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1 - Introduction
In  most applications of image deconvolution to the physical 
sciences, in particular microscopy and astronomy, accurate 
information about statistical properties of the noise is 
available. As a consequence, frequently used approaches to 
deconvolution are based on the Maximum Likelihood (ML) 
method. A particular case is the Least-Squares (LS) 
method which is the traditional starting point of the 
classical regularization theory.

It is known that the LS-formulation of deconvolution leads 
to ill-posed problems (ill-conditioned in their discrete 
approximation); even if no rigorous proof exists, it is a 
common opinion that all the existing ML-formulations of 
deconvolution are also leading to ill-posed problems; hence 
the need of regularization.
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In most cases, iterative methods, converging to the ML-
solutions, are used in such a way that regularization can be 
obtained by early stopping of the iterations. Indeed, these 
methods have the so-called semi-convergence property: the 
iterates first approach the ’’correct’’ solution and then go 
away.

However, due to the statistical setting of ML-methods, the 
most general appoach to regularization is provided by the 
so-called Bayesian methods.

In this tutorial, basic facts about image deconvolution are 
provided and the foundations of the ML formulations are 
given, as well as the iterative methods most frequently used 
in the applications. Moreover the Bayes approach and its  
relationship with the classical regularization theory are 
discussed.
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2 - Mathematical modeling of image 
formation

An image is represented by a function of two or three 
variables     :

;domain  image in the scoordinate      3) 2, (n   x ==ℜ∈ n

space variables in the case of a microscope or a camera, 
angular variables in the case of a telescope (the case n = 3 
is frequent in microscopy).

. image  detected  )xg(
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2.1 – Linear and space-invariant models

In most imaging systems the ideal image is approximately a 
linear function of the object; therefore the imaging system 
defines a linear operator A such that: 

. fA     g0 =

Space-invariant systems are such that, if an object is 
translated by a, then the corresponding ideal image is also 
translated by a, i. e. the operator A commutes with the 
translation operators:

. )a - xh(    )x( h) (T   

,  f A) (T   g T    f) (TA 

a

a0aa

=

==
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A linear and continuous operator commuting with the 
translations is a convolution operator, i. e.there exists a 
function h(x) such that:

.  'xd )'xf( )'x - xh(    )x( ) f(A ∫=

The function h(x) is called the Point Spread Function   (PSF) 
of the imaging system: it is the image of a point source 
(the image of a point is not a point, as in geometric optics).

The ideal image is just a function in the range of the 
operator A which, in general, is assumed to be defined in a 
space of square integrable functions:

.  x'd )x'f( )x' - xh(    )x(g 0 ∫=
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We denote by H the Fourier transform of a function h:

.  xd e )x(h  )H( . i - xωω ∫=

From the convolution theorem we have the relation:

.  )F( )H(    )(G0 ωωω =
The function H(ω) is called the Transfer Function (TF) of 
the imaging system.

;domain  frequency in    s coordinate      3) 2, (n  n ==ℜ∈ω

in the case of natural or microscopic images they are also 
called space frequencies, while in the case of astronomical 
images they are called angular frequencies and the two 
coordinates are usually denoted as u, v .
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Example of diffraction-limited PSF in the case of a 
telescope consisting of a perfect circular mirror 
(diameter D) and monochromatic radiation (wavelength λ): 
the PSF is the so-called Airy function given by:

Fourier transform
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Similar structure in the case of an ideal microscope.
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In most models the PSF satisfies the conditions:

.     xd )xh(   ii)

; 0  )xh(    i)

∞<

≥

∫
The first property implies that the ideal image is non-
negative if the object is non-negative while the second one 
implies that the imaging system is a low-pass filter in 
frequency domain. Indeed, from the Riemann-Lebesgue 
theorem it follows that the TF satisfies the conditions: 

.       ||   ,  0    |)H(| ii)

;function  continuous and bounded a is )H(  i)

∞→→ ωω

ω

Very often the TF is zero outside a bounded domain (for 
instance a disc in 2D); in such a case the ideal images are 
band-limited functions, which can be represented by 
means of Whittaker-Shannon sampling expansions.
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2.2 –Discrete models

Images are usually sampled on a uniform grid. In the case of 
bandlimited functions, the grid spacing is typically smaller, 
by a factor of 2 or 3, than the Nyquist-Shannon sampling 
distance, in order to avoid the need of interpolation of the 
measured data.

For simplicity we consider only 2D images. Then a sampling 
point is denoted by a pair of indices j,k taking values from 0 
to N-1. More precisely the samples are the integrals over a 
small domain (pixel) and are are also called the pixel- values 
of the image (object). Then the indices j,k characterize the 
pixels of the domain. Since the object and the ideal image 
are represented on the same grid, we will denote their 
sampling values as  [ ] [ ] ly.respective ,  kj,g  and   kj,f 0
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If the PSF is negligible outside a domain with diameter D, 
then, from the support properties of the convolution 
product, it follows that the ideal image contains a 
complete representation of the object f if the object is 
zero in a strip of width D all around the boundary of the 
image domain. In such a case it is possible to approximate 
the continuous convolution by means of a discrete (cyclic) 
convolution:

[ ] [ ] [ ] .  k',j'f k'-k,j'-jh    kj,
1-N

0k',j'
0 ∑

=

=g

This approximation is useful in the implementation of decon-
volution algorithms which can be based on FFT. With an 
abuse of notation, in the following we will denote by A the 
block-circulant matrix with circulant blocks, approximating 
the convolution operator A, so that we write again:

.   fA      g 0 =
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We will use again capital letters for denoting the Discrete 
Fourier Transform (DFT) of an array, i. e. if the array is 
h[j,k], its DFT is denoted by H[l,m] and is given by:

[ ] [ ] .  e kj,h    ml,H
k) m  j l(

N
2 i -1-N

0kj,

+

=
∑=

π

Then, from the convolution theorem for the discrete 
convolution product, we have again:

[ ] [ ] [ ] .  ml,F ml,H    ml,G 0 =

The arrays h[j,k] and H[l,m] can be called, respectively, 
the discrete PSF and the discrete TF. 

14

2.3 – Noise

In the following we consider only discrete models. We denote 
by g the array formed by the detected values, g[j,k], of an 
image. The detected values differ from the values of the 
ideal image as a consequence of several perturbing effects. 
The most important ones are the background and the noise. 
The background is due to a diffuse emission of the 
surrounding medium, which can be assumed approximately 
constant over the image domain. The noise is due to the 
detection system and is random. In general one can write: 

[ ] [ ] [ ] ,  kj,n    b    kj,g    kj,g 0 ++=

where b denotes the constant background and n[j,k] the 
noise contribution (in general, not additive).
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Due to the randomness of noise, it is quite natural to 
consider the detected values g[j,k] as realizations of 
random variables (r.v.) which will be denoted by η[j,k]. 
Therefore we denote by η the array formed by these 
random variables; the realization of η is just g.

For simplicity we assume that, for any given f, all r.v. s 
η[j,k] are absolutely continuous so that they are described 
by a joint probability density denoted by .  f)|  (gPη

The following properties are assumed in most models:

[ ]
f.given   of  valueexpected   thedenotes ] f|E[       where

,          b    fA     f|E                    
: trueholds iprelationsh following  theii)

;  properties noise    the

 from derived becan  f)|(gPdensity y probabilit  thei)

ηη
η

η

+=
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Model 1 – Additive noise
In some cases the noise due to the detection device (in 
particular the so-called read-out-noise, RON, due to the 
electronics of the CCD camera) is the realization of r.v. s 
which are independent of the object f. If we denote by ν 
the array formed by the noise r.v. s  ν[j,k], described by 
the joint probability density            from the relatioship:,  (n)Pν

,     b  fA     νη ++=

we obtain that the probability density of η , given f, is 
related to the probability density of ν by the equation:

.   b)- fA  - (gP   f)| (gP νη =

Gaussian noise is an important particular case.
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If the r. v. s  ν[j,k] are Gaussian with zero expected values 
and covariance matrix  C, then : 

,   n C ,n 
2
1
 - exp 

|C|2
1

    (n)P
2

1 - 
N

















=

πν

where |C| denotes the determinant of C and           is the 
usual Euclidean scalar product (we assume images N xN).

In the case of the so-called white noise the r.v. s ν[j,k] are 
independent, and have the same standard deviation σ :

,  ||n  || 
 2
1 -exp 

2
1    (n)P 2
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so that :
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Model 2 – Poisson noise

In some applications, such as microscopy and astronomy, 
the measurements are based on countings of events 
(photons); in these cases the signals can be modeled as 
Poisson processes. The r. v. s  η[j,k] can, in general, be 
assumed as independent (integer valued) r. v. s, with 
expected values given by assumption ii). Since the 
detected values g[j,k] are integer numbers, we can write:

( )[ ][ ] [ ][ ] .  e
!  k] g[j,
b  ,fA       f)|(gP

1-N

0kj,

 b k j,f)(A  -
 k] g[j,

∏
=

++= kj
η

Remember that, in the case of a Poisson r. v., the expected 
value coincides with the variance.
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Model 3 – Poisson and Gaussian noise
More generally the measurement process is a Poisson 
counting process contaminated by additive (independent) 
Gaussian noise. In such a case the statistical model for 
the detected image values is as follows [3]:

( )[ ][ ] [ ][ ] [ ] , || m - kj,g ||
 2
1

 -  exp 
2
1

 e
! m

b  ,fA 
  

   f)|(gP                                    
1-N

0kj,

2
22

 b kj,f)(A  -
 m

0
∏∑

=

+
∞+

= 





+=

=

σσπ

η

kj

m

where we have considered the particular case of white 
noise with zero expected value.

If needed, this expression can be simplified by using 
approximations (for instance Stirling formula).
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3 – Maximum likelihood methods

In classical statistics Maximum Likelihood (ML) is the most 
commonly used method for parameter estimation. Its 
application to image restoration is based on the knowledge 
of the random properties of noise discussed in Section 1.3, 
so that the probability density              is known. Then the 
ML estimator answers to the following question: 

Which object f is most likely to produce the detected image g ?

Definition 1 – For a given detected image g the likelihood 
function is the function of the object f defined by :

f)|(gPη

.   f)|(gP    (f)Lg η=
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Definition 2 – A ML-estimate of the object f is any object 
which maximizes the likelihood function:

.  (f)L max  arg    f gf=ML

Remark – In the case of image deconvolution, this problem 
is, in general, ill-posed.

Since in all practical applications the probability density of 
η is the product of a large number of factors, it is useful 
to introduce the following log-likelihood function:

,  (f)Lln     (f)l gg =

so that the ML-estimate is also given by:

.  (f)l max  arg    f gfML =

22

Relationships with the usual approach to Inverse Problems 
can be clarified by considering functionals of the following 
type:

,  (f)lln  -    (f)J gg ∝

obtained by dropping or adding terms depending only on g, 
so that the ML estimate is also given by: 

.  (f) J min  arg    f gfML =

In all ML approaches it is possible to introduce additional 
constraints on the object such as non-negativity, 
bounded support of the solution etc. According to the 
previous formulation all these problems are equivalent to 
problems of constrained minimization.
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3.1 – The Gaussian case
In the case of additive Gaussian noise the likelihood 
function is given in Section 1.3, Model 1. It follows that:

( ) ,  b - fA  - g C b, - fA  - g    (f) J
2

1 -
g =

and the ML-method is equivalent to the least-squares 
method. In the particular case of white noise:

.  || b - fA  - g ||    (f) J 2
2g =

Any minimum point of this functional is called a least-
squares  (LS) solution:

.  b) - (g  C A    fA  C A 1 -T
LS

1 - T =

,   (f) J min  arg    f gfLS =

and is a solution of the Euler equation:
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If the matrix A is a block circulant matrix, as discussed in 
Section 1.2, then, by introducing the “subtracted” image:

,  m][l,G m][l,H   m][l,F |m]H[l,| s
*

LS
2 =

,  b  -  g    gs =

and by taking the DFT of both sides of the Euler equation 
in the case C = I (white noise), we obtain:

where the * denotes complex conjugation. Therefore, in 
the points where H[k,l] = 0, the value of the FT of the LS 
solution is not determined, while in the other points it is 
given by:

.  
m]H[l,
m][l,G

    m][l,F s
LS =
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.  e 
m]H[l,
m][l,G

 
N
1

  k][j,f
m)k   l (j 

N
2

 i -

0m]H[l,

s
2LS

+

≠
∑=

π

The least-squares problem is ill-posed because the solution 
may not be unique and is strongly corrupted by noise 
propagation (ill-conditioning of the imaging matrix). The 
generalized solution, or minimal norm LS solution, is the LS 
solution with minimal Euclidean norm. It is obtained by 
setting: 

,  0    m]H[l,    if     0    m][l,FLS ==

and therefore it is given by:

The numerical instability of this solution is due to the small 
values of H[l,m] which amplify the noise terms of the 
corresponding Fourier components of the subtracted image.
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The numerical instability of the generalized solution is 
related to the uncertainty on the solutions which are 
compatible with the data within a given noise level. The set 
of these solutions can be reduced by means of constraints. 
The most popular is non-negativity. It leads to the 
definition of non-negative least-squares solutions:

.  || g - fA  ||  min   arg    f 2 s 0  f   LS ≥
+ =

Non-negativity, in general, does not remove the numerical 
instability of the solution nor the non-uniqueness (it is 
easy to provide examples). However, iterative algorithms 
have been proposed, converging to the non-negative LS 
solutions and having the semi-convergence property: 
first the iterates approach the correct solution and then 
go away.
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One of these methods is that called ISRA (Iterative 
Space Reconstruction Algorithm), whose iterations are 
defined by:

,   
fA A

gA f    f     

: compute , fgiven  ii)

; 0     f give  i)

(k)T
s

T
(k)1)(k

(k)

(0)

=

≥

+

where the quotient is the image obtained by dividing the 
two images pixel by pixel. The computation of each 
iteration is fast since it basically requires two FFT s for 
the computation of the denominator. The convergence of 
the algorithm to non-negative LS–solutions for any given 
initial guess has been proved by De Pierro [4]. The semi-
convergence of the algorithm is an experimental result 
derived from numerical simulations.
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The second method is that called Projected Landweber 
method, with iterations defined by:

( ){ }
,   

H
2

        0    

,  fA A - g A  f  P    f    

: compute , fgiven   ii)

; 0    f  give  i)

2
max

(k)T
s

T(k)1)(k

(k)

(0)

<<

+=

≥

+
+

τ

τ

where P+ is the projection on the cone of non-negative 
images and Hmax is the maximum value of |H[l,m]|. Again 
the implementation of each iteration requires the 
computation of two FFT s. The convergence to non- negative 
LS solutions has been proved by Eicke [5]. The semi-
convergence is proved in the non-projected case and is an 
experimental result in the projected one. Moreover the 
metod applies to any convex constraint.
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2.2 – The Poisson case
In the case of Poisson noise, Model 2 of Section 1.3, the ML 
method leads to the minimization of the following functional, 
which is obtained from the log-likelihood function by 
modifying the g-dependent term:

[ ] .  k]g[j, -  b  k]f)[j,(A     
b  k]f)[j,(A 

k]g[j,
ln  k]g[j,     (f)J

1-N

0kj,
g ∑

= 







++
+

=

This functional can be interpreted as a directed distance 
between g and Af + b and is just the Csiszar I-divergence 
measure of the discrepancy between g and Af + b. It is 
defined for all f such that Af + b > 0. If the PSF is non-
negative then the natural domain of the functional is the 
closed cone of the non-negative f.

30

convex. is  (f) J ii)

; 0    (f) J  i)

:properties following  thehas (f) J functional The

g

g

g

≥

Property i) follows from the elementary inequality:
,  0    a -  x  ln x   a -  aln  a ≥+

for fixed a > 0 and any x > 0. 

As concerns property ii), we need to compute the gradient 
and the Hessian of the functional; in order to simplify the 
equations, we assume that the PSF satisfies the condition:

,  1    k]K[j,
1

0,

=∑
−

=

N

kj

which can always be obtained by a suitable normalization 
of the PSF.
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The gradient of the functional is given by:

,  1    k][j, 
b  fA 

g
 A  -  

 k]- k'j, - h[j'  
b  ]k',[j' f)(A  

]k',g[j'
k] - k'j, - [j'h   -    

k][j, f 

(f)J 

T

1-N

0k',j'

1

0','

g

+







+
=

=+
+

=
∂
∂

∑∑
=

−

=

N

kj

where :
,  ]k',[j' f k]- k' j, - h[j'     k][j, ) f A (

1-N

0k',j'

T ∑
=

=

and the quotient is defined again by pixel by pixel division. 
Similar definition for the product of two images. As 
concerns the Hessian we have:

[ ]    ]k',j' ;k [j, (f) H    
]k',[j' f  k][j, f 

(f) J 
g

g
2

==
∂∂

∂

32

[ ]   ,  ]k' - 'k',j' - 'h[j' 
 b  ]'k','[j' f)(A 

]'k','[j' g
 k] - 'k'j, - 'h[j'  

1-N

0'k','j'
2∑

= +
=

and it is positive semi-definite since, for any array u :

[ ]

  .  0    
b    ]'k','[j' ) fA  (

]'k','[j' )u A  (
 ]'k','[j' g   

  ]k',u[j'  k]u[j,  ]k',j';k [j, (f) H   

2 1

0'',''

1-N

0kj,

1-N

0k',j'
g

≥








+
=

=

∑

∑ ∑
−

=

= =

N

kj

It follows that the functional is convex. The Hessian is 
positive definite if and only the equation Au = 0 implies   
u = 0 ; in such a case the functional is strictly convex and 
therefore a minimum point, if it exists, is unique. This 
condition, however, is not satisfied in the case of band-
limited imaging systems. 
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The previous properties imply that all minima are global.

Sufficient conditions are the Kuhn-Tucker conditions: a 
point            is a minimum point if:minf

.  0    k][j, f  if    ,  0     
k][j, f 

(f) J 

,  0    
 f 
(f) J 

f

min

ff

g

ff

g

min

min

=≤
∂

∂

=
∂

∂

=

=

The first condition implies:

,  
b  fA 

g
A f    f T 








+
=

which can be formally treated as a fixed point equation.
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By applying the method of successive approximations to 
the previous fixed point equation, we obtain the iterative 
algorithm:

.  
b  fA 

g
A f    f    

: compute , fgiven  ii)

; 0   f give  i)

(k)
T(k)1)(k

(k)

(0)

+
=

≥

+

The computation of one iteration of this method is more 
expensive than the computation of one iteration of ISRA 
or of the projected Landweber method; indeed it requires 
the computation of four FFT s: two for computing the 
denominator and two for computing the result of the 
application of the transposed matrix. In all cases the 
convergence (or semi-convergence) is slow: it requires the 
computation of many iterations.
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This method has been introduced (independently) by 
Richardson [6] and Lucy [7] and, for this reason, is known as 
Richardson-Lucy (RL) [6,7] method in Astronomy (it was 
used for the deconvolution of the aberrated images of the 
Hubble Space Telescope). It was rediscovered ten years 
later by Shepp and Vardi [8] as a method for Emission 
Tomography. They proved that it is a particular case of the 
Expectation Maximization (EM) method for the solution of 
ML problems and they also proved (in a weak sense) that it 
converges to maximum points of the likelihood function. 
More complete proofs are given in [9-10]. A generalization 
to a continuous model is given in [11].

It is obvious that all the iterates are non-negative if the 
image g and the PSF h are also non-negative. Moreover, in 
the case b = 0, they satisfy the condition:

∑ ∑
= =

=
1-N

0kj,

1-N

0kj,

(k)   . k]g[j,    k][j,f

36

Example of an astronomical object (a model of young 
binary star) and of its image. 
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RL-iterates in the case of the previous image (linear scale)

K=50

K=1000K=500

K=300K=100

K=10000
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RL-iterates in the case of the previous image (log-scale)

K=50

K=1000K=500

K=300K=100

K=10000
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4 – Bayesian methods and regularization

The ill-posedness (ill-conditioning) of ML-problems is 
generated by a lack of information on the object f, in 
particular by the lack of information about the 
frequencies corresponding to small values of the TF 
H[l,m]. A remedy can be the use of additional (prior) 
information on f, which can be expressed in the form of 
constraints (for instance, non-negativity) on f or of 
statistical properties of f.

In a probabilistic approach it is assumed that the object 
f and the image g are realizations of arrays of r.v. s, 
denoted respectively by ξ and η, and that the problem is 
solved if we know their joint probability density              .g)(f,Pξη

40

As discussed in Chapter 2, the conditional probability 
density of η given f can be deduced from known statistical 
properties of the noise. However the marginal probability 
density of ξ,          , in general is not known. One can guess 
this probability density, using his knowledge or ignorance 
about f. The model used is usually called a  ’’prior’’.

If the marginal distribution of f is given, then one can 
obtain the joint probability density from Bayes formula :

(f)Pξ

.  (f) P f)|(g P    g)(f, P ξηξη =

Using the analogous Bayes formula for the conditional 
probability of ξ, given g, one obtains:

,  
(g)P

(f)P f)|(gP
    g)|(f P

η

ξη
ξ =

which is the basic tool in the so-called Bayesian methods.
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A Maximum A Posteriori (MAP) of the object f, given the 
image g, is any solution of the problem:

.  g)|(fP max   arg    f fMAP ξ=

Introducing also in this case the log-function and neglecting 
the term independent of f, one finds:

{ } .   (f)Pln    (f) l  max   arg    f gfMAP ξ+=

(f) J gIn terms of the functionals            introduced in Chapter 2, 
the problem becomes:

{ } ,    (f) Pln   -  (f) J  min    arg    f gfMAP ξ=

 (f) Pln   - ξ

(f) Jg

and therefore the term                looks as a regularization 
of the functional            .
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The most frequently used priors are of the Gibbs type, 
namely of the form:

{ } ,   (f)   -   exp  C    (f) P Ω= µξ

where µ is a parameter, which can play the role of the 
regularization parameter, and Ω (f) is a functional 
expressing prior information about the object to be 
estimated.

In such a case, the MAP problem takes the following form:

{ } ,   (f)      (f) J   min arg    f gfMAP Ω+= µ

and therefore it has the same structure of typical problems 
in regularization theory.
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Examples of Gibbs priors:

prior).  variation(total  (f) TV    (f)   iv)
; noise) (impulse  || f ||    (f)   iii)
; prior) s(smoothnesLaplacian        

  theinstancefor  operator, aldifferenti a of       
ionapproximat discrete a is L  where,  || f L ||    (f)    ii)

; prior)   noise   (white   || f ||    (f)     i)

1

2
2

2
2

=Ω
=Ω

=Ω

=Ω

In the case of Gaussian white noise we obtain functionals 
of the classical regularization theory:

. (f)     || g - fA  ||    (f) R 2
2s , g Ω+= µµ

Therefore  all functional analytic methods developed for 
this theory [2] apply to the investigation of MAP solutions 
in this case.

44

[ ] . (f)      k]g[j, -  b  k]f)[j,(A     
b  k]f)[j,(A 
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   (f)      (f)J
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0kj,

g

Ω+








++
+

=

=Ω+

∑
=

µ

µ

In the case of Poisson noise, the MAP estimates are 
obtained by minimizing the functional:

A complete theory has not yet been developed, even if 
several partial results are contained in the scientific 
literature. It is obvious that the functional is defined on 
the cone of non-negative f.

Several iterative methods have been proposed for the 
minimization of these functionals for various kinds of 
priors. A unified approach to most of these methods can be 
found in [12] . 
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