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Scattering by an Infinite Cylinder
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1. A Perfect Conductor (E = (0, 0, u))

∆2u+ k2u = 0 in R2 \ D̄

u = ui + us

u = 0 on ∂D

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0
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Scattering by an Infinite Cylinder

2. An Inhomogeneous Medium

∆2u+ k2n(x)u = 0 in R2

u = ui + us

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0

Assume ui(x) = eikx·d, n(x) = 1 in R2 \ D̄, Im n(x) ≥ 0 for
x ∈ D, Re n(x) > 0, k > 0, r = |x|.
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The Inverse Scattering Problem
for a Perfect Conductor

The scattered field has the asymptotic behavior

us(x) =
eikr√
r
u∞(x̂, d) + 0(r−3/2)

where x̂ = x/|x|. Let Ω := {x : |x| = 1} and assume that k
is fixed.

Inverse Scattering Problem: Give u∞(x̂, d) for x̂ ∈ Ω and
either 1) d = −x̂, 2) d fixed or 3) d ∈ Ω, find D.

In practice it is often necessary to consider the limited
aperature problem where u∞(x̂, d) is only known for
x̂,−d ∈ Ω0 ⊂ Ω.
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Uniqueness Theorems for the Inverse Problem

Theorem (Kirsch–Kress): Assume that D1 and D2 are two
perfect conductors such that the far field patterns coincide
for all x̂, d ∈ Ω. Then D1 = D2.

Theorem (Colton-Sleeman): Let D1 and D2 be two perfect
conductors which are contained in a disk of radius R such
that kR < γ0 where γ0 is the first zero of the Bessel
function J0(z). Then if the far field patterns coincide for
one incident plane wave, D1 = D2.

Remark: The conclusion of the above theorem is an open
problem for Neumann boundary conditions. The a priori
assumption on D can be replaced by assuming D is a
polyhedral domain (Alessandrini and Rondi, Cheng and
Yamamoto, to appear).
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Physical Optics Approximation

We now attempt to reconstruct D from a knowledge of
u∞(d,−d), d ∈ Ω, under the assumption that D is convex
and the wave number k is large.
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d

ν
∂D_
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The physical optics approximation is, for k large,

∂u

∂ν
= 2

∂ui

∂ν
on ∂D_

∂u

∂ν
= 0 on ∂D+

∂D_ is called the illuminated region and ∂D+ is called the
shadow region.
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Physical Optics Approximation

Using the identity

0 =
∫

∂D

(ui(y)
∂Φ(x, y)
∂ν(y)

− ∂ui

∂ν
(y)Φ(x, y))ds(y)

for x ∈ R3 \D and

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), x 6= y

we now have that

u∞(x̂, d) = − eiπ/4√
2πk

∫

∂D_

∂

∂ν
eiky·de−ikx̂·yds(y)

= − ike
iπ/4

√
2πk

∫

∂D_

ν(y) · deik(d−x̂)·yds(y).

We now set x̂ = −d, replace d by −d and add the two
results.



The Inverse Scattering Problem for Electromagnetic Waves 7

Physical Optics Approximation

The previous calculations now yield the Bojarski identity

u∞(−d, d) + u∞(d,−d) =

=
−ikeiπ/4√

2πk

∫

∂D

∂

∂ν(y)
e2ikd·yds(y)

=
−ikeiπ/4√

2πk

∫

D

∆2e
2ikd·ydy

=
4ik3eiπ/4√

2πk

∫

R3

X (y)e2ikd·ydy

where X is the characteristic function of D. Hence we have
a linear integral equation to solve to determine X and hence
D.
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Newton’s Method

We now attempt to reconstruct the support of a perfect
conductor without the restrictive assumptions of the
physical optics approximation. We assume u∞(x̂, d) is
known for x̂ ∈ Ω, d fixed, and, for the sake of simplicity,
that ∂D can be represented as

x = r(x̂)x̂ , x̂ ∈ Ω.

Consider the mapping

F : r → u∞

for d fixed.

Theorem (Kirsch, Potthast): F : C2(Ω)→ L2(Ω) has a
Fréchet derivative F ′r. The linear operator F ′r is compact
and injective with dense range.
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Newton’s Method

To determine ∂D, F (r) = u∞ is replaced by the linearized
equation

F (r) + F ′rq = u∞

which from an initial guess r = r0 yields the new
approximation r1 = r0 + q. Newton’s method consists in
iterating this procedure. Partial results on the convergence
of Newton’s method in this case can be found in

R. Potthast, Point Sources and Multipoles in Inverse
Scattering Theory, Chapman and Hall/CRC, 2001.

Note that, for Newton’s method, a priori information is
needed on the number of scatterers as well as the boundary
condition (which is also true for the physical optics
approximation).
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The Linear Sampling Method

The far field operator F : L2(Ω)→ L2(Ω) is defined by

(Fg)(x̂) :=
∫

Ω

u∞(x̂, d)g(d)ds(d).

If Φ∞(x̂, z) is the far field pattern of the fundamental
solution

Φ(x, z) =
i

4
H

(1)
0 (k|x− z|)

then the far field equation is given by

(Fg)(x̂) = Φ∞(x̂, z)

Unfortunately, in general no solution exists to the far field
equation! However, defining the Herglotz wave function by

vg(x) :=
∫

Ω

eikx·dg(d)ds(d)

we have the following theorem:
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The Linear Sampling Method

Theorem: Assume k2 is not a Dirchlet eigenvalue for −∆ in
D. Then

1. If z ∈ D then for every ε > 0 there exists a solution
g(·; z) ∈ L2(Ω) of the inequality

‖Fg − Φ∞(·, z)‖L2(Ω) < ε

such that

lim
z→∂D

‖vg(·; z)‖H1/2(∂D) =∞

and
lim
z→∂D

‖g(·; z)‖L2(Ω) =∞.

2. If z ∈ R3 \D then for every ε > 0 and δ > 0 there exists
a solution g(·; z) ∈ L2(Ω) of the inequality

‖Fg − Φ∞(·, z)‖L2(Ω) < ε+ δ

such that

lim
δ→0
‖vg(·; z)‖H1/2(∂D) = ∞

lim
δ→0
‖g(·; z)‖L2(Ω) = ∞.

The function g in the above theorem is now sought for using
Tikhonov regularization and the Morozov discrepancy
principle to solve the far field equation Fg = Φ∞.
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The Inverse Scattering Problem
for an Inhomogeneous Medium

We now consider the case of scattering by an
inhomogeneous medium. We again assume that k is fixed.

Inverse Scattering Problem: Given u∞(x̂, d) for x̂, d ∈ Ω
find either 1) D or 2) n(x).

In R2, it is not known if u∞(x̂, d) uniquely determines n(x)
for fixed k. However, the following is known:

Theorem (Sun and Uhlmann, Potthast): The far field
pattern u∞(x̂, d) for x̂, d ∈ Ω uniquely determines D.

Theorem (Eskin): Except for possibly a countable set of
value of k, u∞(x̂, d) for x̂, d ∈ Ω uniquely determines n(x).
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Reconstruction of n(x)

1. The Born approximation

Recall that for an inhomogeneous medium u is the unique
solution of the Lippmann–Schwinger equation

u(x) = ui(x)− k2

∫

R2

Φ(x, y)m(y)u(y)dy , x ∈ R2

where m := 1− n. If k is small this can be solved by
successive approximations and replacing u by the first term
in this iterative process and letting r = |x| → ∞ we obtain
the Born approximation

u∞(x̂, d) = −k
2eiπ/4√

8πk

∫

R2

e−ikx̂·ym(y)ui(y)dy.

This is a linear integral equation for the determination of m.
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Reconstruction of n(x)

2. Newton’s Method

Newton’s method can be used to determine n(x) with no
assumptions on k being small. A very nice paper on this
topics is

T. Hohage, On the numerical solution of a three
dimensional inverse medium scattering problem,
Inverse Problems 17 (2001), 1743-1763.

3. The Linear Sampling Method

The linear sampling method can be used to determine the
support D of an inhomogeneous medium by solving the far
field equation where u∞ is now the far field pattern
corresponding to an inhomogeneous medium. See

D. Colton and A. Kirsch, A simple method for
solving inverse scattering problems in the resonance
region, Inverse Problems 12 (1996), 383-393.

D. Colton, M. Piana and R. Potthast, A simple
method using Morozov’s discrepancy principle for
solving inverse scattering problems, Inverse
Problems 13 (1997), 1477-1493.
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Maxwell’s Equations

The previous results on scattering by an infinite cylinder
have their analogues for Maxwell’s equations in R3. We
consider only the case of a perfect conductor:

PSfrag replacements
(Ei, Hi)
(Es,Hs)

D

∆× E − ikH = 0

in R3 \D
∆×H + ikE = 0

E = Ei + Es

H = Hi +Hs

ν × E = 0 on ∂D

lim
r→∞

(Hs × x− rEs) = 0

where
Ei(x) = i

k 5×5×peikx·d
Hi(x) = 5× peikx·d

and p ∈ R3 is the polarization.
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Maxwell’s Equations

It can be shown that

Es(x) =
eikr

r
E∞(x̂, d, p) + 0(

1
r2

)

and the inverse scattering problem is to determine D from
E∞(x̂, d, p) for x̂, d ∈ Ω : {x : |x| = 1} and three linearly
independent polarizations.

Theorem: D is uniquely determined by E∞(x̂, d, p) for
x̂, d ∈ Ω and three linearly independent polarizations
p1, p2, p3.

Physical optics, Newton’s method and the linear sampling
method can all be generalized to the present case and used
to determine D. We consider only the linear sampling
method.
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Maxwell’s Equations

Define the electric dipole with source at z ∈ R3 by

Ee(x, z, q) =
i

k
5x ×5x ×qΦ(x, z)

He(x, z, q) = 5x × qΦ(x, z)

where

Φ(x, z) :=
1

4π
eik|x−z|

|x− z|
and q ∈ R3. The far field operator F : L2

t (Ω)→ L2
t (Ω) is

defined by

(Fg)(x̂) :=
∫

Ω

E∞(x̂, d, g(d))ds(d)

and the far field equation is

(Fg)(x̂) = Ee,∞(x̂, z, q)

where Ee,∞ is the far field pattern of Ee. D can again be
characterized by those z ∈ R3 for which the regularized
solution of the far field equation satisfies ||g(·, z)|| ≤ C for C
an appropriately chosen constant.


