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Scattering by an Infinite Cylinder
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1. A Perfect Conductor (E = (0, 0, u))

∆2u+ k2u = 0 in R2 \ D̄

u = ui + us

u = 0 on ∂D

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0
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2. An Inhomogeneous Medium

∆2u+ k2n(x)u = 0 in R2

u = ui + us

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0

Assume ui(x) = eikx·d, n(x) = 1 in R2 \ D̄, Im n(x) ≥ 0 for
x ∈ D, Re n(x) > 0, k > 0, r = |x|.
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Scattering by an Infinite Cylinder

Let

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|) , x 6= y.

Then for x ∈ R2 \ D̄, Green’s theorem implies that

us(x) =
∫

∂D

(
us(y)

∂

∂ν(y)
Φ(x, y)− ∂us

∂ν
(y)Φ(x, y)

)
ds(y)

This is known as Green’s representation formula.

Theorem: In R2 \ D̄, us(x) is a real-analytic function of its
independent variables.

Rellich’s Lemma: Let u ∈ C2(R2 \ D̄) be a solution of the
Helmholtz equation satisfying

lim
R→∞

∫

|y|=R

|u(y)|2ds(y) = 0.

Then u = 0 in R2 \ D̄.

Definition: The condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0

is called the Sommerfeld radiation condition.
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The Perfect Conductor:
Uniqueness and Existence

Uniqueness Theorem: Let us ∈ C2(R2 \ D̄) ∩ C(R2 \D) be
a solution of the Helmholtz equation in R2 \ D̄ satisfying
the Sommerfeld radiation condition and us = 0 on ∂D.
Then us = 0 in R2 \D.

Proof: Let B be a disk centered at the origin such that
B ⊃ D. Then by Green’s theorem

∫

∂B

(
ūs
∂us

∂r
− us ∂ū

s

∂r

)
ds = 0. (1)
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The Perfect Conductor:
Uniqueness and Existence

But for x ∈ R2 \B,

us(r, θ) =
∞∑
−∞

an(r)einθ (2)

an(r) =
1

2π

π∫

−π
us(r, θ)e−inθdθ

⇒
an(r) = anH

(1)
n (kr).

Using the Wronskian relation for Hankel functions,
1), 2)⇒

∞∑
−∞
|an|2 = 0

⇒ us(x) = 0 for x ∈ R2 \B and, by analyticity, us(x) = 0
for x ∈ R2 \ D̄.



The Direct Scattering Problem for an Infinite Cylinder 6

The Perfect Conductor:
Uniqueness and Existence

We now try to construct a solution to the direct scattering
problem for a perfect conductor. We first look for a solution
in the form of a double layer potential

us(x) =
∫

∂D

ϕ(y)
∂

∂ν(y)
Φ(x, y)ds(y).

However, this approach fails if k2 is an eigenvalue of the
interior Dirchlet problem for the Laplacian in D! Hence, we
look for a solution int he form of a modified double layer
potential

us(x) =
∫

∂D

ϕ(y)
{
∂Φ(x, y)
∂ν(y)

− iηΦ(x, y)
}
ds(y)

where ϕ ∈ C(∂D) and η 6= 0. us will be a solution of the
scattering problem if

ϕ+ 2
∫

∂D

ϕ(y)
{
∂Φ(x, y)
∂ν(y)

− iηΦ(x, y)
}
ds(y) = −2eikx·d

It can be show using the Fredholm alternative that there
exists a unique solution to this integral equation. Hence
existence of a solution to the scattering problem for a
perfect conductor has been established.
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The Inhomogeneous Medium:
Uniqueness and Existence

In this case uniqueness (and hence, by the Fredholm
alternative, existence) is based on the following theorem:

Unique Continuation Principle: Let G be a domain in R2

and suppose u ∈ C2(G) is a solution of

∆2u+ k2n(x)u = 0

in G such that n ∈ C(Ḡ) and u vanishes in a neighborhood
of some x0 ∈ G. Then u is identically zero in G.

Uniqueness Theorem: Let u ∈ C2(R2) satisfy

∆2u+ k2n(x)u = 0 in R2

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0

Then u = 0 in R2.

Proof: Green’s theorem implies that for D ⊂ {x : |x| < a}
∫

|x|=a

u
∂ū

∂ν
ds =

∫

|x|≤a

{|grad u|2 − k2n̄|u|2} dx

and hence

Im

∫

|x|=a

u
∂ū

∂r
ds = k2

∫

|x|<a

Im n|u|2dx ≥ 0. (1)
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The Inhomogeneous Medium:
Uniqueness and Existence

But

Im

∫

|x|=a
u
∂ū

∂r
ds =

1
2i

∫

|x|=a

(
u
∂ū

∂r
− ū∂u

∂r

)
ds

and the Wronskian relation for Hankel functions implies
that

Im

∫

|x|=a

u
∂ū

∂r
ds < 0

unless u = 0 for |x| ≥ a. Hence, from 1) u = 0 for |x| ≥ a
and the theorem follows by the unique continuation
principle.

The direct scattering problem for an inhomogeneous
medium is easily seen to be equivalent to the problem of
solving the Lippmann Schwinger equation

u(x) = ui(x)− k2

∫

R2

Φ(x, y)m(y)u(y)dy, x ∈ R2

where m := 1− n. The above uniqueness theorem and the
Fredholm alternative now imply the existence of a unique
solution to the direct scattering problem for an
inhomogeneous medium.
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Far Field Patterns

Recall that for both a perfect conductor and an
inhomogeneous medium,

us(x) =
∫

∂D

(
us(y)

∂

∂ν(y)
Φ(x, y)− ∂us

∂ν
(y)Φ(x, y)

)
ds(y).

Letting r = |x| → ∞ implies that

us(x) =
eikr√
r
u∞(x̂, d) + 0(r−3/2)

where x̂ = x/|x| and

u∞(x̂, d) =
eiπ/4√

8πk

∫

∂D

(us
∂

∂ν
e−ikx̂·y − ∂us

∂ν
e−ikx̂·y)ds(y).

Definition: u∞ is called the far field pattern corresponding
to the specific scattering problem under consideration.

Theorem: Suppose u∞ = 0. Then us = 0 in R2 \D.

Proof:
∫

|y|=R
|us(y)|2ds =

∫
|x̂|=1

|u∞(x̂, d)|2ds(x̂) + 0( 1
r ) as

r →∞. If u∞ = 0 then by Rellich’s lemma us = 0.
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Far Field Patterns

Reciprocity Principle: u∞(x̂, d) = u∞(−d,−x̂).

It follows from the reciprocity principle that u∞(x̂, d) is
infinitely differentiable with respect to its independent
variables.

Example: Consider the direct scattering problem for a
perfect conductor when D is a disk of radius a. Then using
the Jacobi-Anger expansion

eikr cos θ =
∞∑
−∞

inJn(kr)einθ

we have that, for d = (cosφ, sinφ),

us(r, θ) = −
∞∑
−∞

in
Jn(ka)

H
(1)
n (ka)

H(1)
n (kr)ein(θ−φ)

and since

H(1)
n (kr) =

√
2
πr

exp
[
i(kr − nπ

2
− π

4
)
]

+ 0
(
r−3/2

)

we have that

u∞(x̂, d) = −e−iπ/4
√

2
π

∞∑
−∞

Jn(ka)
Hn(ka)

ein(θ−φ).
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Far Field Operator for a Perfect Conductor

Let Ω := {x : |x| = 1}. The far field operator
F : L2(Ω)→ L2(Ω) is defined by

(Fg)(x̂) :=
∫

Ω

u∞(x̂, d)g(d)ds(d).

From the smoothness of u∞ we see that F is a compact
operator. Note that (Fg)(x̂) is the far field pattern
corresponding to the incident field ui being a Herglotz wave
function vg(x) defined by

vg(x) :=
∫

Ω

eikx·dg(d)ds(d).

Theorem: If F is the far field operator corresponding to a
perfect conductor then F is a normal operator.
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Far Field Operator for a Perfect Conductor

Theorem: The far field operator corresponding to a perfect
conductor is injective with dense range if and only if there
does not exist a Dirichlet eigenfunction for D which is a
Herglotz wave function.

Outline of Proof: The reciprocity principle implies that the
adjoint operator F ∗ satisfies

(F ∗h)(d) = (Fg)(−d)

where g(x̂) = h(−x̂). Hence F is injective if and only if F ∗

is injective. But N(F ∗)⊥ = F (L2(Ω)) and hence we only
need to prove that F is injective.

Fg = 0 implies that the scattering problem with ui = vg

has vanishing far field pattern and hence using Rellich’s
lemma vg(x) = 0 for x ∈ ∂D. Thus vg is a Dirichlet
eigenfunction unless g = 0.



The Direct Scattering Problem for an Infinite Cylinder 13

Far Field Operator for
an Inhomogeneous Medium

Recall that the far field operator F : L2(Ω)→ L2(Ω) is
defined by

(Fg)(x̂) :=
∫

Ω

u∞(x̂, d)ds(d).

Theorem: If F is the far field operator corresponding to an
inhomogeneous medium, and Im n(x) = 0 for x ∈ D, then
F is a normal operator.

Theorem: The far field operator corresponding to an
inhomogeneous medium is injective with dense range if and
only if there does not exist w ∈ C2(D) ∩ C1(D) and a
Herglotz wave function v such that v, w is a solution of the
interior transmission problem

∆2v + k2v = 0

in D

∆2w + k2n(x)w = 0

v = w

on ∂D
∂v

∂ν
=
∂w

∂ν
.
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Far Field Operator for
an Inhomogeneous Medium

Definition: Values of k such that the interior transmission
problem has a nontrivial solution are called transmission
eigenvalues.

Theorem: If Im n(x0) 6= 0 for some x0 ∈ D then k is not a
transmission eigenvalue, i.e. the far field operator F is
injective with dense range.

Proof: If there exists a nontrivial solution to the interior
transmission problem then

0 =
∫

∂D

(
v
∂v

∂ν
− v ∂v

∂ν

)
ds =

∫

∂D

(
w
∂w

∂ν
− w

∂w

∂ν

)
ds

=
∫

D

(w∆w − w∆w) dx = 2ik2

∫

D

Im n|w|2dx.

If Im n(x0) 6= 0 then w(x) = 0 in a neighborhood of x0 and

by the unique continuation principle w(x) = 0 for x ∈ D.
Then v has vanishing Cauchy data and hence v(x) = 0 for
x ∈ D ⇒⇐.
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Partially Coated Perfect Conductors
If a portion of a perfectly conducting cylinder is partially
coated by a dielectric, we are led to the mixed boundary
value problem

∆2u+ k2u = 0 in R2 \D

u = ui + us

u = 0 on ΓD

∂u

∂ν
+ ikλu = 0 on ΓI

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0

where λ is a positive constant and ∂D = ΓD ∪ ΓI .

Theorem: The mixed boundary value problem has at most
one solution.

Proof: Green’s theorem and Rellich’s lemma.

It is no longer appropriate to use integral equations of the
second kind to obtain existence; instead integral equations
of the first kind must be used.
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Partially Coated Perfect Conductors

From Green’s representation formula we have

u = S
∂u

∂ν
−Du

where S and D are single layer and double layer potentials
respectively. Applying the boundary conditions and letting
ψI and ψD be the unknown boundary data for u on ΓI and
∂u
∂ν + ikλu on ΓD respectively leads to a system of integral
equations of the first kind for the determination of ψI and
ψD:

A


ψD
ψI


 = g

Theorem: In an appropriate function space, A is a Fredholm
operator with index zero and A has a trivial kernel.

Corollary: A solution exists to the mixed boundary value
problem.


