distributed memory.

UNIVERSITÄT

Implementation in DX9 Graphics Hardware by R. Strzodka, caesar, Germany

- Discrete scheme of the gradient descent is well suited for parallel computing.
 - ★ Many identical computations ~→ good for SIMD (Single Instruction Multiple Data).
 - ★ **Requires only local data** ~→ good for distributed memory.
- Why use graphics hardware?
 - ★ Outstanding price-performance ratio
 - ★ Readily available in any modern PC
 - ★ Performance doubles in less than 9 months ~→ Moore's Law squared

UNIVERSITÄT

Implementation in DX9 Graphics Hardware by R. Strzodka, caesar, Germany

Constraints

- * Process data in large streams, i.e. avoid frequent changes in the graphics pipeline
- * Minimize data transfer between main memory and graphics card

56

UNIVERSITÄT DUSSBURG

 513×769 images registered in 5.9 seconds \rightsquigarrow ca. saving of factor 10

UNIVERSITÄT

End

- MD, M. Rumpf, *A Variational Approach to non-rigid morphological registration*, SIAM Appl. Math., to appear.
- U. Clarenz, MD, M. Rumpf, *Towards fast non-rigid registration*, AMS Proceedings Inverse Problems, 2002
- U. Clarenz, S. Henn, M. Rumpf, K. Witsch, *Relations between optimization and gradient flow methods with applications to image registraion*, GAMM 2002
- M. Rumpf, On the matching of images with edge discontinuities, in prep.
- MD, R. Strzodka, M. Rumpf, Image registration by a regularized gradient flow, A streaming Implementation in DX9 Graphics Hardware, Computing, submitted.